1
|
Angori S, Lakshminarayanan H, Banaei‐Esfahani A, Mühlbauer K, Bolck HA, Kallioniemi O, Pietiäinen V, Schraml P, Moch H. Exploiting NRF2-ARE pathway activation in papillary renal cell carcinoma. Int J Cancer 2025; 156:1457-1469. [PMID: 39707614 PMCID: PMC11789458 DOI: 10.1002/ijc.35311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 12/23/2024]
Abstract
Papillary renal cell carcinoma (pRCC) is the second most frequent renal cancer subtype but has no indicated targeted treatments. MET inhibition may be a treatment for MET-driven pRCC, but there is a large group of non-MET-driven pRCC without targeted therapy. Activation of NRF2-ARE pathway has been suggested to be involved in pRCC. To study the relevance of the NRF2-ARE pathway, we characterized 60 pRCCs by copy number analysis and Whole Exome Sequencing. Because stabilisation of NRF2 results in enhanced expression of NQO1, a reductase that prevents production of reactive oxygen species, protein expression of NQO1 was analysed by immunohistochemistry (IHC) from tissue microarrays (TMAs) and by enzymatic activity assay. Finally, patient-derived pRCC cells (PDCs) were applied for drug profiling with 18 NRF2-ARE pathway inhibitors. We identified MET mutations in 5%, and mutations in four genes of NRF2-ARE pathway (NFE2L2, KEAP1, CUL3 and BACH1) in 10% of 60 pRCC samples. IHC analysis of TMAs of 638 renal cancers showed the correlation of the expression of NQO1 with poor survival outcome (p < .001) and high tumour grade (p < .001) and stage (p < .001) in pRCC. NQO1 mRNA, protein levels and enzymatic activity were increased in 56% of matched pRCC tissue samples and patient-derived cells (PDCs, n = 9). Drug screening revealed that Brusatol and Convallatoxin are potential novel drugs for pRCC. Inhibition of NRF2 represents a novel therapeutic approach for MET-independent pRCC patients.
Collapse
Affiliation(s)
- Silvia Angori
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | | | - Amir Banaei‐Esfahani
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Katharina Mühlbauer
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Hella Anna Bolck
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland‐FIMM, Helsinki Institute of Life Science‐HiLIFEUniversity of HelsinkiHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipUniversity of HelsinkiHelsinkiFinland
- Science for Life Laboratory (SciLifeLab), Department of Oncology and PathologyKarolinska InstitutetSolnaSweden
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland‐FIMM, Helsinki Institute of Life Science‐HiLIFEUniversity of HelsinkiHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipUniversity of HelsinkiHelsinkiFinland
| | - Peter Schraml
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- University of ZurichZurichSwitzerland
| |
Collapse
|
2
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Powers SK, Lategan-Potgieter R, Goldstein E. Exercise-induced Nrf2 activation increases antioxidant defenses in skeletal muscles. Free Radic Biol Med 2024; 224:470-478. [PMID: 39181477 DOI: 10.1016/j.freeradbiomed.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Following the discovery that exercise increases the production of reactive oxygen species in contracting skeletal muscles, evidence quickly emerged that endurance exercise training increases the abundance of key antioxidant enzymes in the trained muscles. Since these early observations, knowledge about the impact that regular exercise has on skeletal muscle antioxidant capacity has increased significantly. Importantly, in recent years, our understanding of the cell signaling pathways responsible for this exercise-induced increase in antioxidant enzymes has expanded exponentially. Therefore, the goals of this review are: 1) summarize our knowledge about the influence that exercise training has on the abundance of key antioxidant enzymes in skeletal muscles; and 2) to provide a state-of-the-art review of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway that is responsible for many of the exercise-induced changes in muscle antioxidant capacity. We begin with a discussion of the sources of reactive oxygen species in contracting muscles and then examine the exercise-induced changes in the antioxidant enzymes that eliminate both superoxide radicals and hydrogen peroxide in muscle fibers. We conclude with a discussion of the advances in our understanding of the exercise-induced control of the Nrf2 signaling pathway that is responsible for the expression of numerous antioxidant proteins. In hopes of stimulating future research, we also identify gaps in our knowledge about the signaling pathways responsible for the exercise-induced increases in muscle antioxidant enzymes.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | | | - Erica Goldstein
- Department of Health Sciences, Stetson University, Deland, FL, USA
| |
Collapse
|
4
|
Ruiz-De-La-Cruz G, Welsh TH, Randel RD, Sifuentes-Rincón AM. A Comprehensive Systematic Review Coupled with an Interacting Network Analysis Identified Candidate Genes and Biological Pathways Related to Bovine Temperament. Genes (Basel) 2024; 15:981. [PMID: 39202342 PMCID: PMC11354074 DOI: 10.3390/genes15080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Comprehension of the genetic basis of temperament has been improved by recent advances in the identification of genes and genetic variants. However, due to the complexity of the temperament traits, the elucidation of the genetic architecture of temperament is incomplete. A systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to analyze candidate genes related to bovine temperament, using bovine as the population, SNPs and genes as the exposure, and temperament test as the outcome, as principal search terms for population, exposure, and outcome (PEO) categories to define the scope of the search. The search results allowed the selection of 36 articles after removing duplicates and filtering by relevance. One hundred-two candidate genes associated with temperament traits were identified. The genes were further analyzed to construct an interaction network using the STRING database, resulting in 113 nodes and 346 interactions and the identification of 31 new candidate genes for temperament. Notably, the main genes identified were SST and members of the Kelch family. The candidate genes displayed interactions with pathways associated with different functions such as AMPA receptors, hormones, neuronal maintenance, protein signaling, neuronal regulation, serotonin synthesis, splicing, and ubiquitination activities. These new findings demonstrate the complexity of interconnected biological processes that regulate behavior and stress response in mammals. This insight now enables our targeted analysis of these newly identified temperament candidate genes in bovines.
Collapse
Affiliation(s)
- Gilberto Ruiz-De-La-Cruz
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | | | - Ana María Sifuentes-Rincón
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| |
Collapse
|
5
|
Hu Y, Zhang Z, Mao Q, Zhang X, Hao A, Xun Y, Wang Y, Han L, Zhan W, Liu Q, Yin Y, Peng C, Moresco EMY, Chen Z, Beutler B, Sun L. Dynamic molecular architecture and substrate recruitment of cullin3-RING E3 ligase CRL3 KBTBD2. Nat Struct Mol Biol 2024; 31:336-350. [PMID: 38332366 PMCID: PMC11791872 DOI: 10.1038/s41594-023-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Phosphatidylinositol 3-kinase α, a heterodimer of catalytic p110α and one of five regulatory subunits, mediates insulin- and insulin like growth factor-signaling and, frequently, oncogenesis. Cellular levels of the regulatory p85α subunit are tightly controlled by regulated proteasomal degradation. In adipose tissue and growth plates, failure of K48-linked p85α ubiquitination causes diabetes, lipodystrophy and dwarfism in mice, as in humans with SHORT syndrome. Here we elucidated the structures of the key ubiquitin ligase complexes regulating p85α availability. Specificity is provided by the substrate receptor KBTBD2, which recruits p85α to the cullin3-RING E3 ubiquitin ligase (CRL3). CRL3KBTBD2 forms multimers, which disassemble into dimers upon substrate binding (CRL3KBTBD2-p85α) and/or neddylation by the activator NEDD8 (CRL3KBTBD2~N8), leading to p85α ubiquitination and degradation. Deactivation involves dissociation of NEDD8 mediated by the COP9 signalosome and displacement of KBTBD2 by the inhibitor CAND1. The hereby identified structural basis of p85α regulation opens the way to better understanding disturbances of glucose regulation, growth and cancer.
Collapse
Affiliation(s)
- Yuxia Hu
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiyu Mao
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Zhang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aihua Hao
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Xun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yeda Wang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin Han
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wuqiang Zhan
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qianying Liu
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenguo Chen
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Sharma P, Chatrathi HE. Insights into the diverse mechanisms and effects of variant CUL3-induced familial hyperkalemic hypertension. Cell Commun Signal 2023; 21:286. [PMID: 37845702 PMCID: PMC10577937 DOI: 10.1186/s12964-023-01269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/12/2023] [Indexed: 10/18/2023] Open
Abstract
Familial hyperkalemic hypertension (FHHt), also known as Pseudohypoaldosteronism type II (PHAII) or Gordon syndrome is a rare Mendelian disease classically characterized by hyperkalemia, hyperchloremic metabolic acidosis, and high systolic blood pressure. The most severe form of the disease is caused by autosomal dominant variants in CUL3 (Cullin 3), a critical subunit of the multimeric CUL3-RING ubiquitin ligase complex. The recent identification of a novel FHHt disease variant of CUL3 revealed intricacies within the underlying disease mechanism. When combined with studies on canonical CUL3 variant-induced FHHt, these findings further support CUL3's role in regulating renal electrolyte transport and maintaining systemic vascular tone. However, the pathophysiological effects of CUL3 variants are often accompanied by diverse systemic disturbances in addition to classical FHHt symptoms. Recent global proteomic analyses provide a rationale for these systemic disturbances, paving the way for future mechanistic studies to reveal how CUL3 variants dysregulate processes outside of the renovascular axis. Video Abstract.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | - Harish E Chatrathi
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Maeoka Y, Cornelius RJ, McCormick JA. Cullin 3 and Blood Pressure Regulation: Insights From Familial Hyperkalemic Hypertension. Hypertension 2023; 80:912-923. [PMID: 36861484 PMCID: PMC10133098 DOI: 10.1161/hypertensionaha.123.20525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The study of rare monogenic forms of hypertension has led to the elucidation of important physiological pathways controlling blood pressure. Mutations in several genes cause familial hyperkalemic hypertension (also known as Gordon syndrome or pseudohypoaldosteronism type II). The most severe form of familial hyperkalemic hypertension is caused by mutations in CUL3, encoding CUL3 (Cullin 3)-a scaffold protein in an E3 ubiquitin ligase complex that tags substrates for proteasomal degradation. In the kidney, CUL3 mutations cause accumulation of the substrate WNK (with-no-lysine [K]) kinase and ultimately hyperactivation of the renal NaCl cotransporter-the target of the first-line antihypertensive thiazide diuretics. The precise mechanisms by which mutant CUL3 causes WNK kinase accumulation have been unclear, but several functional defects are likely to contribute. The hypertension seen in familial hyperkalemic hypertension also results from effects exerted by mutant CUL3 on several pathways in vascular smooth muscle and endothelium that modulate vascular tone. This review summarizes the mechanisms by which wild type and mutant CUL3 modulate blood pressure through effects on the kidney and vasculature, potential effects in the central nervous system and heart, and future directions for investigation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| |
Collapse
|
8
|
Cetin I, Yazla E, Akmese B, Kayadibi H. A Preliminary Study on Investigation of Blood-Brain Barrier Damage Markers in Patients with Alcohol Use Disorder Before and After Therapy. Alcohol Alcohol 2022; 57:722-726. [PMID: 35997171 DOI: 10.1093/alcalc/agac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
AIM The use of alcohol affects the central nervous system and plays important roles in various neurological disorders through neurotoxicity resulting from blood-brain barrier (BBB) permeability. The BBB is regulated by tight junction proteins interacting closely with endothelial cells. This study evaluated the serum levels of proteins and spectrin degradation products associated with BBB damage in patients with alcohol use disorder. METHODS This preliminary case-control study was conducted with 30 healthy volunteers and 26 alcohol use disorder patients. The serum levels of spectrin breakdown product 145 (SBDP145), spectrin breakdown product 150 (SBDP150), ubiquitin carboxy-terminal hydrolase L1 (UCHL1), ubiquitin ligase cullin-3 (ULC), occludin and claudin were measured with enzyme-linked immunosorbent assay. RESULTS There was no significant difference between the levels of SBDP145, SBDP150, UCHL1, ULC, occludin and claudin before and after treatment in patients with alcohol use disorder. SBDP150 levels were significantly lower in patients than controls (P < 0.001). The area under the curve was 0.841 (0.733-0.949) with the 95% confidence interval for SPDP150. CONCLUSION A decrease of the serum SBDP150 levels appears to be associated with alcohol use disorder. Future studies might clarify whether diminished serum SBDP150 levels are associated with BBB damage in patients with alcohol use disorder.
Collapse
Affiliation(s)
- Ihsan Cetin
- Faculty of Medicine, Department of Medical Biochemistry, University of Hitit, Corum, Turkey
| | - Ece Yazla
- Faculty of Medicine, Department of Psychiatry, University of Hitit, Corum, Turkey
| | - Bediha Akmese
- Department of Pharmacy Services, Vocational School of Health Services, University of Hitit, Corum, Turkey
| | - Hüseyin Kayadibi
- Faculty of Medicine, Department of Medical Biochemistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
9
|
Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021; 10:1030. [PMID: 34202320 PMCID: PMC8300779 DOI: 10.3390/antiox10071030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.
Collapse
Affiliation(s)
- Tabitha Jenkins
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
10
|
The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae Chlamydomonas reinhardtii. Int J Mol Sci 2021; 22:ijms22094695. [PMID: 33946721 PMCID: PMC8125325 DOI: 10.3390/ijms22094695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
Microalgae-based biodiesel production has many advantages over crude oil extraction and refinement, thus attracting more and more concern. Protein ubiquitination is a crucial mechanism in eukaryotes to regulate physiological responses and cell development, which is highly related to algal biodiesel production. Cullins as the molecular base of cullin-RING E3 ubiquitin ligases (CRLs), which are the largest known class of ubiquitin ligases, control the life activities of eukaryotic cells. Here, three cullins (CrCULs) in the green microalgae Chlamydomonas reinhardtii were identified and characterized. To investigate the roles of CrCULs in lipid metabolism, the gene expression profiles of CrCULs under nutrition starvation were examined. Except for down-regulation under nitrogen starvation, the CrCUL3 gene was induced by sulfur and iron starvation. CrCUL2 seemed insensitive to nitrogen and sulfur starvation because it only had changes after treatment for eight days. CrCUL4 exhibited an expression peak after nitrogen starvation for two days but this declined with time. All CrCULs expressions significantly increased under iron deficiency at two and four days but decreased thereafter. The silencing of CrCUL2 and CrCUL4 expression using RNAi (RNA interference) resulted in biomass decline and lipids increase but an increase of 20% and 28% in lipid content after growth for 10 days, respectively. In CrCUL2 and CrCUL4 RNAi lines, the content of fatty acids, especially C16:0 and C18:0, notably increased as well. However, the lipid content and fatty acids of the CrCUL3 RNAi strain slightly changed. Moreover, the subcellular localization of CrCUL4 showed a nuclear distribution pattern. These results suggest CrCUL2 and CrCUL4 are regulators for lipid accumulation in C. reinhardtii. This study may offer an important complement of lipid biosynthesis in microalgae.
Collapse
|
11
|
Gu SY, Lo WS, Wu SJ, Wang LC. Dimerization of the ETO1 family proteins plays a crucial role in regulating ethylene biosynthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1293-1308. [PMID: 33617140 DOI: 10.1111/tpj.15111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
ETHYLENE OVERPRODUCER1 (ETO1), ETO1-LIKE1 (EOL1), and EOL2 are members of the Broad complex, Tramtrack, Bric-a-brac (BTB) protein family that collectively regulate type-2 1-aminocyclopropane-1-carboxylic acid synthase (ACS) activity in Arabidopsis thaliana. Although ETO1 and EOL1/EOL2 encode structurally related proteins, genetic studies suggest that they do not play an equivalent role in regulating ethylene biosynthesis. The mechanistic details underlying the genetic analysis remain elusive. In this study, we reveal that ETO1 collaborates with EOL1/2 to play a key role in the regulation of type-2 ACS activity via protein-protein interactions. ETO1, EOL1, and EOL2 exhibit overlapping but distinct tissue-specific expression patterns. Nevertheless, neither EOL1 nor EOL2 can fully complement the eto1 phenotype under control of the ETO1 promoter, which suggests differential functions of ETO1 and EOL1/EOL2. ETO1 forms homodimers with itself and heterodimers with EOLs. Furthermore, CULLIN3 (CUL3) interacts preferentially with ETO1. The BTB domain of ETO1 is sufficient for interaction with CUL3 and is required for homodimerization. However, domain-swapping analysis in transgenic Arabidopsis suggests that the BTB domain of ETO1 is essential but not sufficient for a full spectrum of ETO1 function. The missense mutation in eto1-5 generates a substitution of phenylalanine with an isoleucine in ETO1F466I that impairs its dimerization and interaction with EOLs but does not affect binding to CUL3 or ACS5. Overexpression of ETO1F466I in Arabidopsis results in a constitutive triple response phenotype in dark-grown seedlings. Our findings reveal the mechanistic role of protein-protein interactions of ETO1 and EOL1/EOL2 that is crucial for their biological function in ethylene biosynthesis.
Collapse
Affiliation(s)
- Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Long-Chi Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
12
|
Sweeney MA, Iakova P, Maneix L, Shih FY, Cho HE, Sahin E, Catic A. The ubiquitin ligase Cullin-1 associates with chromatin and regulates transcription of specific c-MYC target genes. Sci Rep 2020; 10:13942. [PMID: 32811853 PMCID: PMC7435197 DOI: 10.1038/s41598-020-70610-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription is regulated through a dynamic interplay of DNA-associated proteins, and the composition of gene-regulatory complexes is subject to continuous adjustments. Protein alterations include post-translational modifications and elimination of individual polypeptides. Spatially and temporally controlled protein removal is, therefore, essential for gene regulation and accounts for the short half-life of many transcription factors. The ubiquitin-proteasome system is responsible for site- and target-specific ubiquitination and protein degradation. Specificity of ubiquitination is conferred by ubiquitin ligases. Cullin-RING complexes, the largest family of ligases, require multi-unit assembly around one of seven cullin proteins. To investigate the direct role of cullins in ubiquitination of DNA-bound proteins and in gene regulation, we analyzed their subcellular locations and DNA-affinities. We found CUL4A and CUL7 to be largely excluded from the nucleus, whereas CUL4B was primarily nuclear. CUL1,2,3, and 5 showed mixed cytosolic and nuclear expression. When analyzing chromatin affinity of individual cullins, we discovered that CUL1 preferentially associated with active promoter sequences and co-localized with 23% of all DNA-associated protein degradation sites. CUL1 co-distributed with c-MYC and specifically repressed nuclear-encoded mitochondrial and splicing-associated genes. These studies underscore the relevance of spatial control in chromatin-associated protein ubiquitination and define a novel role for CUL1 in gene repression.
Collapse
Affiliation(s)
- Melanie A Sweeney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Polina Iakova
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Fu-Yuan Shih
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Hannah E Cho
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Rice University Undergraduate School of Social Sciences, Houston, TX, USA
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
13
|
Lv W, Huan M, Yang W, Gao Y, Wang K, Xu S, Zhang M, Ma J, Wang X, Chen Y, Li L. Snail promotes prostate cancer migration by facilitating SPOP ubiquitination and degradation. Biochem Biophys Res Commun 2020; 529:799-804. [PMID: 32736710 DOI: 10.1016/j.bbrc.2020.05.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-associated mortality in men. Speckle-type pox virus and zinc finger protein (SPOP), the most frequently mutated gene in PCa, functions as a tumor suppressor via degradation of cancer-promoting substrates. However, its upstream regulation in PCa metastasis remains poorly determined. Here, in a Snail-induced metastatic PCa model, we observed an accelerated degradation of SPOP protein in cells, which is crucial for the PCa migration and activation of the AKT signaling pathway. Mechanistically, we demonstrated that binding to Snail promoted SPOP ubiquitination and degradation. Moreover, the bric-a-brac/tramtrack/broad complex (BTB) domain of SPOP is turned out to be essential for Snail-mediated SPOP degradation. Thus, our findings reveal a post-translational level regulation of SPOP expression that facilitates the metastasis of PCa cells.
Collapse
Affiliation(s)
- Wei Lv
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mengxi Huan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wenjie Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mengzhao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jianbin Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
14
|
Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 2020; 10:200105. [PMID: 32574549 PMCID: PMC7333886 DOI: 10.1098/rsob.200105] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Redox imbalance and persistent inflammation are the underlying causes of most chronic diseases. Mammalian cells have evolved elaborate mechanisms for restoring redox homeostasis and resolving acute inflammatory responses. One prominent mechanism is that of inducing the expression of antioxidant, anti-inflammatory and other cytoprotective proteins, while also suppressing the production of pro-inflammatory mediators, through the activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2). At homeostatic conditions, NRF2 is a short-lived protein, which avidly binds to Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as (i) a substrate adaptor for a Cullin 3 (CUL3)-based E3 ubiquitin ligase that targets NRF2 for ubiquitination and proteasomal degradation, and (ii) a cysteine-based sensor for a myriad of physiological and pharmacological NRF2 activators. Here, we review the intricate molecular mechanisms by which KEAP1 senses electrophiles and oxidants. Chemical modification of specific cysteine sensors of KEAP1 results in loss of NRF2-repressor function and alterations in the expression of NRF2-target genes that encode large networks of diverse proteins, which collectively restore redox balance and resolve inflammation, thus ensuring a comprehensive cytoprotection. We focus on the cyclic cyanoenones, the most potent NRF2 activators, some of which are currently in clinical trials for various pathologies characterized by redox imbalance and inflammation.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Meyer SJ, Böser A, Korn MA, Koller C, Bertocci B, Reimann L, Warscheid B, Nitschke L. Cullin 3 Is Crucial for Pro-B Cell Proliferation, Interacts with CD22, and Controls CD22 Internalization on B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3360-3374. [DOI: 10.4049/jimmunol.1900925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
|
16
|
Boyer NP, McCormick LE, Menon S, Urbina FL, Gupton SL. A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance. J Biophys Biochem Cytol 2019; 219:132731. [PMID: 31820781 PMCID: PMC7039193 DOI: 10.1083/jcb.201902088] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/25/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Appropriate axon guidance is necessary to form accurate neuronal connections. Axon guidance cues that stimulate cytoskeletal reorganization within the growth cone direct axon navigation. Filopodia at the growth cone periphery have long been considered sensors for axon guidance cues, yet how they respond to extracellular cues remains ill defined. Our previous work found that the filopodial actin polymerase VASP and consequently filopodial stability are negatively regulated via nondegradative TRIM9-dependent ubiquitination. Appropriate VASP ubiquitination and deubiquitination are required for axon turning in response to the guidance cue netrin-1. Here we show that the TRIM9-related protein TRIM67 outcompetes TRIM9 for interacting with VASP and antagonizes TRIM9-dependent VASP ubiquitination. The surprising antagonistic roles of two closely related E3 ubiquitin ligases are required for netrin-1-dependent filopodial responses, axon turning and branching, and fiber tract formation. We suggest a novel model in which coordinated regulation of VASP ubiquitination by a pair of interfering ligases is a critical element of VASP dynamics, filopodial stability, and axon guidance.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC,Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC,Correspondence to Stephanie L. Gupton:
| |
Collapse
|
17
|
Ball KA, Chan LM, Stanley DJ, Tierney E, Thapa S, Ta HM, Burton L, Binning JM, Jacobson MP, Gross JD. Conformational Dynamics of the HIV-Vif Protein Complex. Biophys J 2019; 116:1432-1445. [PMID: 30961890 PMCID: PMC6486493 DOI: 10.1016/j.bpj.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-β. A five-protein complex containing the substrate receptor (Vif, CBF-β, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the μs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.
Collapse
Affiliation(s)
- K Aurelia Ball
- Department of Chemistry, Skidmore College, Saratoga Springs, New York.
| | - Lieza M Chan
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Elise Tierney
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Sampriti Thapa
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Hai M Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lily Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
18
|
Wang J, Hanada K, Gareri C, Rockman HA. Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gα i coupling. J Cell Biochem 2018; 119:3586-3597. [PMID: 29231251 DOI: 10.1002/jcb.26552] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Ligand activation of the angiotensin II type 1 receptor (AT1R), a member of the G protein-coupled receptor (GPCR) family, stimulates intracellular signaling to mediate a variety of physiological responses. The AT1R is also known to be a mechanical sensor. When activated by mechanical stretch, the AT1R can signal via the multifunctional adaptor protein β-arrestin, rather than through classical heterotrimeric G protein pathways. To date, the AT1R conformation induced by membrane stretch in the absence of ligand was thought to be the same as that induced by β-arrestin-biased agonists, which selectively engage β-arrestin thereby preventing G protein coupling. Here, we show that in contrast to the β-arrestin-biased agonists TRV120023 and TRV120026, membrane stretch uniquely promotes the coupling of the inhibitory G protein (Gαi ) to the AT1R to transduce signaling. Stretch-triggered AT1R-Gαi coupling is required for the recruitment of β-arrestin2 and activation of downstream signaling pathways, such as EGFR transactivation and ERK phosphorylation. Our findings demonstrate additional complexity in the mechanism of receptor bias in which the recruitment of Gαi is required for allosteric mechanoactivation of the AT1R-induced β-arrestin-biased signaling.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kenji Hanada
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Clarice Gareri
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
19
|
Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys 2017; 617:84-93. [PMID: 27497696 PMCID: PMC5339396 DOI: 10.1016/j.abb.2016.08.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
The Kelch-like ECH associated protein 1 (Keap1) is a component of a Cullin3-based Cullin-RING E3 ubiquitin ligase (CRL) multisubunit protein complex. Within the CRL, homodimeric Keap1 functions as the Cullin3 adaptor, and importantly, it is also the critical component of the E3 ligase that performs the substrate recognition. The best-characterized substrate of Keap1 is transcription factor NF-E2 p45-related factor 2 (Nrf2), which orchestrates an elaborate transcriptional program in response to environmental challenges caused by oxidants, electrophiles and pro-inflammatory agents, allowing adaptation and survival under stress conditions. Keap1 is equipped with reactive cysteine residues that act as sensors for endogenously produced and exogenously encountered small molecules (termed inducers), which have a characteristic chemical signature, reactivity with sulfhydryl groups. Inducers modify the cysteine sensors of Keap1 and impair its ability to target Nrf2 for ubiquitination and degradation. Consequently, Nrf2 accumulates, enters the nucleus and drives the transcription of its target genes, which encode a large network of cytoprotective proteins. Here we summarize the early studies leading to the prediction of the existence of Keap1, followed by the discovery of Keap1 as the main negative regulator of Nrf2. We then describe the available structural information on Keap1, its assembly with Cullin3, and its interaction with Nrf2. We also discuss the multiple cysteine sensors of Keap1 that allow for detection of a wide range of endogenous and environmental inducers, and provide fine-tuning and tight control of the Keap1/Nrf2 stress-sensing response.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, University of Dundee, Scotland, UK; Department Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rumen V Kostov
- Division of Cancer Research, School of Medicine, University of Dundee, Scotland, UK
| | - Peter Canning
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Ibeawuchi SRC, Agbor LN, Quelle FW, Sigmund CD. Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. J Biol Chem 2015; 290:19208-17. [PMID: 26100637 DOI: 10.1074/jbc.m115.645358] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin-Ring ubiquitin ligases regulate protein turnover by promoting the ubiquitination of substrate proteins, targeting them for proteasomal degradation. It has been shown previously that mutations in Cullin3 (Cul3) causing deletion of 57 amino acids encoded by exon 9 (Cul3Δ9) cause hypertension. Moreover, RhoA activity contributes to vascular constriction and hypertension. We show that ubiquitination and degradation of RhoA is dependent on Cul3 in HEK293T cells in which Cul3 expression is ablated by either siRNA or by CRISPR-Cas9 genome editing. The latter was used to generate a Cul3-null cell line (HEK293T(Cul3KO)). When expressed in these cells, Cul3Δ9 supported reduced ubiquitin ligase activity toward RhoA compared with equivalent levels of wild-type Cul3 (Cul3WT). Consistent with its reduced activity, binding of Cul3Δ9 to the E3 ubiquitin ligase Rbx1 and neddylation of Cul3Δ9 were impaired significantly compared with Cul3WT. Conversely, Cul3Δ9 bound to substrate adaptor proteins more efficiently than Cul3WT. Cul3Δ9 also forms unstable dimers with Cul3WT, disrupting dimers of Cul3WT complexes that are required for efficient ubiquitination of some substrates. Indeed, coexpression of Cul3WT and Cul3Δ9 in HEK293T(Cul3KO) cells resulted in a decrease in the active form of Cul3WT. We conclude that Cul3Δ9-associated ubiquitin ligase activity toward RhoA is impaired and suggest that Cul3Δ9 mutations may act dominantly by sequestering substrate adaptors and disrupting Cul3WT complexes.
Collapse
Affiliation(s)
| | - Larry N Agbor
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Frederick W Quelle
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
21
|
Cullin E3 ligases and their rewiring by viral factors. Biomolecules 2014; 4:897-930. [PMID: 25314029 PMCID: PMC4279162 DOI: 10.3390/biom4040897] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023] Open
Abstract
The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity.
Collapse
|
22
|
Cuozzo JW, Soutter HH. Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening. ACTA ACUST UNITED AC 2014; 19:1000-13. [PMID: 24525871 DOI: 10.1177/1087057114520975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 01/09/2023]
Abstract
Production of novel soluble and membrane-localized protein targets for functional and affinity-based screening has often been limited by the inability of traditional protein-expression systems to generate recombinant proteins that have properties similar to those of their endogenous counterparts. Such targets have often been labeled as challenging. Although biological validation of these challenging targets for specific disease areas may be strong, discovery of small-molecule modulators can be greatly delayed or completely halted due to target-expression issues. In this article, the limitations of traditional protein-expression systems will be discussed along with new systems designed to overcome these challenges. Recent work in this field has focused on two major areas for both soluble and membrane targets: construct-design strategies to improve expression levels and new hosts that can carry out the posttranslational modifications necessary for proper target folding and function. Another area of active research has been on the reconstitution of solubilized membrane targets for both structural analysis and screening. Finally, the potential impact of these new systems on the output of small-molecule screening campaigns will be discussed.
Collapse
|
23
|
Leljak Levanić D, Horvat T, Martinčić J, Bauer N. A novel bipartite nuclear localization signal guides BPM1 protein to nucleolus suggesting its Cullin3 independent function. PLoS One 2012; 7:e51184. [PMID: 23251450 PMCID: PMC3519589 DOI: 10.1371/journal.pone.0051184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
BPM1 belongs to the MATH-BTB family of proteins, which act as substrate-binding adaptors for the Cullin3-based E3 ubiquitin ligase. MATH-BTB proteins associate with Cullin3 via the BTB domain and with the substrate protein via the MATH domain. Few BPM1-interacting proteins with different functions are recognized, however, specific roles of BPM1, depending on its cellular localization have not been studied so far. Here, we found a novel bipartite nuclear localization signal at the C-terminus of the BPM1 protein, responsible for its nuclear and nucleolar localization and sufficient to drive the green fluorescent protein and cytoplasmic BPM4 protein into the nucleus. Co-localization analysis in live Nicotiana tabacum BY2 cells indicates a Cullin3 independent function since BPM1 localization is predominantly nucleolar and thus devoid of Cullin3. Treatment of BY2 cells with the proteasome inhibitor MG132 blocks BPM1 and Cullin3 degradation, suggesting turnover of both proteins through the ubiquitin-proteasome pathway. Possible roles of BPM1 in relation to its in vivo localization are discussed.
Collapse
Affiliation(s)
- Dunja Leljak Levanić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Tomislav Horvat
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jelena Martinčić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|