1
|
Xiao J, Cohen P, Stern MC, Odedina F, Carpten J, Reams R. Mitochondrial biology and prostate cancer ethnic disparity. Carcinogenesis 2018; 39:1311-1319. [PMID: 30304372 PMCID: PMC6292412 DOI: 10.1093/carcin/bgy133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer remains the second most prevalent cancer in men. Its incidence, progression and mortality profiles vary significantly by race and ethnicity, with African-American men having the highest incidence rate and mortality rate in the world. Although these disparities can be partially explained by socioeconomic factors, the underlying molecular causes are complex and require careful research. A considerable amount of literature exists, supporting the association between mitochondrial health and the incidence, aggression and risk of prostate cancer. Genetic alterations in mitochondrial DNA are frequent in prostate cancer; therefore, the resulting mitochondrial dysfunction and metabolic dysregulation may contribute to or indicate oncogenesis. Many of the prominent features of cancer cells are also closely related to mitochondrial functions, such as resistance to apoptosis, excess reactive oxygen species production and altered oxidative phosphorylation. In addition, prostate cancer ethnic disparity is influenced by environmental and lifestyle factors, which involves differences in mitochondrial metabolism and retrograde signaling events.
Collapse
Affiliation(s)
- Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Mariana Carla Stern
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Folakemi Odedina
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Renee Reams
- Department of Medicinal Chemistry, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
2
|
Luchini C, Nottegar A, Vaona A, Stubbs B, Demurtas J, Maggi S, Veronese N. Female-specific association among I, J and K mitochondrial genetic haplogroups and cancer: A longitudinal cohort study. Cancer Genet 2018; 224-225:29-36. [PMID: 29778233 PMCID: PMC5973548 DOI: 10.1016/j.cancergen.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Recent studies highlighted the role of mitochondrial dysregulation in cancer, suggesting that the different mitochondrial haplogroups might play a role in tumorigenesis and risk of cancer development. Our aim is to investigate whether any mitochondrial haplogroups carried a significant higher risk of cancer development in a large prospective cohort of North American people. The haplogroup assignment was performed by a combination of sequencing and PCR-RFLP techniques. Our specific outcome of interest was the incidence of any cancer during follow-up period. Overall, 3222 participants were included in the analysis. Women having I, J, K haplogroup reported a significant higher incidence of cancer compared to people with other haplogroups (p < 0.0001), whilst in men non association was found. In the multivariate analysis, women having I, J, K mitochondrial haplogroup reported a 50% increased risk of cancer (HR = 1.50; 95%CI: 1.04-2.16; p = 0.03). This gender-linked association may be partly explained by the role of mitochondrial function in female-specific (e.g. BRCA-driven) oncogenesis, but further studies are needed to better understand this potential correlation. Our findings may have important implications for cancer epidemiology and prevention.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Piazzale Scuro, 10, 37134 Verona, Italy.
| | - Alessia Nottegar
- Department of Surgery, Section of Anatomical Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Alberto Vaona
- Primary Care Department, Azienda ULSS20 Verona, Verona, Italy
| | - Brendon Stubbs
- South London and Maudsley NHS FoundationTrust, Denmark Hill, London SE5 8AZ, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8 AF, United Kingdom; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Jacopo Demurtas
- Primary Care Department, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy; Institute for clinical Research and Education in Medicine (IREM), Padova, Italy
| |
Collapse
|
3
|
Ancestry and different rates of suicide and homicide in European countries: A study with population-level data. J Affect Disord 2018; 232:152-162. [PMID: 29494899 DOI: 10.1016/j.jad.2018.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 01/28/2023]
Abstract
INTRODUCTION There are large differences in suicide rates across Europe. The current study investigated the relationship of suicide and homicide rates in different countries of Europe with ancestry as it is defined with the haplotype frequencies of Y-DNA and mtDNA. MATERIAL AND METHODS The mortality data were retrieved from the WHO online database. The genetic data were retrieved from http://www.eupedia.com. The statistical analysis included Forward Stepwise Multiple Linear Regression analysis and Pearson Correlation Coefficient (R). RESULTS In males, N and R1a Y-DNA haplotypes were positively related to both homicidal and suicidal behaviors while I1 was negatively related. The Q was positively related to the homicidal rate. Overall, 60-75% of the observed variance was explained. L, J and X mtDNA haplogroups were negatively related with suicide in females alone, with 82-85% of the observed variance described. DISCUSSION The current study should not be considered as a study of genetic markers but rather a study of human ancestry. Its results could mean that research on suicidality has a strong biological but locally restricted component and could be limited by the study population; generalizability of the results at an international level might not be possible. Further research with patient-level data are needed to verify whether these haplotypes could serve as biological markers to identify persons at risk to commit suicide or homicide and whether biologically-determined ancestry could serve as an intermediate grouping method or even as an endophenotype in suicide research.
Collapse
|
4
|
Kalsbeek AM, Chan EK, Corcoran NM, Hovens CM, Hayes VM. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 2017; 8:71342-71357. [PMID: 29050365 PMCID: PMC5642640 DOI: 10.18632/oncotarget.19926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery (p < 0.0001).
Collapse
Affiliation(s)
- Anton M.F. Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Eva K.F. Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Mitochondrial DNA haplogroup K as a contributor to protection against thyroid cancer in a population from southeast Europe. Mitochondrion 2017; 39:43-50. [PMID: 28851673 DOI: 10.1016/j.mito.2017.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022]
Abstract
We aimed to analyze the contribution of mitochondrial DNA (mtDNA) haplogroups of the mtDNA control region to thyroid cancer risk in a population from southeastern Europe consisting of 235 thyroid tumor patients, including 114 patients with thyroid follicular adenoma, 121 patients with papillary thyroid carcinoma, and 419 healthy controls. Binary logistic regression with adjustment for age and gender revealed that mtDNA haplogroup K was significantly associated with a protective role for thyroid cancer in the combined tumor group versus controls. These results indicate a potential role for mtDNA haplogroups as important candidate susceptibility markers for the patients with thyroid nodules.
Collapse
|
6
|
Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Cáceres-del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Vawter M, Jazwinski SM, Miceli M, Wallace DC, Udar N. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet 2014; 23:3537-51. [PMID: 24584571 PMCID: PMC4049308 DOI: 10.1093/hmg/ddu065] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other 'modifiers' may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt-nuclear interactions.
Collapse
Affiliation(s)
- M Cristina Kenney
- Gavin Herbert Eye Institute, Department of Pathology and Laboratory Medicine,
| | | | | | | | | | | | | | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | | | - Marquis Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | | | - Michael Miceli
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | - Douglas C Wallace
- Children's Hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Fachal L, Gómez-Caamaño A, Alvarez Iglesias V, Gómez Carballa A, Calvo P, Salas A, Vega A. No association between typical European mitochondrial variation and prostate cancer risk in a Spanish cohort. J Hum Genet 2014; 59:411-4. [PMID: 24898828 DOI: 10.1038/jhg.2014.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 01/11/2023]
Abstract
Mitochondrial common variants (mtSNPs) and the haplogroups defined by them have been inconsistently correlated with increased prostate cancer risk. Here we aimed to investigate the influence of the mitochondrial genetic background on prostate cancer. A total of 15 single-nucleotide polymorphisms (SNPs) representing the common European branches of the mtDNA phylogeny were analyzed in a cohort of 620 Spanish prostate cancer patients and 616 matched population-based controls. Association tests were computed on mtSNPs and haplogroups. None of the evaluated mtSNPs or haplogroups were statistically associated with prostate cancer risk in our Spanish cohort. We show that previous association findings do not rest on solid grounds given that all of them (i) were based on underpowered studies, (ii) did not control for population stratification, (iii) lacked replication/confirmation cohorts, and (iv) and did not control for multiple test corrections. Taken together, a critical reassessment of the previous literature and the results obtained in the present study suggest that mtDNA common European variants are not correlated with increases in the risk for prostate cancer.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Vanesa Alvarez Iglesias
- Unidade de Xenética, Facultade de Medicina, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alberto Gómez Carballa
- Unidade de Xenética, Facultade de Medicina, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Patricia Calvo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| |
Collapse
|