1
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Liu W, An X, Wang J, Zhang X, Tan J, Zhou Z, Zeng Y. A novel peptide shows excellent anti-HIV-1 potency as a gp41 fusion inhibitor. Bioorg Med Chem Lett 2018; 28:910-914. [DOI: 10.1016/j.bmcl.2018.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023]
|
3
|
Asai D, Kanamoto T, Takenaga M, Nakashima H. In situ depot formation of anti-HIV fusion-inhibitor peptide in recombinant protein polymer hydrogel. Acta Biomater 2017; 64:116-125. [PMID: 29037895 DOI: 10.1016/j.actbio.2017.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
Abstract
Most peptide drugs have short half-lives, necessitating frequent injections that may induce skin sensitivity reactions; therefore, versatile prolonged-release delivery platforms are urgently needed. Here, we focused on an oxidatively and thermally responsive recombinant elastin-like polypeptide with periodic cysteine residues (cELP), which can rapidly and reversibly form a disulfide cross-linked network in which peptide can be physically incorporated. As a model for proof of concept, we used enfuvirtide, an antiretroviral fusion-inhibitor peptide approved for treatment of human immunodeficiency virus (HIV) infection. cELP was mixed with enfuvirtide and a small amount of hydrogen peroxide (to promote cross-linking), and the soluble mixture was injected subcutaneously. The oxidative cross-linking generates a network structure, causing the mixture to form a hydrogel in situ that serves as an enfuvirtide depot. We fabricated a series of enfuvirtide-containing hydrogels and examined their stability, enfuvirtide-releasing profile and anti-HIV potency in vitro. Among them, hydrophobic cELP hydrogel provided effective concentrations of enfuvirtide in blood of rats for up to 8 h, and the initial concentration peak was suppressed compared with that after injection of enfuvirtide alone. cELP hydrogels should be readily adaptable as platforms to provide effective depot systems for delivery of other anti-HIV peptides besides enfuvirtide. STATEMENT OF SIGNIFICANCE In this paper, we present an anti-HIV peptide delivery system using oxidatively and thermally responsive polypeptides that contain multiple periodic cysteine residues as an injectable biomaterial capable of in situ self-gelation, and we demonstrate its utility as an injectable depot capable of sustained release of anti-HIV peptides. The novelty of this work stems from the platform employed to provide the depot encapsulating the peptide drugs (without chemical conjugation), which consists of rationally designed, genetically engineered polypeptides that enable the release rate of the peptide drugs to be precisely controlled.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University, School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki 216-8511, Japan.
| | - Taisei Kanamoto
- Department of Microbiology, St. Marianna University, School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki 216-8511, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University, School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki 216-8512, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University, School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki 216-8511, Japan
| |
Collapse
|
4
|
Stenler S, Lundin KE, Hansen L, Petkov S, Mozafari N, Isaguliants M, Blomberg P, Smith CIE, Goldenberg DM, Chang CH, Ljungberg K, Hinkula J, Wahren B. Immunization with HIV-1 envelope T20-encoding DNA vaccines elicits cross-clade neutralizing antibody responses. Hum Vaccin Immunother 2017; 13:2849-2858. [PMID: 28696158 PMCID: PMC5718786 DOI: 10.1080/21645515.2017.1338546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Genetic immunization is expected to induce the expression of antigens in a native form. The encoded peptide epitopes are presented on endogenous MHC molecules, mimicking antigen presentation during a viral infection. We have explored the potential of enfuvirtide (T20), a short HIV peptide with antiviral properties, to enhance immune response to HIV antigens. To generate an expression vector, the T20 sequence was cloned into a conventional plasmid, the novel minicircle construct, and a replicon plasmid. In addition, 3 conventional plasmids that express the envelope of HIV-1 subtypes A, B and C and contain T20 in their gp41 sequences were also tested. Results: All combinations induced HIV-specific antibodies and cellular responses. The addition of T20 as a peptide and as an expression cassette in the 3 DNA vectors enhanced antibody responses. The highest anti-HIV-1 Env titers were obtained by the replicon T20 construct. This demonstrates that besides its known antiviral activity, T20 promotes immune responses. We also confirm that the combination of slightly divergent antigens improves immune responses. Conclusions: The antiretroviral T20 HIV-1 sequence can be used as an immunogen to elicit binding and neutralizing antibodies against HIV-1. These, or similarly modified gp41 genes/peptides, can be used as priming or boosting components for induction of broadly neutralizing anti-HIV antibodies. Future comparative studies will reveal the optimal mode of T20 administration.
Collapse
Affiliation(s)
- S Stenler
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - K E Lundin
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - L Hansen
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - S Petkov
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - N Mozafari
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - M Isaguliants
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - P Blomberg
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - C I E Smith
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - D M Goldenberg
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - C-H Chang
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - K Ljungberg
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - J Hinkula
- f Department of Molecular Virology , Linköping University , Linköping , Sweden
| | - B Wahren
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
5
|
Cheng S, Wang Y, Zhang Z, Lv X, Gao GF, Shao Y, Ma L, Li X. Enfuvirtide-PEG conjugate: A potent HIV fusion inhibitor with improved pharmacokinetic properties. Eur J Med Chem 2016; 121:232-237. [PMID: 27240277 PMCID: PMC7115413 DOI: 10.1016/j.ejmech.2016.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
Enfuvirtide (ENF) is a clinically used peptide drug for the treatment of HIV infections, but its poor pharmacokinetic profile (T1/2 = 1.5 h in rats) and low aqueous solubility make the therapy expensive and inconvenience. In this study, we present a simple and practical strategy to address these problems by conjugating ENF with polyethylene glycol (PEG). Site-specific attachment of a 2 kDa PEG at the N-terminus of ENF resulted in an ENF-PEG (EP) conjugate with high solubility (≥3 mg/mL) and long half-life in rats (T1/2 = 16.1 h). This conjugate showed similar antiviral activity to ENF against various primary HIV-1 isolates (EC50 = 6-91 nM). Mechanistic studies suggested the sources of the antiviral potency. The conjugate bound to a functional domain of the HIV gp41 protein in a helical conformation with high affinity (Kd = 307 nM), thereby inhibiting the gp41-mediated fusion of viral and host-cell membranes. As PEG conjugation has advanced many bioactive proteins and peptides into clinical applications, the EP conjugate described here represents a potential new treatment for HIV infections that may address the unmet medical needs associated with the current ENF therapy.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yan Wang
- State Key Laboratory of Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center of Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Yiming Shao
- State Key Laboratory of Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center of Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Liying Ma
- State Key Laboratory of Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center of Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China.
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China.
| |
Collapse
|
6
|
Klein N, Palma P, Luzuriaga K, Pahwa S, Nastouli E, Gibb DM, Rojo P, Borkowsky W, Bernardi S, Zangari P, Calvez V, Compagnucci A, Wahren B, Foster C, Munoz-Fernández MÁ, De Rossi A, Ananworanich J, Pillay D, Giaquinto C, Rossi P. Early antiretroviral therapy in children perinatally infected with HIV: a unique opportunity to implement immunotherapeutic approaches to prolong viral remission. THE LANCET. INFECTIOUS DISEASES 2015; 15:1108-1114. [PMID: 26187030 DOI: 10.1016/s1473-3099(15)00052-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
From the use of antiretroviral therapy to prevent mother-to-child transmission to the possibility of HIV cure hinted at by the Mississippi baby experience, paediatric HIV infection has been pivotal to our understanding of HIV pathogenesis and management. Daily medication and indefinite antiretroviral therapy is recommended for children infected with HIV. Maintenance of life-long adherence is difficult and the incidence of triple-class virological failure after initiation of antiretroviral therapy increases with time. This challenge shows the urgent need to define novel strategies to provide long-term viral suppression that will allow safe interruption of antiretroviral therapy without viral rebound and any associated complications. HIV-infected babies treated within a few days of birth have a unique combination of a very small pool of integrated viruses, a very high proportion of relatively HIV resistant naive T cells, and an unparalleled capacity to regenerate an immune repertoire. These features make this group the optimum model population to investigate the potential efficacy of immune-based therapies. If successful, these investigations could change the way we manage HIV infection.
Collapse
Affiliation(s)
- Nigel Klein
- Institute of Child Health, University College London, London, UK.
| | - Paolo Palma
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School Worcester, MA, USA
| | - Savita Pahwa
- Miami Center for AIDS Research Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Eleni Nastouli
- Department of Virology, University College London, London, UK
| | - Diane M Gibb
- Medical Research Council Clinical Trials Unit, London, UK
| | - Pablo Rojo
- Department of Pediatrics, Hospital 12 de Octubre, Madrid, Spain
| | | | - Stefania Bernardi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Paola Zangari
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Vincent Calvez
- Pierre et Marie Curie University and Pitié-Salpêtrière Hospital, Paris, France
| | - Alexandra Compagnucci
- Institut National de la Santé et de la Recherche Médicale SC10-US019 Clinical Trials and Infectious Diseases, Villejuif, Paris, France
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Foster
- Imperial College Healthcare National Health Service Trust, London, UK
| | | | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, and Istituto Oncologico Veneto, Padova, Italy
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research and Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, USA
| | - Deenan Pillay
- Africa Centre, Mtubatuba, KwaZulu Natal, South Africa
| | - Carlo Giaquinto
- Department of Women's and Children's Health, University of Padova, and Penta Foundation, Padova, Italy
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy.
| |
Collapse
|
7
|
Abstract
ABSTRACT HIV resistance against currently approved entry inhibitors, the chemokine receptor-5 (CCR5) antagonist maraviroc and the fusion inhibitor enfuvirtide (T-20), manifests in a complex manner that is distinct from the resistance patterns against other classes of antiretroviral drugs. Several attachment and fusion inhibitors are currently under various stages of development. Whereas CCR5 co-receptor antagonists have been widely studied until now, because patients who lack CCR5 are healthy and protected to some extent from HIV-infection, CXCR4-antagonist development has been slower, due to limited antiviral activity and potential toxicity given that CXCR4 may have essential cellular functions. Novel fusion inhibitor development is focusing on orally available small-molecule inhibitors that might replace T-20, which needs to be administered by subcutaneous injection.
Collapse
Affiliation(s)
- Victor G Kramer
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Cheng S, Chang X, Wang Y, Gao GF, Shao Y, Ma L, Li X. Glycosylated Enfuvirtide: A Long-Lasting Glycopeptide with Potent Anti-HIV Activity. J Med Chem 2015; 58:1372-9. [DOI: 10.1021/jm5016582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuihong Cheng
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Xuesong Chang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Yan Wang
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - George F. Gao
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| | - Yiming Shao
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Liying Ma
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xuebing Li
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| |
Collapse
|
9
|
Ding S, Song M, Sim BC, Gu C, Podust VN, Wang CW, McLaughlin B, Shah TP, Lax R, Gast R, Sharan R, Vasek A, Hartman MA, Deniston C, Srinivas P, Schellenberger V. Multivalent antiviral XTEN-peptide conjugates with long in vivo half-life and enhanced solubility. Bioconjug Chem 2014; 25:1351-9. [PMID: 24932887 PMCID: PMC4157762 DOI: 10.1021/bc500215m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
XTENs are unstructured, nonrepetitive
protein polymers designed
to prolong the in vivo half-life of pharmaceuticals by introducing
a bulking effect similar to that of poly(ethylene glycol). While XTEN
can be expressed as a recombinant fusion protein with bioactive proteins
and peptides, therapeutic molecules of interest can also be chemically
conjugated to XTEN. Such an approach permits precise control over
the positioning, spacing, and valency of bioactive moieties along
the length of XTEN. We have demonstrated the attachment of T-20, an
anti-retroviral peptide indicated for the treatment of HIV-1 patients
with multidrug resistance, to XTEN. By reacting maleimide-functionalized
T-20 with cysteine-containing XTENs and varying the number and positioning
of cysteines in the XTENs, a library of different peptide–polymer
combinations were produced. The T-20-XTEN conjugates were tested using
an in vitro antiviral assay and were found to be effective in inhibiting
HIV-1 entry and preventing cell death, with the copy number and spacing
of the T-20 peptides influencing antiviral activity. The peptide–XTEN
conjugates were also discovered to have enhanced solubilities in comparison
with the native T-20 peptide. The pharmacokinetic profile of the most
active T-20-XTEN conjugate was measured in rats, and it was found
to exhibit an elimination half-life of 55.7 ± 17.7 h, almost
20 times longer than the reported half-life for T-20 dosed in rats.
As the conjugation of T-20 to XTEN greatly improved the in vivo half-life
and solubility of the peptide, the XTEN platform has been demonstrated
to be a versatile tool for improving the properties of drugs and enabling
the development of a class of next-generation therapeutics.
Collapse
Affiliation(s)
- Sheng Ding
- Amunix Operating Inc. , 500 Ellis Street, Mountain View, California 94043 United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rossi DL, Rossi EA, Cardillo TM, Goldenberg DM, Chang CH. A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs 2014; 6:381-91. [PMID: 24492297 PMCID: PMC3984327 DOI: 10.4161/mabs.27385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/22/2013] [Accepted: 12/01/2013] [Indexed: 12/31/2022] Open
Abstract
Various constructs of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise in both preclinical and clinical studies. The single-chain variable fragment (scFv)-based formats, including bispecific T-cell engager (BiTE) and dual-affinity re-targeting (DART), which provide monovalent binding to both CD3 on T cells and to the target antigen on tumor cells, can exhibit rapid blood clearance and neurological toxicity due to their small size (~55 kDa). Herein, we describe the generation, by the modular DOCK-AND-LOCK™) (DNL™) method, of novel T-cell redirecting bispecific antibodies, each comprising a monovalent anti-CD3 scFv covalently conjugated to a stabilized dimer of different anti-tumor Fabs. The potential advantages of this design include bivalent binding to tumor cells, a larger size (~130 kDa) to preclude renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. These prototypes were purified to near homogeneity, and representative constructs were shown to provoke the formation of immunological synapses between T cells and their target tumor cells in vitro, resulting in T-cell activation and proliferation, as well as potent T-cell mediated anti-tumor activity. In addition, in vivo studies in NOD/SCID mice bearing Raji Burkitt lymphoma or Capan-1 pancreatic carcinoma indicated statistically significant inhibition of tumor growth compared with untreated controls.
Collapse
Affiliation(s)
| | - Edmund A Rossi
- Immunomedics, Inc; Morris Plains, NJ USA
- IBC Pharmaceuticals, Inc; Morris Plains, NJ USA
| | | | - David M Goldenberg
- Immunomedics, Inc; Morris Plains, NJ USA
- IBC Pharmaceuticals, Inc; Morris Plains, NJ USA
- Garden State Cancer Center; Center for Molecular Medicine and Immunology; Morris Plains, NJ USA
| | - Chien-Hsing Chang
- Immunomedics, Inc; Morris Plains, NJ USA
- IBC Pharmaceuticals, Inc; Morris Plains, NJ USA
| |
Collapse
|
11
|
Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay. J Int AIDS Soc 2013; 16:18723. [PMID: 24050252 PMCID: PMC3778210 DOI: 10.7448/ias.16.1.18723] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/10/2013] [Accepted: 08/19/2013] [Indexed: 12/01/2022] Open
Abstract
Introduction A dual split reporter protein system (DSP), recombining Renilla luciferase (RL) and green fluorescent protein (GFP) split into two different constructs (DSP1–7 and DSP8–11), was adapted to create a novel rapid phenotypic tropism assay (PTA) for HIV-1 infection (DSP-Pheno). Methods DSP1–7 was stably expressed in the glioma-derived NP-2 cell lines, which expressed CD4/CXCR4 (N4X4) or CD4/CCR5 (N4R5), respectively. An expression vector with DSP8–11 (pRE11) was constructed. The HIV-1 envelope genes were subcloned in pRE11 (pRE11-env) and transfected into 293FT cells. Transfected 293FT cells were incubated with the indicator cell lines independently. In developing the assay, we selected the DSP1–7-positive clones that showed the highest GFP activity after complementation with DSP8–11. These cell lines, designated N4R5-DSP1–7, N4X4-DSP1–7 were used for subsequent assays. Results The env gene from the reference strains (BaL for R5 virus, NL4-3 for X4 virus, SF2 for dual tropic virus) subcloned in pRE11 and tested, was concordant with the expected co-receptor usage. Assay results were available in two ways (RL or GFP). The assay sensitivity by RL activity was comparable with those of the published phenotypic assays using pseudovirus. The shortest turnaround time was 5 days after obtaining the patient's plasma. All clinical samples gave positive RL signals on R5 indicator cells in the fusion assay. Median RLU value of the low CD4 group was significantly higher on X4 indicator cells and suggested the presence of more dual or X4 tropic viruses in this group of patients. Comparison of representative samples with Geno2Pheno [co-receptor] assay was concordant. Conclusions A new cell-fusion-based, high-throughput PTA for HIV-1, which would be suitable for in-house studies, was developed. Equipped with two-way reporter system, RL and GFP, DSP-Pheno is a sensitive test with short turnaround time. Although maintenance of cell lines and laboratory equipment is necessary, it provides a safe assay system without infectious viruses. With further validation against other conventional analyses, DSP-Pheno may prove to be a useful laboratory tool. The assay may be useful especially for the research on non-B subtype HIV-1 whose co-receptor usage has not been studied much.
Collapse
|
12
|
Nowroozalizadeh S, Gudmundsdotter L, Hejdeman B, Andersson L, Esbjörnsson J, Medstrand P, Sandström E, Gaines H, Wahren B, Jansson M. Short-term HIV-1 treatment interruption is associated with dysregulated TLR-stimuli responsiveness. Hum Vaccin Immunother 2013; 9:2103-10. [PMID: 23912942 DOI: 10.4161/hv.25154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Viremia during human immunodeficiency virus type-1 (HIV-1) infection results in progressive impairment of several components of the immune system. Here a unique model of repeated treatment interruptions (TIs) was used with the aim to reveal the effect of controlled short-term viremia on innate stimuli responsiveness and circulating dendritic cells (DCs). Sequential peripheral blood samples from HIV-1-infected patients on combination antiretroviral therapy, subjected to repeated TI cycles as part of a therapeutic DNA vaccination study, were analyzed. In vitro responsiveness of peripheral blood mononuclear cells to toll-like receptor (TLR) stimuli was analyzed by cytokine secretion, and frequencies of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were monitored by flow cytometry. These parameters were found not to be significantly different between the vaccinated and placebo groups. Instead, independent of vaccination altered in vitro TLR responsiveness was observed in parallel with TI cycles. TLR7/8-triggered secretion of IL-12 and IFN-α, as well as TLR9-triggered secretion of IL-12, was hyperactivated. In contrast, expression of IFN-α after TLR9 stimulation decreased during the initial cycle of TI. Reduced frequencies of pDCs and mDCs, compared with baseline, were noted before and during the second TI, respectively. Furthermore, spontaneous ex vivo release of IL-12 from PBMC was noted during cycles of TI. In conclusion, these results suggest that consequences of short-term TI include dysregulated TLR responses and fluctuations in the frequencies of circulating DCs. Knowledge of these immunological factors may influence the continuation of stringent treatment schedules during HIV infections.
Collapse
Affiliation(s)
- Salma Nowroozalizadeh
- The Swedish Institute for Communicable Disease Control; Stockholm, Sweden; Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Lindvi Gudmundsdotter
- The Swedish Institute for Communicable Disease Control; Stockholm, Sweden; Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Bo Hejdeman
- Department of Infectious Diseases/Venhälsan; Stockholm South General Hospital; Stockholm, Sweden
| | - Lena Andersson
- The Swedish Institute for Communicable Disease Control; Stockholm, Sweden
| | | | - Patrik Medstrand
- Department of Laboratory Medicine Malmö; Lund University; Lund, Sweden
| | - Eric Sandström
- Department of Infectious Diseases/Venhälsan; Stockholm South General Hospital; Stockholm, Sweden
| | - Hans Gaines
- The Swedish Institute for Communicable Disease Control; Stockholm, Sweden
| | - Britta Wahren
- The Swedish Institute for Communicable Disease Control; Stockholm, Sweden; Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Marianne Jansson
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; Department of Laboratory Medicine Lund; Lund University; Lund, Sweden
| |
Collapse
|
13
|
The Development of Bispecific Hexavalent Antibodies as a Novel Class of DOCK-AND-LOCKTM (DNLTM) Complexes. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|