1
|
Hanna C, Comstock F, Chatrath S, Posner A, Butsch J, Blum K, Gold MS, Georger L, Mastrandrea LD, Quattrin T, Thanos PK. Utilization of a precision medicine genetic and psychosocial approach in outcome assessment of bariatric weight loss surgery: a narrative review. Front Public Health 2025; 13:1516122. [PMID: 40376058 PMCID: PMC12078287 DOI: 10.3389/fpubh.2025.1516122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
The obesity epidemic has become a global public health issue, impacting more than one billion people worldwide. 9% of the US population, or 28.8 million Americans will have an eating disorder in their lifetime. In fact, global eating disorder prevalence increased from 3.5% to 7.8% between 2000 and 2018. In spite of the fact that less than 6% of people with an eating disorder are medically underweight, it is indeed an important factor when considering issues related to obesity. This public health problem is often described as being caused by various genetic and psychosocial factors. One of the most effective strategies for treating morbid obesity and achieving significant weight loss is bariatric surgery. Recent focus on precision medicine approaches has expanded into bariatric surgery in an effort to better understand and achieve improved outcomes and reduce risk for post-operative weight regain and addiction transfers during the recovery process. Addiction transfers, including substance and non-substance addictions, are well established concerns for post-bariatric patients. This review details the genetic, molecular and psychosocial factors that can be utilized to inform and guide personalized treatment. Additionally, this review details some of the molecular mechanisms including dysregulation of catecholamine signaling as well as other neurotransmitter systems relevant to help further understand recovery science.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
| | - Fiona Comstock
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
| | - Shtakshe Chatrath
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
| | - Alan Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John Butsch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA, United States
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Lesley Georger
- Department of Natural Sciences and Mathematics, D'Youville University, Buffalo, NY, United States
| | - Lucy D. Mastrandrea
- UBMD Pediatrics Division of Endocrinology/Diabetes, Buffalo, NY, United States
| | - Teresa Quattrin
- UBMD Pediatrics Division of Endocrinology/Diabetes, Buffalo, NY, United States
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Teixeira MR, Silva T, Felício RDFM, Bozza PT, Zembrzuski VM, de Mello Neto CB, da Fonseca ACP, Kohlrausch FB, Salum KCR. Exploring the genetic contribution in obesity: An overview of dopaminergic system genes. Behav Brain Res 2025; 480:115401. [PMID: 39689745 DOI: 10.1016/j.bbr.2024.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Obesity is a widespread global health concern that affects a significant portion of the population and is associated with reduced quality of life, morbidity, and mortality. It is considered a pandemic, with its prevalence constantly rising in Western countries. As a result, numerous studies have focused on understanding the elements that contribute to obesity. Researchers have focused on neurotransmitters in the brain to develop weight management drugs that regulate food intake. This review explores the literature on genetic influences on dopaminergic processes to determine whether genetic variation has an association with obesity in reward-responsive regions, including mesolimbic efferent and mesocortical areas. Various neurotransmitters play an essential role in regulating food intake, such as dopamine which controls through mesolimbic circuits in the brain that modulate food reward. Appetite stimulation, including primary reinforcers such as food, leads to an increase in dopamine release in the reward centers of the brain. This release is related to motivation and reinforcement, which determines the motivational weighting of the reinforcer. Changes in dopamine expression can lead to hedonic eating behaviors and contribute to the development of obesity. Genetic polymorphisms have been investigated due to their potential role in modulating the risk of obesity and eating behaviors. Therefore, it is crucial to assess the impact of genetic alterations that disrupt this pathway on the obesity phenotype.
Collapse
Affiliation(s)
- Myrela Ribeiro Teixeira
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Tamara Silva
- Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Rafaela de Freitas Martins Felício
- Congenital Malformation Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil
| | - Verônica Marques Zembrzuski
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Cicero Brasileiro de Mello Neto
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil; Postgraduate Program in Translational Biomedicine, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Kaio Cezar Rodrigues Salum
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Professor Rodolpho Paulo Rocco Street, 255, University City, Rio de Janeiro, RJ 21941-617, Brazil.
| |
Collapse
|
3
|
Gong M, Liu H, Liu Z, Wang Y, Qi S, Guo H, Jin S. Causal links between obesity, lipids, adipokines, and cognition: a bidirectional Mendelian-randomization analysis. Front Endocrinol (Lausanne) 2025; 16:1439341. [PMID: 39996061 PMCID: PMC11849047 DOI: 10.3389/fendo.2025.1439341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Background The aim of this study was to explore the genetic level association between obesity, lipids, adipokines, and cognitive ability using bidirectional Mendelian randomization (MR) strategies. Methods Summary data for three obesity indicators [body mass index (BMI), body fat percentage (BFP) and waist-hip ratio (WHR)], three lipid indicators [HDL cholesterol (HDL), LDL cholesterol (LDL) and triglycerides (TG)], three adipokines [circulating leptin (LEP), Agouti-related protein (AgRP) and Adiponectin (APDN)], and four cognitive ability indicators [cognitive function (CF), cognitive performance (CP), simple reaction time (SRT) and fluid intelligence score (FIS)] were collected. Bidirectional inverse-variance weighted Mendelian randomization (MR) was employed to evaluate the relationship between adiposity and cognitive function. We employed genetic instruments for adiposity indicators as exposures in one direction, and repeated the analysis in the opposite direction using instruments for cognitive function. Sensitivity analyses were conducted to explore heterogeneity and potential horizontal pleiotropy. Results Genetically predicted adiposity showed robust associations with markers of cognitive ability. Higher genetically predicted obesity indicators (such as BMI, BFP and WHR), and lipid and adipokineslevels (such as HDL and AgRP) with reduced cognitive ability indicators (such as CF and CP). In the opposite direction, FIS and SRT may influence BMI and HDL respectively. MR estimates for the effects of cognition ability on all obesity, lipids and adipokines measures indicated worse FIS and SRT were associated with higher BMI and lower HDL. Conclusions Our MR reveals that high BMI, BFP, WHR and AgRP have negative causal direct effects with cognitive ability, while high HDL and ADPN have positive causal direct effects with cognitive ability. For the reverse causal direction, our consistent findings that worse cognitive function such as SRT and FIS may influence serum HDL level and BMI.
Collapse
Affiliation(s)
- Meng Gong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haichao Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhixiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongshen Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Qi
- School of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hong Guo
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Mas M, Chambaron S, Chabanet C, Brindisi MC. Inhibition and shifting across the weight status spectrum. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:494-501. [PMID: 35188844 DOI: 10.1080/23279095.2022.2039656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Executive functioning (EF) is of major interest in the study of cognitive factors involved in obesity. Among EF, shifting is related to behavioral flexibility, and inhibition to the ability to refrain from impulsive behavior. A deficit in those two EF could predict individual difficulties to maintain a healthy lifestyle. Weak evidence of deficits in shifting and inhibition in individuals of higher Body Mass Index (BMI) have been observed. The objective was to clarify the relationship between inhibition and shifting regarding weight status group differences in healthy adults. Two neuropsychological tests from the Test of Attentional Performance (TAP) battery were used to measure EF performance of three groups of men and women: normal-weight (NW, n = 38), overweight (OW, n = 40) and obesity (OB, n = 37). The results show that individuals with higher BMI have lower inhibition capacities and that classically used weight status categories might not capture cognitive variability. No differences in shifting were observed concerning weight status nor BMI. This paper provides new insights on cognitive factors in obesity by presenting data from healthy individuals with overweight and obesity. The results support that assessing inhibition capacities might be of interest in a clinical setting for patients with difficulties to lose weight.
Collapse
Affiliation(s)
- Marine Mas
- Centre des Sciences du Gout et de l'Alimentation, INRAE, Dijon, France
| | | | - Claire Chabanet
- Centre des Sciences du Gout et de l'Alimentation, INRAE, Dijon, France
| | - Marie-Claude Brindisi
- Centre des Sciences du Gout et de l'Alimentation, INRAE, Dijon, France
- CHU Dijon, Dijon, France
| |
Collapse
|
6
|
Herzog N, Hartmann H, Janssen LK, Waltmann M, Fallon SJ, Deserno L, Horstmann A. Working memory gating in obesity: Insights from a case-control fMRI study. Appetite 2024; 195:107179. [PMID: 38145879 DOI: 10.1016/j.appet.2023.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Computational models and neurophysiological data propose that a 'gating mechanism' coordinates distractor-resistant maintenance and flexible updating of working memory contents: While maintenance of information is mainly implemented in the prefrontal cortex, updating of information is signaled by phasic increases in dopamine in the striatum. Previous literature demonstrates structural and functional alterations in these brain areas, as well as differential dopamine transmission among individuals with obesity, suggesting potential impairments in these processes. To test this hypothesis, we conducted an observational case-control fMRI study, dividing participants into groups with and without obesity based on their BMI. We probed maintenance and updating of working memory contents using a modified delayed match to sample task and investigated the effects of SNPs related to the dopaminergic system. While the task elicited the anticipated brain responses, our findings revealed no evidence for group differences in these two processes, neither at the neural level nor behaviorally. However, depending on Taq1A genotype, which affects dopamine receptor density in the striatum, participants with obesity performed worse on the task. In conclusion, this study does not support the existence of overall obesity-related differences in working memory gating. Instead, we propose that potentially subtle alterations may manifest specifically in individuals with a 'vulnerable' genotype.
Collapse
Affiliation(s)
- Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany.
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lieneke K Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maria Waltmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; School of Psychology, University of Plymouth, Plymouth, UK
| | - Sean J Fallon
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, University of Würzburg, Würzburg, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Thanos PK, Hanna C, Mihalkovic A, Hoffman AB, Posner AR, Busch J, Smith C, Badgaiyan RD, Blum K, Baron D, Mastrandrea LD, Quattrin T. The First Exploratory Personalized Medicine Approach to Improve Bariatric Surgery Outcomes Utilizing Psychosocial and Genetic Risk Assessments: Encouraging Clinical Research. J Pers Med 2023; 13:1164. [PMID: 37511777 PMCID: PMC10381606 DOI: 10.3390/jpm13071164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It is predicted that by 2030, globally, an estimated 2.16 billion adults will be overweight, and 1.12 billion will be obese. This study examined genetic data regarding Reward Deficiency Syndrome (RDS) to evaluate their usefulness in counselling patients undergoing bariatric surgery and gathered preliminary data on the potential use in predicting short term (6-month) weight loss outcomes. Methods: Patients undergoing bariatric surgery (n = 34) were examined for Genetic Addiction Risk Severity (GARS) [measures the presence of risk alleles associated with RDS]; as well as their psychosocial traits (questionnaires). BMI changes and sociodemographic data were abstracted from Electronic Health Records. Results: Subjects showed ∆BMI (M = 10.0 ± 1.05 kg/m2) and a mean % excess weight loss (56 ± 13.8%). In addition, 76% of subjects had GARS scores above seven. The homozygote risk alleles for MAO (rs768062321) and DRD1 (rs4532) showed a 38% and 47% prevalence among the subjects. Of the 11 risk alleles identified by GARS, the DRD4 risk allele (rs1800955), was significantly correlated with change in weight and BMI six months post-surgery. We identified correlations with individual risk alleles and psychosocial trait scores. The COMT risk allele (rs4680) showed a negative correlation with EEI scores (r = -0.4983, p < 0.05) and PSQI scores (r = -0.5482, p < 0.05). The GABRB3 risk allele (rs764926719) correlated positively with EEI (r = 0.6161, p < 0.01) and FCQ scores (r = 0.6373, p < 0.01). The OPRM1 risk allele showed a positive correlation with the DERS score (r = 0.5228, p < 0.05). We also identified correlations between DERS and BMI change (r = 0.61; p < 0.01). Conclusions: These data support the potential benefit of a personalized medicinal approach inclusive of genetic testing and psychosocial trait questionnaires when counselling patients with obesity considering bariatric surgery. Future research will explore epigenetic factors that contribute to outcomes of bariatric surgery.
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Aaron B. Hoffman
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| | - Alan R. Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (A.R.P.); (J.B.)
| | - John Busch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (A.R.P.); (J.B.)
| | - Caroline Smith
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Kenneth Blum
- Division of Nutrigenomics, SpliceGen, Therapeutics, Inc., Austin, TX 78701, USA;
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, 23-27, 1075 Budapest, Hungary
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - David Baron
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
| | - Lucy D. Mastrandrea
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| | - Teresa Quattrin
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| |
Collapse
|
9
|
Hidalgo Vira N, Oyarce K, Valladares Vega M, Goldfield GS, Guzmán-Gutiérrez E, Obregón AM. No association of the dopamine D2 receptor genetic bilocus score (rs1800497/rs1799732) on food addiction and food reinforcement in Chilean adults. Front Behav Neurosci 2023; 17:1067384. [PMID: 37064299 PMCID: PMC10102336 DOI: 10.3389/fnbeh.2023.1067384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/08/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose: Different systems regulate food intake. In the reward system, dopamine (DA) is the main neurotransmitter, and a variety of genetic variants (rs1799732 and rs1800497) are associated with addiction. Addiction is a highly polygenic disease, where each allelic variant adds a small amount of vulnerability. Polymorphisms rs1799732 and rs1800497 are associated with eating behavior and hedonic hunger, but links to food addiction remain unclear.Aim: To evaluate the association between the bilocus profile (rs1799732-rs1800497) of the dopaminergic pathway with food reinforcement and food addiction in Chilean adults.Methods: A cross-sectional study recruited a convenience sample of 97 obese, 25 overweight, and 99 normal-weight adults (18–35 years). Anthropometric measurements were performed by standard procedures and eating behavior was assessed using the: Food Reinforcement Value Questionnaire (FRVQ) and Yale Food Addiction scale (YFAS). The DRD2 genotypes were determined by TaqMan assays (rs1800497 and rs1799732). A bilocus composite score was calculated.Results: In the normal weight group, individuals who were heterozygous for the rs1977932 variant (G/del) showed higher body weight (p-value 0.01) and abdominal circumference (p-value 0.01) compared to those who were homozygous (G/G). When analyzing rs1800497, a significant difference in BMI was observed for the normal weight group (p-value 0.02) where heterozygous showed higher BMI. In the obese group, homozygous A1/A1 showed higher BMI in comparison to A1/A2 and A2/A2 (p-value 0.03). Also, a significant difference in food reinforcement was observed in the rs1800497, where homozygous for the variant (A1A1) show less reinforcement (p-value 0.01).In relation to the bilocus score in the total sample, 11% showed “very low dopaminergic signaling”, 24.4% were “under”, 49.7% showed “intermediate signaling”, 12.7% showed “high” and 1.4% showed “very high”. No significant genotypic differences were observed in food reinforcement and food addiction by bilocus score.Conclusions: The results indicate that the genetic variants rs1799732 and rs1800497 (Taq1A) were associated with anthropometric measurements but not with food addiction or food reinforcement in Chilean university students. These results suggest that other genotypes, such as rs4680 and rs6277, which affect DA signaling capacity through a multilocus composite score, should be studied. Level V: Evidence obtained from a cross-sectional descriptive study.
Collapse
Affiliation(s)
- Nicole Hidalgo Vira
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Karina Oyarce
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Macarena Valladares Vega
- Escuela de Terapia Ocupacional, Facultad de Salud y Ciencias Sociales, Universidad de las Ámericas, Santiago, Chile
| | - Gary S. Goldfield
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Enrique Guzmán-Gutiérrez
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Ana M. Obregón
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Ana M. Obregón
| |
Collapse
|
10
|
Factors related to the development of executive functions: A cumulative dopamine genetic score and environmental factors predict performance of kindergarten children in a go/nogo task. Trends Neurosci Educ 2023; 30:100200. [PMID: 36925267 DOI: 10.1016/j.tine.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND This study aimed at investigating the interaction between genetic and environmental factors in predicting executive function in children aged four to six years. METHODS Response inhibition as index of EF was assessed in 197 children using a go/nogo task. A cumulative dopamine (DA) genetic score was calculated, indexing predisposition of low DA activity. Dimensions of parenting behavior and parental education were assessed. RESULTS Parental education was positively related to accuracy in nogo trials. An interaction between the cumulative genetic score and the parenting dimension Responsiveness predicted go RT indicating that children with a high cumulative genetic score and high parental responsiveness exhibited a careful response mode. CONCLUSION The development of EF in kindergarten children is related to parental education as well as to an interaction between the molecular-genetics of the DA system and parenting behavior.
Collapse
|
11
|
Ceccarini MR, Bertelli M, Albi E, Dalla Ragione L, Beccari T. Gene Variants Involved in the Etiopathogenesis of Eating Disorders: Neuropeptides, Neurotransmitters, Hormones, and Their Receptors. Eat Disord 2023:75-94. [DOI: 10.1007/978-3-031-16691-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Are COMT Val158Met (rs4680), DRD2 TaqIA (rs1800497), and BDNF Val66Met (rs6265) polymorphisms associated with executive functions performance at rest and during physical exercise? Physiol Behav 2022; 257:113973. [PMID: 36179810 DOI: 10.1016/j.physbeh.2022.113973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
Abstract
Executive functions (EFs) encompass a wide array of cognitive processes, which appear to be influenced by genetic variants of the COMT, DRD2/ANKK1, and BDNF polymorphisms. The present study aimed to investigate whether COMT Val158Met (rs4680), DRD2/ANKK1 (rs1800497), and BDNF Val66Met (rs6265) polymorphisms were associated with EFs assessed at rest and during moderate acute physical exercise. Sixty physically active individuals underwent four laboratory visits. First, they filled out the pre-exercise survey, researchers collected their anthropometric data, and then performed a maximal cardiopulmonary exercise test. In the second and third sessions, participants performed EFs test in a randomized order: while the individual was seated on a cycle ergometer without pedaling (i.e., rest condition); and during physical exercise (pedaling for 30 minutes at moderate intensity before starting the EFs test during exercising). On the fourth day, blood samples were drawn. Our results showed that the response time of the COMT Val homozygotes group was significantly shorter than the COMT Met-carrier group [t(39.78) = 2.13, p = .039,d = 0.56] at rest condition. No significant association was found for the other analyses (DRD2/ANKK1 and BDNF). In conclusion, the present study suggests that COMT Val158Met (rs4680) polymorphisms may be associated with EFs at rest condition. However, further studies are needed to validate this association.
Collapse
|
13
|
Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sci 2022; 12:brainsci12081080. [PMID: 36009143 PMCID: PMC9405914 DOI: 10.3390/brainsci12081080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 12/16/2022] Open
Abstract
In the last decades, it has been proposed that executive functions may be particularly vulnerable to weight-related issues. However, evidence on the matter is mixed, especially when the effects of sociodemographic variables are weighted. Thus, the current study aimed at further examining the relationship between executive functions and obesity. To this aim, we compared treatment-seeking overweight, obese, and morbidly obese patients with normal-weight control participants. We examined general executive functioning (Frontal Assessment Battery−15) and different executive subdomains (e.g., inhibitory control, verbal fluency, and psychomotor speed) in a clinical sample including 208 outpatients with different degrees of BMI (52 overweight, BMI 25−30, M age = 34.38; 76 obese, BMI 30−40, M age = 38.00; 80 morbidly obese, BMI > 40, M age = 36.20). Ninety-six normal-weight subjects served as controls. No difference on executive scores was detected when obese patients were compared with over- or normal-weight subjects. Morbidly obese patients reported lower performance on executive scores than obese, overweight, and normal-weight subjects. Between-group difference emerged also when relevant covariates were taken into account. Our results support the view that morbid obesity is associated with lower executive performance, also considering the critical role exerted by sociodemographic (i.e., sex, age, and education) variables. Our results support the view that executive functioning should be accounted into the management of the obese patient because of non-negligible clinical relevance in diagnostic, therapeutic, and prognostic terms.
Collapse
|
14
|
White O, Roeder N, Blum K, Eiden RD, Thanos PK. Prenatal Effects of Nicotine on Obesity Risks: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9477. [PMID: 35954830 PMCID: PMC9368674 DOI: 10.3390/ijerph19159477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Nicotine usage by mothers throughout pregnancy has been observed to relate to numerous deleterious effects in children, especially relating to obesity. Children who have prenatally been exposed to nicotine tend to have lower birth weights, with an elevated risk of becoming overweight throughout development and into their adolescent and adult life. There are numerous theories as to how this occurs: catch-up growth theory, thrifty phenotype theory, neurotransmitter or endocrine imbalances theory, and a more recent examination on the genetic factors relating to obesity risk. In addition to the negative effect on bodyweight and BMI, individuals with obesity may also suffer from numerous comorbidities involving metabolic disease. These may include type 1 and 2 diabetes, high cholesterol levels, and liver disease. Predisposition for obesity with nicotine usage may also be associated with genetic risk alleles for obesity, such as the DRD2 A1 variant. This is important for prenatally nicotine-exposed individuals as an opportunity to provide early prevention and intervention of obesity-related risks.
Collapse
Affiliation(s)
- Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rina D. Eiden
- Department of Psychology, Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Wang SH, Su MH, Chen CY, Lin YF, Feng YCA, Hsiao PC, Pan YJ, Wu CS. Causality of abdominal obesity on cognition: a trans-ethnic Mendelian randomization study. Int J Obes (Lond) 2022; 46:1487-1492. [PMID: 35538205 DOI: 10.1038/s41366-022-01138-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Obesity has been associated with cognition in observational studies; however, whether its effect is confounding or a reverse causality remains inconclusive. This study aimed to investigate the causal relationships of overall obesity, measured by body mass index (BMI), and abdominal adiposity, measured by waist-hip ratio adjusted for BMI (WHRadjBMI), and cognition across European and Asian populations using Mendelian randomization (MR) analysis. METHODS We used publicly available genome-wide association study (GWAS) summary data of European ancestry, including BMI (n = 322,154) and WHRadjBMI (n = 210,088) from the GIANT consortium, and cognition performance (n = 257,828) from the UK Biobank and COGENT consortium. Data for individuals of Asian ancestry were retrieved from Taiwan Biobank to perform GWAS for BMI (n = 65,689), WHRadjBMI (n = 65,683), and Mini-Mental State Examination (MMSE, n = 21,273). MR analysis was carried out using the inverse-variance weighted method for the main results. Further, we examined the overall pleiotropy by MR-Egger intercept, and detected and adjusted for possible outliers using MR PRESSO. RESULTS No causal effect of BMI on cognition performance (beta [95% CI] = 0.00 [-0.07, 0.07], p value = 0.91) was found for Europeans; however, a 1-SD increase in WHRadjBMI was associated with a 0.07 standardized score decrease in cognition performance (beta [95% CI] = -0.07 [-0.12, -0.02], p value = 0.006). Further, no causal effect of BMI on MMSE (beta [95% CI] = 0.01 [-0.08, 0.10], p = 0.91) was found for Asians; however, a 1-SD increase in WHRadjBMI was associated with a 0.17 standardized score decrease in MMSE (beta [95% CI] = -0.17 [-0.30, -0.03], p = 0.02). In both populations, overall pleiotropy was not detected, and outliers did not affect the robustness of the main findings. CONCLUSIONS This trans-ethnic MR study reveals that abdominal adiposity, as measured by WHR adjusted for BMI, impairs cognition, whereas weak evidence suggests that BMI impairs cognition.
Collapse
Affiliation(s)
- Shi-Heng Wang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Mei-Hsin Su
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chia-Yen Chen
- Biogen, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Chen A Feng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Chang Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Jiun Pan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan. .,Department of Psychiatry, National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan.
| |
Collapse
|
16
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
17
|
Executive Functions in Overweight and Obese Treatment-Seeking Patients: Cross-Sectional Data and Longitudinal Perspectives. Brain Sci 2022; 12:brainsci12060777. [PMID: 35741662 PMCID: PMC9220982 DOI: 10.3390/brainsci12060777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recent evidence suggests that a higher body weight may be linked to cognitive impairment in different domains involving executive/frontal functioning. However, challenging results are also available. Accordingly, our study was designed to verify whether (i) poor executive functions are related to a higher body weight and (ii) executive functioning could contribute to weight loss in treatment-seeking overweight and obese patients. METHODS We examined general executive functioning, inhibitory control, verbal fluency, and psychomotor speed in a sample including 104 overweight and obese patients. Forty-eight normal-weight subjects participated in the study as controls. RESULTS Univariate Analysis of Variance showed that obese patients obtained lower scores than overweight and normal-weight subjects in all executive measures, except for errors in the Stroop test. However, when sociodemographic variables entered the model as covariates, no between-group difference was detected. Furthermore, an adjusted multiple linear regression model highlighted no relationship between weight loss and executive scores at baseline. CONCLUSIONS Our results provide further evidence for the lack of association between obesity and the executive domains investigated. Conflicting findings from previous literature may likely be due to the unchecked confounding effects exerted by sociodemographic variables and inclusion/exclusion criteria.
Collapse
|
18
|
Ceccarini MR, Fittipaldi S, Ciccacci C, Granese E, Centofanti F, Dalla Ragione L, Bertelli M, Beccari T, Botta A. Association Between DRD2 and DRD4 Polymorphisms and Eating Disorders in an Italian Population. Front Nutr 2022; 9:838177. [PMID: 35369087 PMCID: PMC8964431 DOI: 10.3389/fnut.2022.838177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) are the three most common eating disorders (EDs). Their etiopathogenesis is multifactorial where both the environmental and genetic factors contribute to the disease outcome and severity. Several polymorphisms in genes involved in the dopaminergic pathways seem to be relevant in the susceptibility to EDs, but their role has not been fully elucidated yet. In this study, we have analyzed the association between selected common polymorphisms in the DRD2 and DRD4 genes in a large cohort of Italian patients affected by AN (n = 332), BN (n = 122), and BED (n = 132) compared to healthy controls (CTRs) (n = 172). Allelic and genotypic frequencies have been also correlated with the main psychopathological and clinical comorbidities often observed in patients. Our results showed significant associations of the DRD2-rs6277 single nucleotide polymorphism (SNP) with AN and BN, of the DRD4-rs936461 SNP with BN and BED and of DRD4 120-bp tandem repeat (TR) polymorphism (SS plus LS genotypes) with BED susceptibility. Moreover, genotyping of DRD4 48-bp variable number TR (VNTR) identified the presence of ≥7R alleles as risk factors to develop each type of EDs. The study also showed that ED subjects with a history of drugs abuse were characterized by a significantly higher frequency of the DRD4 rs1800955 TT genotype and DRD4 120-bp TR short-allele. Our findings suggest that specific combinations of variants in the DRD2 and DRD4 genes are predisposing factors not only for EDs but also for some psychopathological features often coupled specifically to AN, BN, and BED. Further functional research studies are needed to better clarify the complex role of these proteins and to develop novel therapeutic compounds based on dopamine modulation.
Collapse
Affiliation(s)
- Maria Rachele Ceccarini
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.,Consorzio Interuniversitario per le Biotecnologie (C.I.B), Trieste, Italy
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Erika Granese
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Laura Dalla Ragione
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, Rome, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.,Consorzio Interuniversitario per le Biotecnologie (C.I.B), Trieste, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners. Nutrients 2022; 14:nu14071379. [PMID: 35405990 PMCID: PMC9002862 DOI: 10.3390/nu14071379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are critical for cell membrane structure and function. Human beings have a limited ability to synthesise docosahexaenoic acid (DHA), the main n-3 LCPUFA required for neurological development. Inadequate levels of n-3 LCPUFA can affect the dopaminergic system in the brain and, when combined with genetic and other factors, increase the risk of developing aggression, inattention and impulse-control disorders. In this study, male prisoners were administered questionnaires assessing aggressive behaviour and executive functions. Participants also produced blood sampling for the measurement of the Omega-3 Index and the genotyping of dopaminergic genetic variants. Significant associations were found between functional genetic polymorphism in DBH rs1611115 and verbal aggression and between DRD2 rs4274224 and executive functions. However, the Omega-3 Index was not significantly associated with the tested dopaminergic polymorphisms. Although previous interactions between specific genotypes and n-3 LCPUFA were previously reported, they remain limited and poorly understood. We did not find any association between n-3 LCPUFA and dopaminergic polymorphisms in adult male prisoners; however, we confirmed the importance of genetic predisposition for dopaminergic genes (DBH and DRD2) in aggressive behaviour, memory dysfunction and attention-deficit disorder.
Collapse
|
20
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, "the answer is blowin' in the wind," and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
21
|
Swart EK, Sikkema-de Jong MT. The effects of increased dopamine-levels on attentional control during reading and reading comprehension. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe aim of the present study was to gain insight into the neurobiological processes, particularly the dopaminergic processes, underlying attentional control during reading and reading comprehension. In order to test the effects of increased levels of dopamine (DA) in the brain, female university students (N = 80), half of them being carriers of the DRD4-7R allele and half of them not, participated in a double-blind placebo-controlled within-subjects experiment in which they were orally administered levodopa or a placebo before reading a text. After reading the text, participants reported on their attentional control during reading and completed comprehension questions. Pharmacologically increasing DA levels in the brain negatively influenced reading comprehension. This effect was moderate (ηp2 = .13). No interaction effects of condition and DRD4 genotype were found, for either attentional control or reading comprehension. Exploratory analyses showed that increased DA levels in the brain positively influenced fluctuations in attentional control, but only in a group of slow readers. No effects of increased DA were found for the two other attentional control measures used in the present study and no effects of increased DA on attentional control were found for fast readers. Results are discussed from the perspective of the inverted U-shape theory and the possible dopamine-related mechanisms.
Collapse
|
22
|
Cole KR, Yen CL, Dudley-Javoroski S, Shields RK. NIH Toolbox Cognition Battery in Young and Older Adults: Reliability and Relationship to Adiposity and Physical Activity. J Geriatr Phys Ther 2021; 44:51-59. [PMID: 31567883 PMCID: PMC7093212 DOI: 10.1519/jpt.0000000000000244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Executive function in normal aging may be modulated by body habitus and adiposity, both factors modified by physical therapist prescriptions. This study measured between-day reliability of executive function metrics in young and older individuals and examined associations between cognition, adiposity, and physical activity. METHODS Forty-three young and 24 older participants underwent executive function assessment via the National Institutes of Health Toolbox Cognition Battery (Dimensional Change Card Sort, Flanker Inhibitory Control and Attention [Flanker], and List Sorting Working Memory [List Sorting]) at 7-day intervals. Between-day reliability was assessed via intraclass correlation (ICC). Responsiveness was assessed via between-day effect size and Cohen's d. Forward stepwise linear regression examined associations between cognition and age, body mass index, percent body fat, and a self-report measure of physical activity (International Physical Activity Questionnaire Short Form). RESULTS AND DISCUSSION Executive function scores were higher for young participants than for older participants (all P < .002), consistent with typical age-related cognitive decline. Reliability of cognitive metrics was higher for older participants (ICC = 0.483-0.917) than for young participants (ICC = 0.386-0.730). Between-day effect sizes were approximately 50% smaller for older participants. Percent body fat significantly correlated with the Flanker Unadjusted Scale (P = .004, R2 = 0.0772). Neither vigorous nor total physical activity correlated with any cognitive metric. CONCLUSIONS Older participants demonstrated greater between-day reliability for executive function measures, while young participants showed greater capacity to improve performance upon repeat exposure to a cognitive test (especially Flanker). Percent body fat correlated significantly with Flanker scores, while body mass index (an indirect measure of body fat) did not. Self-reported physical activity did not correlate with executive function. Cognitive response to physical therapist-prescribed exercise is a fertile ground for future research.
Collapse
Affiliation(s)
- Keith R Cole
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbia
| | - Chu-Ling Yen
- Department of Neurology, Division of Cerebrovascular Diseases, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City
| |
Collapse
|
23
|
Aguayo L, Li W, Joyce BT, Leng J, Zheng Y, Shiau S, Liu H, Wang L, Gao R, Baccarelli A, Hu G, Hou L. Risks of Macrosomia Associated with Catechol- O-Methyltransferase Genotypes and Genetic-Epigenetic Interactions among Children with and without Gestational Diabetes Exposure. Child Obes 2021; 17:365-370. [PMID: 33826421 PMCID: PMC8236387 DOI: 10.1089/chi.2020.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Gestational diabetes mellitus (GDM) is a major macrosomia risk factor. Variations in the catechol-O-methyltransferase (COMT; rs4680) genotypes are associated with heightened susceptibility to environmental exposures and nutritional conditions. However, macrosomia risks associated with COMT genetics, epigenetics, and the interaction between genetic and epigenetics among children with and without exposure to GDM are unknown. Methods: Data from women/children pairs (n = 1087) who participated in the Tianjin Gestational Diabetes Birth Cohort were used to examine the odds of being born with macrosomia associated with COMT-genotypes, 55 CpG sites located on the COMT gene, and genetic and epigenetic interactions. Odds of macrosomia associated with COMT genetic, epigenetic, genetic and epigenetic interactions, and moderations with GDM were tested using adjusted logistic regression models. Results: Overall, 16.1% (n = 175) of children were born with macrosomia. Models showed that children with at least one copy of the minor allele (A) had higher odds of macrosomia (odds ratio, 1.82; 95% confidence interval 1.25-2.64) compared with children with the GG-genotype. After false discovery rate corrections, none of the 55 CpG sites located on the COMT gene was associated with odds of macrosomia. The genetic and epigenetic associations were not modified by exposure to GDM. Conclusion: Findings suggest carriers of the COMT GG-genotype had lower odds of macrosomia, and this association was not modified by epigenetics or exposure to GDM.
Collapse
Affiliation(s)
- Liliana Aguayo
- Department of Preventive Medicine, Feinberg School of Medicine; Northwestern University, Chicago, IL, USA.,Mary Ann and J. Milburn Smith Child Health Research, Outreach, and Advocacy Center, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, USA.,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Weiqin Li
- Tianjin Women's and Children's Health Center, Tianjin, China
| | - Brian T. Joyce
- Department of Preventive Medicine, Center for Global Oncology, Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junhong Leng
- Tianjin Women's and Children's Health Center, Tianjin, China
| | - Yinan Zheng
- Department of Preventive Medicine, Center for Global Oncology, Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Huikun Liu
- Tianjin Women's and Children's Health Center, Tianjin, China
| | - Leishen Wang
- Tianjin Women's and Children's Health Center, Tianjin, China
| | - Ru Gao
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.,Address correspondence to: Gang Hu, MD, PhD, Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Lifang Hou
- Department of Preventive Medicine, Center for Global Oncology, Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Aliasghari F, Nazm SA, Yasari S, Mahdavi R, Bonyadi M. Associations of the ANKK1 and DRD2 gene polymorphisms with overweight, obesity and hedonic hunger among women from the Northwest of Iran. Eat Weight Disord 2021; 26:305-312. [PMID: 32020513 DOI: 10.1007/s40519-020-00851-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pleasure from palatable foods can stimulate hedonic eating and, therefore, might be a major culprit for obesity. Dopamine receptor polymorphisms, especially variants in the genes regulating the D2 receptor, including ANKK1 and DRD2, are the prime candidates for assessing the individual differences in hedonic eating. This study was carried out to investigate the possible associations of the T (rs1800497) and Del (rs1799732) alleles with body mass index (BMI) and hedonic hunger among Iranian Azeri women. METHODS A total of 372 healthy overweight/obese subjects (BMI ≥ 25 kg/m2) and 159 normal weight individuals (BMI 18.5-24.9 kg/m2) were genotyped for the polymorphisms of ANNK1 and DRD2 genes using PCR-RFLP. BMI and hedonic hunger were also evaluated. RESULTS Three hundred and sixty-three (68.36%), 152 (28.63%), and 16 (3.01%) of the participants had CC, CT, and TT genotypes for ANNK1 gene, respectively. Of 515 samples genotyped for DRD2 gene, 315 (60.51%), 173 (33.59%), and 27 (5.24%) had Ins/Ins, Ins/Del, and Del/Del genotypes, respectively. The genotype and genotype frequencies were significantly different between the groups (p = 0.04). Significant differences were observed between the T+ genotype (TT + TC) and the T- genotype (CC) regarding the BMI and hedonic hunger scores (p < 0.05). In addition, Del+ group (Del/Del + Ins/Del) had higher BMI and hedonic hunger scores compared to Del- group (Ins/Ins) (p < 0.05). CONCLUSIONS Our findings showed that the frequencies of T and Del alleles were greater in the overweight/obese individuals. Also, the polymorphism of ANKK1 (rs1800497) and polymorphism of the DRD2 gene (rs1799732) showed significant associations with BMI and hedonic hunger. LEVEL OF EVIDENCE Level III, case-control study.
Collapse
Affiliation(s)
- Fereshteh Aliasghari
- Nutrition Research Center, Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba A Nazm
- Faculty of Natural Sciences, Center of Excellence for Biodiversity, University of Tabriz, Tabriz, Iran
| | - Sepideh Yasari
- Faculty of Natural Sciences, Center of Excellence for Biodiversity, University of Tabriz, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Bonyadi
- Faculty of Natural Sciences, Center of Excellence for Biodiversity, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
25
|
Patte KA, Davis CA, Levitan RD, Kaplan AS, Carter-Major J, Kennedy JL. A Behavioral Genetic Model of the Mechanisms Underlying the Link Between Obesity and Symptoms of ADHD. J Atten Disord 2020; 24:1425-1436. [PMID: 26794671 DOI: 10.1177/1087054715618793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: The ADHD-obesity link has been suggested to result from a shared underlying basis of suboptimal dopamine (DA); however, this theory conflicts evidence that an amplified DA signal increases the risk for overeating and weight gain. A model was tested in which ADHD symptoms, predicted by hypodopaminergic functioning in the prefrontal cortex, in combination with an enhanced appetitive drive, predict hedonic eating and, in turn, higher body mass index (BMI). Method: DRD2 and DRD4 markers were genotyped. The model was tested using structural equation modeling in a nonclinical sample (N = 421 adults). Results: The model was a good fit to the data. Controlling for education, all parameter estimates were significant, except for the DRD4-ADHD symptom pathway. The significant indirect effect indicates that overeating mediated the ADHD symptoms-BMI association. Conclusion: Results support the hypothesis that overeating and elevated DA in the ventral striatum-representative of a greater reward response-contribute to the ADHD symptom-obesity relationship.
Collapse
Affiliation(s)
| | - Caroline A Davis
- York University, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | - Robert D Levitan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | | | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| |
Collapse
|
26
|
Koeneke A, Ponce G, Troya-Balseca J, Palomo T, Hoenicka J. Ankyrin Repeat and Kinase Domain Containing 1 Gene, and Addiction Vulnerability. Int J Mol Sci 2020; 21:ijms21072516. [PMID: 32260442 PMCID: PMC7177674 DOI: 10.3390/ijms21072516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/13/2023] Open
Abstract
The TaqIA single nucleotide variant (SNV) has been tested for association with addictions in a huge number of studies. TaqIA is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) that codes for a receptor interacting protein kinase. ANKK1 maps on the NTAD cluster along with the dopamine receptor D2 (DRD2), the tetratricopeptide repeat domain 12 (TTC12) and the neural cell adhesion molecule 1 (NCAM1) genes. The four genes have been associated with addictions, although TTC12 and ANKK1 showed the strongest associations. In silico and in vitro studies revealed that ANKK1 is functionally related to the dopaminergic system, in particular with DRD2. In antisocial alcoholism, epistasis between ANKK1 TaqIA and DRD2 C957T SNVs has been described. This clinical finding has been supported by the study of ANKK1 expression in peripheral blood mononuclear cells of alcoholic patients and controls. Regarding the ANKK1 protein, there is direct evidence of its location in adult and developing central nervous system. Together, these findings of the ANKK1 gene and its protein suggest that the TaqIA SNV is a marker of brain differences, both in structure and in dopaminergic function, that increase individual risk to addiction development.
Collapse
Affiliation(s)
- Alejandra Koeneke
- Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Europea Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Guillermo Ponce
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain;
| | - Johanna Troya-Balseca
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Tomás Palomo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-936009751 (ext. 77833)
| |
Collapse
|
27
|
García-García I, Morys F, Michaud A, Dagher A. Food Addiction, Skating on Thin Ice: a Critical Overview of Neuroimaging Findings. CURRENT ADDICTION REPORTS 2020. [DOI: 10.1007/s40429-020-00293-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Gong M, Wen S, Nguyen T, Wang C, Jin J, Zhou L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab Syndr Obes 2020; 13:943-962. [PMID: 32280253 PMCID: PMC7125338 DOI: 10.2147/dmso.s232377] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity and hyperuricemia mutually influence metabolic syndrome. This study discusses the metabolic relationships between obesity and hyperuricemia in terms of pathophysiology, complications, and treatments. METHODS We searched for preclinical or clinical studies on the pathophysiology, complications, and therapy of obesity and hyperuricemia on the PubMed database. RESULTS In this systemic review, we summarized our searching results on topics of pathophysiology, complications and therapeutic strategy. In pathophysiology, we firstly introduce genetic variations for obesity, hyperuricemia and their relationships by genetic studies. Secondly, we talk about the epigenetic influences on obesity and hyperuricemia. Thirdly, we describe the central metabolic regulation and the role of hyperuricemia. Then, we refer to the character of adipose tissue inflammation and oxidative stress in the obesity and hyperuricemia. In the last part of this topic, we reviewed the critical links of gut microbiota in the obesity and hyperuricemia. In the following part, we review the pathophysiology of major complications in obesity and hyperuricemia including insulin resistance and type 2 diabetes mellitus, chronic kidney disease, cardiovascular diseases, and cancers. Finally, we recapitulate the therapeutic strategies especially the novel pharmaceutic interventions for obesity and hyperuricemia, which concurrently show the mutual metabolic influences between two diseases. CONCLUSION The data reviewed here delineate the metabolic relationships between obesity and hyperuricemia, and provide a comprehensive overview of the therapeutic targets for the management of metabolic syndromes.
Collapse
Affiliation(s)
- Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, ChinaTel +8613611927616 Email
| |
Collapse
|
29
|
Coumans JM, Danner UN, Hadjigeorgiou C, Hebestreit A, Hunsberger M, Intemann T, Lauria F, Michels N, Kurdiné EM, Moreno LA, Reisch LA, Thumann BF, Veidebaum T, Adan RA. Emotion-driven impulsiveness but not decision-making ability and cognitive inflexibility predicts weight status in adults. Appetite 2019; 142:104367. [DOI: 10.1016/j.appet.2019.104367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022]
|
30
|
Association among Executive Function, Physical Activity, and Weight Status in Youth. ACTA ACUST UNITED AC 2019; 55:medicina55100677. [PMID: 31597316 PMCID: PMC6843179 DOI: 10.3390/medicina55100677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023]
Abstract
Background and objectives: Executive function (EF) is an umbrella term that encompasses the set of higher-order processes. Core EFs are inhibition, interference control, working memory, and cognitive flexibility. The aim of the study was to compare the EF between normal weight (NW) and inactive overweight (OW), NW and sport trained (ST), ST and OW 16-19-year-old youths. In addition, the relationship between EF and peak oxygen uptake (VO2peak) was evaluated. Materials and Methods: 10 NW, 14 ST, and 10 OW youths participated in this study. EF was evaluated using the ANAM4 battery. VO2peak was measured during an increasing walking exercise (modified Balke test). Results: The NW youths demonstrated better visual tracking and attention (94.28% ± 3.11%/90.23% ± 2.01%), response inhibition (95.65% ± 1.83%/92.48% ± 1.05%), speed of processing, and alternating attention with a motor speed component (95.5% ± 3.51%/89.01% ± 4.09%) than the OW youths (p < 0.05). The ST youths demonstrated better visual tracking and attention (96.76% ± 1.85%/90.23% ± 2.01%), response inhibition (97.58% ± 0.94%/92.48% ± 1.05%), speed of processing, and alternating attention with a motor speed component (98.35% ± 1.35%/89.01% ± 4.09%) than the OW youths (p < 0.05). The ST youths demonstrated better EF results than NW youths (p < 0.05). Conclusions: The ST 16-19-year-old youths demonstrated better EF than their OW and NW peers. The NW youths demonstrated better EF than their OW peers. There was a significant correlation between VO2peak and EF indicators in all groups of participants.
Collapse
|
31
|
Favieri F, Forte G, Casagrande M. The Executive Functions in Overweight and Obesity: A Systematic Review of Neuropsychological Cross-Sectional and Longitudinal Studies. Front Psychol 2019; 10:2126. [PMID: 31616340 PMCID: PMC6764464 DOI: 10.3389/fpsyg.2019.02126] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background: The increasing incidence of people affected by overweight or obesity is a significant health problem. The knowledge of the factors which influences the inappropriate eating behaviors causing excessive body fat is an essential goal for the research. Overweight and obesity are significant risk factors for many health diseases, such as cardiovascular problems, diabetes. Recently, many studies have focused on the relationship between body weight and cognitive processes. Objectives: This systematic review is aimed to investigate the existence and the nature of the relationship between excessive body weight (overweight/obesity) and executive functions, analyzing cross-sectional, and longitudinal studies in order to verify the evidence of a possible causality between these variables. Methods: The review was carried out according to the PRISMA-Statement, through systematic searches in the scientific databases PubMed, Medline, PsychInfo, and PsycArticles. The studies selected examined performance on executive tasks by participants with overweight or obesity, aged between 5 and 70 years. Studies examining eating disorders or obesity resulting from other medical problems were excluded. Furthermore, the results of studies using a cross-sectional design and those using a longitudinal one were separately investigated. Results: Sixty-three cross-sectional studies and twenty-eight longitudinal studies that met our inclusion and exclusion criteria were analyzed. The results confirmed the presence of a relation between executive functions and overweight/obesity, although the directionality of this relation was not clear; nor did any single executive function emerge as being more involved than others in this relation. Despite this, there was evidence of a reciprocal influence between executive functions and overweight/obesity. Conclusions: This systematic review underlines the presence of a relationship between executive functions and overweight/obesity. Moreover, it seems to suggest a bidirectional trend in this relationship that could be the cause of the failure of interventions for weight reduction. The results of this review highlight the importance of a theoretical model able to consider all the main variables of interest, with the aim to structuring integrated approaches to solve the overweight/obesity problems.
Collapse
Affiliation(s)
- Francesca Favieri
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Forte
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Casagrande
- Department of Dynamic and Clinical Psychology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
32
|
Farruggia MC, Small DM. Effects of adiposity and metabolic dysfunction on cognition: A review. Physiol Behav 2019; 208:112578. [PMID: 31194997 PMCID: PMC6625347 DOI: 10.1016/j.physbeh.2019.112578] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 12/31/2022]
Abstract
Obesity and metabolic dysfunction are both correlated with increased rates of cognitive decline. However, because these two conditions often co-occur, it remains unclear whether their cognitive consequences are independent. In this review, we carefully consider literature examining the effects of metabolic dysfunction and increased adiposity on cognition across the lifespan, including only well-controlled studies that attempt to dissociate their effects. We found a total of 36 studies, 17 examining metabolic dysfunction and 19 examining the effects of adiposity. We found evidence from the literature suggesting that increased adiposity and metabolic dysfunction may contribute to deficits in executive function, memory, and medial temporal lobe structures largely independent of one another. These deficits are thought to arise principally from physiological changes associated with inflammation, vascularization, and oxidative stress, among others. Such processes may result from excess adipose tissue and insulin resistance that occur independently and can further exacerbate when the two conditions co-occur. However, we also find it likely that impaired cognition plays a role in behavioral and lifestyle choices that lead to increased adiposity and metabolic dysfunction, which can then perpetuate and augment cognitive decline. We recommend additional prospective and longitudinal studies to examine whether impaired cognition is a cause and/or consequence of these factors.
Collapse
Affiliation(s)
- Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| | - Dana M Small
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA; Department of Psychology, Yale University, New Haven, CT, USA; fMEG Center, University of Tubingen, Tubingen, Germany.
| |
Collapse
|
33
|
Narimani M, Esmaeilzadeh S, Azevedo LB, Moradi A, Heidari B, Kashfi-Moghadam M. Association Between Weight Status and Executive Function in Young Adults. ACTA ACUST UNITED AC 2019; 55:medicina55070363. [PMID: 31295973 PMCID: PMC6681338 DOI: 10.3390/medicina55070363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023]
Abstract
Background and objectives: To explore the association between weight status and executive function in young adults. Materials and Methods: Ninety-seven young males (age 17–26 years) underwent adiposity and body composition measurements using body composition analyzer. Inhibitory control and working memory were measured using the Cambridge Neuropsychological Test Battery (CANTAB). Results: Multiple linear regression using both unadjusted and adjusted analyses revealed no association between adiposity and body composition variables with executive tasks, apart from a significant association between skeletal muscle mass (SMM) and mean reaction time on go trial (standardized B = -0.28; p = 0.02). Multivariate analysis of covariance (MANCOVA) revealed that underweight participants presented inferior working memory compared to their normal weight (p = 0.001) or overweight peers (p = 0.008). However, according to the percentage fat quartiles (Q) participants with the highest quartile (Q4) were inferior in inhibitory control than their peers with Q2 (p = 0.04), and participants with the lowest quartile (Q1) were inferior in working memory compared with their peers with Q2 (p = 0.01) or Q3 (p = 0.02). A worse inhibitory control was observed for participants with the highest fat/SMM (Q4) compared to participants in Q3 (p = 0.03), and in contrast worse working memory was observed for participants with the lowest fat/SMM (Q1) compared to participants in Q2 (p = 0.04) or Q3 (p = 0.009). Conclusions: Low adiposity is associated with worse working memory, whereas high adiposity is associated with worse inhibitory control. Therefore, our findings show that normal adiposity, but greater SMM may have a positive impact on executive function in young adults.
Collapse
Affiliation(s)
- Mohammad Narimani
- University of Mohaghegh Ardabili, Department of Psychology, Ardabil 5619911367, Iran.
| | - Samad Esmaeilzadeh
- University of Mohaghegh Ardabili, Department of Psychology, Ardabil 5619911367, Iran
| | - Liane B Azevedo
- School of Health and Social Care, Teesside University, Middlesbrough TS1 3BA, UK
| | - Akbar Moradi
- Islamic Azad University science and research Branch, Tehran 1477893855, Iran
| | - Behrouz Heidari
- University of Mohaghegh Ardabili, Department of Psychology, Ardabil 5619911367, Iran
| | | |
Collapse
|
34
|
Sanchez-Gistau V, Mariné R, Martorell L, Cabezas A, Algora MJ, Sole M, Labad J, Vilella E. Relationship between ANKK1 rs1800497 polymorphism, overweight and executive dysfunction in early psychosis. Schizophr Res 2019; 209:278-280. [PMID: 31103213 DOI: 10.1016/j.schres.2019.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Vanessa Sanchez-Gistau
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain.
| | - Rosa Mariné
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Angel Cabezas
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Maria José Algora
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Montse Sole
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Universitat Autonoma, I3PT and CIBERSAM, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| |
Collapse
|
35
|
Pelzer EA, Melzer C, Schönberger A, Hess M, Timmermann L, Eggers C, Tittgemeyer M. Axonal degeneration in Parkinson's disease - Basal ganglia circuitry and D2 receptor availability. Neuroimage Clin 2019; 23:101906. [PMID: 31254937 PMCID: PMC6603438 DOI: 10.1016/j.nicl.2019.101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 10/27/2022]
Abstract
Basal ganglia (BG) circuitry plays a crucial role in the control of movement. Degeneration of its pathways and imbalance of dopaminergic signalling goes along with movement disorders such as Parkinson's disease. In this study, we explore the interaction of degeneration in two BG pathways (the nigro-striatal and dentato-pallidal pathway) with D2 receptor signalling to elucidate an association to motor impairment and medication response. Included in the study were 24 parkinsonian patients [male, 62 years (± 9.3 SD)] compared to 24 healthy controls [male, 63 years (± 10.2 SD)]; each participant passed through three phases of the study (i) acquisition of metadata/clinical testing, (ii) genotyping and (iii) anatomical/diffusion MRI. We report a decline in nigro-striatal (p < .003) and dentato-pallidal (p < .0001) connectivity in the patients compared to controls, which is associated with increasing motor impairment (relating to nigro-striatal, r = -0.48; p < .001 and dentato-pallidal connectivity, r = -0.36; p = .035). Given, that variations of the ANKK1 Taq1 (rs 1,800,497) allele alters dopamine D2-dependent responses, all participants were genotyped respectively. By grouping patients (and controls) according to their ANKK1 genotype, we demonstrate a link between D2 receptor signalling and decline in connectivity in both investigated pathways for the A1- variant (nigro-striatal pathway: r = -0.53; p = .012, dentato-pallidal pathway: r = -0.62; p = .0012). In patients with the A1+ variant, we only found increased brain connectivity in the dentato-pallidal pathway (r = 0.71; p = .001) correlating with increasing motor impairment, suggesting a potentially compensatory function of the cerebellum. Related to medication response carriers of the A1+ variant had a better drug effect associated with stronger brain connectivity in the nigro-striatal pathway (r = 0.54; p < .02); the A1- group had a good medication response although nigro-striatal connectivity was diminished (r = -0.38; p < .05); these results underscore differences in receptor availability between both groups in the nigro-striatal pathway. No effect onto medication response was found in the dentato-pallidal pathway (p > .05). Interplay between basal ganglia connectivity and D2 receptor availability influence the clinical presentation and medication response of parkinsonian patients. Furthermore, while current models of basal-ganglia function emphasize that balanced activity in the direct and indirect pathways is required for normal movement, our data highlight a role of the cerebellum in compensating for physiological imbalances in this respect.
Collapse
Affiliation(s)
- Esther Annegret Pelzer
- Max-Planck-Institute for Metabolism Research Cologne, Germany, Gleueler Str. 50, 50931 Cologne, Germany.
| | - Corina Melzer
- Max-Planck-Institute for Metabolism Research Cologne, Germany, Gleueler Str. 50, 50931 Cologne, Germany
| | - Anna Schönberger
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Martin Hess
- Max-Planck-Institute for Metabolism Research Cologne, Germany, Gleueler Str. 50, 50931 Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Neurology, University Hospital Marburg, Baldingerstr., 35039 Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Neurology, University Hospital Marburg, Baldingerstr., 35039 Marburg, Germany
| | - Marc Tittgemeyer
- Max-Planck-Institute for Metabolism Research Cologne, Germany, Gleueler Str. 50, 50931 Cologne, Germany; Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
36
|
Bieliński M, Lesiewska N, Junik R, Kamińska A, Tretyn A, Borkowska A. Dopaminergic Genes Polymorphisms and Prefrontal Cortex Efficiency Among Obese People - Whether Gender is a Differentiating Factor? Curr Mol Med 2019; 19:405-418. [PMID: 31032750 DOI: 10.2174/1566524019666190424143653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is a chronic condition associated with poorer cognitive functioning. Wisconsin Card Sorting Test (WCST) is a useful tool for evaluating executive functions. In this study, we assessed the association between dopaminergic gene polymorphisms: DAT1 (SLC6A3), COMTVal158Met, DRD4 (48-bp variable number of tandem repeats - VNTR) and WCST parameters to investigate the functions of the frontal lobes in obese individuals. OBJECTIVE To find the significant correlations between polymorphisms of DAT1, COMTVal158Met, DRD4 and executive functions in obese subjects. METHODS The analysis of the frequency of individual alleles was performed in 248 obese patients (179 women, 69 men). Evaluation of the prefrontal cortex function (operating memory and executive functions) was measured with the Wisconsin Card Sorting Test (WCST). Separate analyzes were performed in age subgroups to determine different activities and regulation of genes in younger and older participants. RESULTS Scores of WCST parameters were different in the subgroups of women and men and in the age subgroups. Regarding the COMT gene, patients with A/A and G/A polymorphisms showed significantly better WCST results in WCST_P, WCST_CC and WCST_1st. Regarding DAT1 men with L/L and L/S made less non-perseverative errors, which was statistically significant. In DRD4, significantly better WCST_1st results were found only in older women with S allele. CONCLUSION Obtained results indicate the involvement of dopaminergic transmission in the regulation of prefrontal cortex function. Data analysis indicates that prefrontal cortex function may ensue, from different elements such as genetic factors, metabolic aspects of obesity, and hormonal activity (estrogen).
Collapse
Affiliation(s)
- Maciej Bieliński
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Natalia Lesiewska
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Roman Junik
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Anna Kamińska
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Andrzej Tretyn
- Department of Biotechnology, Nicolaus Copernicus University in Torun, Poland
| | - Alina Borkowska
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
37
|
Klaus K, Butler K, Curtis F, Bridle C, Pennington K. The effect of ANKK1 Taq1A and DRD2 C957T polymorphisms on executive function: A systematic review and meta-analysis. Neurosci Biobehav Rev 2019; 100:224-236. [PMID: 30836122 DOI: 10.1016/j.neubiorev.2019.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022]
Abstract
Research in healthy adults suggests that C957T polymorphism of the dopamine D2 receptor encoding DRD2 and the Taq1A polymorphism of the neighbouring gene ankyrin repeat and kinase domain containing 1 (ANKK1) alter dopaminergic signalling and may influence prefrontally-mediated executive functions. A systematic review and meta-analysis was carried out on the evidence for the association of DRD2 C957T and ANKK1 Taq1A polymorphisms in performance on tasks relating to the three core domains of executive function: working memory, response inhibition and cognitive flexibility in healthy adults. CINAHL, MEDLINE, PsycARTICLES and PsychINFO databases were searched for predefined key search terms associated with the two polymorphisms and executive function. Studies were included if they investigated a healthy adult population with the mean age of 18-65 years, no psychiatric or neurological disorder and only the healthy adult arm were included in studies with any case-control design. Data from 17 independent studies were included in meta-analysis, separated by the Taq1A and C957T polymorphisms and by executive function tests: working memory (Taq1A, 6 samples, n = 1270; C957 T, 6 samples, n = 977), cognitive flexibility (C957 T, 3 samples, n = 620), and response inhibition (C957 T, 3 samples, n = 598). The meta-analyses did not establish significant associations between these gene polymorphisms of interest and any of the executive function domains. Theoretical implications and methodological considerations of these findings are discussed.
Collapse
Affiliation(s)
- Kristel Klaus
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - Kevin Butler
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - Ffion Curtis
- Lincoln Institute for Health, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Chris Bridle
- Lincoln Institute for Health, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Kyla Pennington
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK.
| |
Collapse
|
38
|
Rucker P, Ikuta T. Pituitary Gland Functional Connectivity and BMI. Front Neurosci 2019; 13:120. [PMID: 30881281 PMCID: PMC6405688 DOI: 10.3389/fnins.2019.00120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
The pituitary gland (PG) influences body weight through hormonal releases; however, the relation between body weight and PG’s co-activities with other brain regions remains unclear. Here, we aimed to identify (1) the functional connectivity of the PG and (2) PG functional connectivity associated with body mass index by examining resting state functional magnetic resonance imaging data. Using enhanced Nathan Kline Institute-Rockland Sample, PG functional connectivity of 494 individuals was analyzed to assess in voxel-wise fashion. A negative association was found between BMI and PG functional connectivity with the orbitofrontal cortex, hippocampus, putamen, and temporal lobe. Our results show PG dysconnectivity to these regions is associated with higher BMI and implicate that the connectivity between these dopaminergic regions and PG may be associated with body weight maintenance through feeding behavior and growth.
Collapse
Affiliation(s)
- Paige Rucker
- School of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
39
|
Caldú X, Ottino-González J, Sánchez-Garre C, Hernan I, Tor E, Sender-Palacios MJ, Dreher JC, Garolera M, Jurado MÁ. Effect of the catechol-O-methyltransferase Val 158 Met polymorphism on theory of mind in obesity. EUROPEAN EATING DISORDERS REVIEW 2019; 27:401-409. [PMID: 30761671 DOI: 10.1002/erv.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Obesity is often accompanied with psychosocial adjustment problems, such as difficulties in social interactions and social withdrawal. A key aspect of social cognition is theory of mind, which allows inferring mental states, feelings, motivations, and beliefs of others and to use this information to predict their future behaviour. Theory of mind is highly dependent on prefrontal dopaminergic neurotransmission, which is regulated by catechol-O-methyltransferase (COMT) activity. We aimed at determining whether theory of mind is altered in obesity and if this ability is modulated by COMT. Fifty patients with obesity and 47 normal-weight individuals underwent the Reading the Mind in the Eyes Test, the Wisconsin Card Sorting Test, and the Vocabulary subscale of the Wechsler Adult Intelligence Scale. The genotype for the COMT Val 158 Met functional polymorphism was determined for all subjects. Patients with obesity obtained significantly lower scores in the negative items of the Reading the Mind in the Eyes Test than normal-weight subjects. Further, an interaction effect was observed between group and COMT genotype. Specifically, the presence of the Met allele was associated to a better identification of negative mental states only in patients with obesity. Our results indicate that obesity is accompanied with difficulties in theory of mind and that this ability is influenced by the COMT genotype.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jonatan Ottino-González
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Consuelo Sánchez-Garre
- Unitat d'Endocrinologia Pediàtrica, Departament de Pediatria, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Imma Hernan
- Unitat de Genètica Molecular, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Encarnació Tor
- Centre d'atenció primària Terrassa Nord, Consorci Sanitari de Terrassa, Terrassa, Spain
| | | | - Jean-Claude Dreher
- Neuroeconomics, Reward and Decision Making Team, Cognitive Neuroscience Centre, CNRS UMR 5229, Bron, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maite Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
40
|
Ottino-González J, Jurado MA, García-García I, Segura B, Marqués-Iturria I, Sender-Palacios MJ, Tor E, Prats-Soteras X, Caldú X, Junqué C, Pasternak O, Garolera M. Allostatic load and disordered white matter microstructure in overweight adults. Sci Rep 2018; 8:15898. [PMID: 30367110 PMCID: PMC6203765 DOI: 10.1038/s41598-018-34219-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Overweight and stress are both related to brain structural abnormalities. The allostatic load model states that frequent disruption of homeostasis is inherently linked to oxidative stress and inflammatory responses that in turn can damage the brain. However, the effects of the allostatic load on the central nervous system remain largely unknown. The current study aimed to assess the relationship between the allostatic load and the composition of whole-brain white matter tracts in overweight subjects. Additionally, we have also tested for grey matter changes regarding allostatic load increase. Thirty-one overweight-to-obese adults and 21 lean controls participated in the study. Our results showed that overweight participants presented higher allostatic load indexes. Such increases correlated with lower fractional anisotropy in the inferior fronto-occipital fasciculi and the right anterior corona radiata, as well as with grey matter reductions in the left precentral gyrus, the left lateral occipital gyrus, and the right pars opercularis. These results suggest that an otherwise healthy overweight status is linked to long-term biological changes potentially harmful to the brain.
Collapse
Affiliation(s)
- J Ottino-González
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - M A Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain.
| | - I García-García
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - B Segura
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - I Marqués-Iturria
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
| | - M J Sender-Palacios
- CAP Terrassa Nord, Consorci Sanitari de Terrassa, Barcelona, Spain
- Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Barcelona, Spain
| | - E Tor
- CAP Terrassa Nord, Consorci Sanitari de Terrassa, Barcelona, Spain
- Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Barcelona, Spain
| | - X Prats-Soteras
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - X Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - C Junqué
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - O Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Barcelona, Spain
- Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Barcelona, Spain
| |
Collapse
|
41
|
Hanć T, Dmitrzak-Węglarz M, Borkowska A, Wolańczyk T, Pytlińska N, Rybakowski F, Słopień R, Słopień A. Overweight in Boys With ADHD Is Related to Candidate Genes and Not to Deficits in Cognitive Functions. J Atten Disord 2018; 22:1158-1172. [PMID: 27815333 DOI: 10.1177/1087054716676364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of the study was to assess the relationship of overweight, the polymorphisms of selected candidate genes, and deficits in the executive functions among children with ADHD. METHOD We examined 109 boys with ADHD aged between 7 and 17 years. The study indicated variants of 14 polymorphisms in eight candidate genes. We applied seven neuropsychological tests to evaluate the executive functions. Overweight was diagnosed on the basis of the guidelines of the International Obesity Task Force. RESULTS Analyses revealed significant association between DRD4 rs1800955, SNAP25 rs363039 and rs363043, 5HTR2A rs17288723, and overweight in boys with ADHD. There were no significant differences in the level of neuropsychological test results between patients with overweight and without overweight. CONCLUSION Overweight in boys with ADHD is associated with polymorphisms in three candidate genes: DRD4, SNAP25, and 5HTR2A, but not through conditioning deficits in cognitive functions.
Collapse
Affiliation(s)
- Tomasz Hanć
- 1 Adam Mickiewicz University, Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Feistauer V, Vitolo MR, Campagnolo PDB, Mattevi VS, Almeida S. Evaluation of association of DRD2 TaqIA and -141C InsDel polymorphisms with food intake and anthropometric data in children at the first stages of development. Genet Mol Biol 2018; 41:562-569. [PMID: 30044466 PMCID: PMC6136368 DOI: 10.1590/1678-4685-gmb-2017-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/09/2018] [Indexed: 01/17/2023] Open
Abstract
The reward sensation after food intake may be different between individuals and variants in genes related to the dopaminergic system may indicate a different response in people exposed to the same environmental factors. This study investigated the association of TaqIA (rs1800497) and -141C InsDel (rs1799732) variants in DRD2/ANKK1 gene with food intake and adiposity parameters in a cohort of children. The sample consisted of 270 children followed until 7 to 8 years old. DNA was extracted from blood and polymorphisms were detected by PCR-RFLP analysis. Food intake and nutritional status were compared among individuals with different SNP genotypes. Children carrying the A1 allele (TaqIA) had higher energy of lipid dense foods (LDF) when compared with A2/A2 homozygous children at 7 to 8 years old (GLM p=0.004; Mann Whitney p=0.005). No association was detected with -141C Ins/Del polymorphism. To our knowledge, this is the first association study of the DRD2 TaqIA and -141C Ins/Del polymorphism with food intake and anthropometric parameters in children. DRD2 TaqIA polymorphism has been associated with a reduction in D2 dopamine receptor availability. Therefore, the differences observed in LDF intake in our sample may occur as an effort to compensate the hypodopaminergic functioning.
Collapse
Affiliation(s)
- Vanessa Feistauer
- Laboratório de Biologia Molecular, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia R Vitolo
- Departamento de Saúde Coletiva, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Paula D B Campagnolo
- Curso de Nutrição, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil
| | - Vanessa S Mattevi
- Laboratório de Biologia Molecular, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Silvana Almeida
- Laboratório de Biologia Molecular, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
McDonell KE, van Wouwe NC, Harrison MB, Wylie SA, Claassen DO. Taq1A polymorphism and medication effects on inhibitory action control in Parkinson disease. Brain Behav 2018; 8:e01008. [PMID: 29856137 PMCID: PMC6043698 DOI: 10.1002/brb3.1008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/06/2018] [Accepted: 04/15/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dopamine therapy in Parkinson disease (PD) can have differential effects on inhibitory action control, or the ability to inhibit reflexive or impulsive actions. Dopamine agonist (DAAg) medications, which preferentially target D2 and D3 receptors, can either improve or worsen control of impulsive actions in patients with PD. We have reported that the direction of this effect depends on baseline levels of performance on inhibitory control tasks. This observation suggests that there may exist certain biologic determinants that contribute to these patient-specific differences. We hypothesized that one important factor might be functional polymorphisms in D2-like receptor genes. AIM The goal of this study was to determine whether the direction of DAAg effects on inhibitory control depends on functional polymorphisms in the DRD2 and DRD3 genes. METHODS Twenty-eight patients with PD were genotyped for known functional polymorphisms in DRD2 (rs6277 and rs1800497) and DRD3 (rs6280) receptors. These patients then completed the Simon conflict task both on and off DAAg therapy in a counterbalanced manner. RESULTS We found that patients with the rs1800497 Taq1A (A1) polymorphism (A1/A1 or A1/A2: 11 subjects) showed improved proficiency to suppress impulsive actions when on DAAg; conversely, patients with the A2/A2 allele (14 patients) became less proficient at suppressing incorrect response information on DAAg therapy (Group × Medication, F(1, 23) = 5.65, p < 0.05). Polymorphisms in rs6277 and rs6280 were not associated with a differential medication response. CONCLUSION These results suggest that certain DRD polymorphisms may determine the direction of DAAg effects on critical cognitive control processes impaired in PD. Our findings have implications for understanding pharmacogenomics interactions on a larger scale and the role these may play in the wide variability of treatment effects seen in the PD population.
Collapse
Affiliation(s)
| | | | | | - Scott A. Wylie
- Department of NeurosurgeryUniversity of LouisvilleLouisvilleKYUnited States
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennessee
| |
Collapse
|
44
|
Dassen FCM, Houben K, Allom V, Jansen A. Self-regulation and obesity: the role of executive function and delay discounting in the prediction of weight loss. J Behav Med 2018; 41:806-818. [PMID: 29802535 PMCID: PMC6209053 DOI: 10.1007/s10865-018-9940-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Obesity rates are rising worldwide. Executive function and delay discounting have been hypothesized to play important roles in the self-regulation of behavior, and may explain variance in weight loss treatment success. First, we compared individuals with obesity (n = 82) to healthy weight controls (n = 71) on behavioral and self-report measures of executive function (working memory, inhibition and shifting) and delay discounting. Secondly, the individuals with obesity took part in a multidisciplinary weight loss program and we examined whether executive function and delay discounting predicted weight change. Individuals with obesity displayed weaker general and food-specific inhibition, and weaker self-reported executive function. Better behavioral working memory and better self-reported inhibition skills in daily life were predictive of greater weight loss. As findings are correlational, future studies should investigate the causal relationship between executive function and weight loss, and test whether intervening on executive function will lead to better prevention and treatment of obesity.
Collapse
Affiliation(s)
- Fania C M Dassen
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Katrijn Houben
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Vanessa Allom
- School of Psychology and Speech Pathology, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Anita Jansen
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
45
|
Hanć T, Cortese S. Attention deficit/hyperactivity-disorder and obesity: A review and model of current hypotheses explaining their comorbidity. Neurosci Biobehav Rev 2018; 92:16-28. [PMID: 29772309 DOI: 10.1016/j.neubiorev.2018.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Available meta-analyses point to a significant association between attention-deficit/hyperactivity disorder (ADHD) and obesity. The possible mechanisms underlying this relationship are unclear. Here, we overview the studies aimed at identifying the factors contributing to the comorbidity between ADHD and obesity, including genetic factors, fetal programming, executive dysfunctions, psychosocial stress, factors directly related to energy balance, and sleep patterns alterations. The bulk of current research has focused on reduced physical activity and abnormal eating patterns as possible causes of weight gain in individuals with ADHD. Further research is needed to explore the specific role of executive dysfunctions. None of the available published studies have evaluated physiological mechanisms such as hormonal and metabolic disorders or inappropriate neurobiological regulation of appetite. Research exploring the genetic basis for the coexistence of ADHD and obesity and epigenetic mechanisms, with particular emphasis on stress, both pre- and postnatal, seems particularly promising. Here, we propose a biopsychosocial model to integrate current findings and move the field forward to gain insight into the ADHD-obesity relationship.
Collapse
Affiliation(s)
- Tomasz Hanć
- Department of Human Biological Development, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, Ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Samuele Cortese
- Center for Innovation in Mental Health, Academic Unit of Psychology, University of Southampton, SO17 1BJ, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, SO17 1BJ, UK; Solent NHS Trust, Southampton, SO19 8BR, UK; New York University Child Study Center, New York, NY, 10016, USA; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
46
|
Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev 2018; 84:225-244. [DOI: 10.1016/j.neubiorev.2017.11.020] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 11/30/2017] [Indexed: 01/18/2023]
|
47
|
Ottino-González J, Jurado MA, García-García I, Segura B, Marqués-Iturria I, Sender-Palacios MJ, Tor E, Prats-Soteras X, Caldú X, Junqué C, Garolera M. Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status. Front Hum Neurosci 2017; 11:639. [PMID: 29375342 PMCID: PMC5770747 DOI: 10.3389/fnhum.2017.00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Objective: Overweight (body mass index or BMI ≥ 25 kg/m2) and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects. Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin). Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01) with cortical thickness values depending on body-weight status. Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - María A Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Bàrbara Segura
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Idoia Marqués-Iturria
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
| | - María J Sender-Palacios
- CAP Terrassa Nord, Consorci Sanitari de Terrassa, Barcelona, Spain.,Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Encarnació Tor
- CAP Terrassa Nord, Consorci Sanitari de Terrassa, Barcelona, Spain.,Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Xavier Prats-Soteras
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carme Junqué
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maite Garolera
- Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Terrassa, Spain.,Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Barcelona, Spain
| |
Collapse
|
48
|
Genetics and Antipsychotic Response in Schizophrenia: an Update. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Eneva KT, Arlt JM, Yiu A, Murray SM, Chen EY. Assessment of executive functioning in binge-eating disorder independent of weight status. Int J Eat Disord 2017; 50. [PMID: 28644541 PMCID: PMC5672821 DOI: 10.1002/eat.22738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Executive functioning (EF) problems may serve as vulnerability or maintenance factors for Binge-Eating Disorder (BED). However, it is unclear if EF problems observed in BED are related to overweight status or BED status. The current study extends this literature by examining EF in overweight and normal-weight BED compared to weight-matched controls. METHOD Participants were normal-weight women with BED (n = 23), overweight BED (n = 32), overweight healthy controls (n = 48), and normal-weight healthy controls (n = 29). The EF battery utilized tests from the National Institutes of Health (NIH) Toolbox and Delis-Kaplan Executive Function System (D-KEFS). RESULTS After controlling for years of education and minority status, overweight individuals performed more poorly than normal-weight individuals on a task of cognitive flexibility requiring generativity (p < .01), and speed on psychomotor performance tasks (p = .01). Normal-weight and overweight BED performed worse on working memory tasks compared to controls (p = .04). Unexpectedly, normal-weight BED individuals out-performed all other groups on an inhibitory control task (p < .01). No significant differences were found between the four groups on tasks of planning. DISCUSSION Regardless of weight status, BED is associated with working memory problems. Replication of the finding that normal-weight BED is associated with enhanced inhibitory control is needed.
Collapse
Affiliation(s)
- Kalina T. Eneva
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Jean M. Arlt
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Angelina Yiu
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Susan M. Murray
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Eunice Y. Chen
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| |
Collapse
|
50
|
Sun X, Luquet S, Small DM. DRD2: Bridging the Genome and Ingestive Behavior. Trends Cogn Sci 2017; 21:372-384. [PMID: 28372879 DOI: 10.1016/j.tics.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
Abstract
Recent work highlights the importance of genetic variants that influence brain structure and function in conferring risk for polygenic obesity. The neurotransmitter dopamine (DA) has a pivotal role in energy balance by integrating metabolic signals with circuits supporting cognitive, perceptual, and appetitive functions that guide feeding. It has also been established that diet and obesity alter DA signaling, leading to compulsive-like feeding and neurocognitive impairments. This raises the possibility that genetic variants that influence DA signaling and adaptation confer risk for overeating and cognitive decline. Here, we consider the role of two common gene variants, FTO and TaqIA rs1800497 in driving gene × environment interactions promoting obesity, metabolic dysfunction, and cognitive change via their influence on DA receptor subtype 2 (DRD2) signaling.
Collapse
Affiliation(s)
- Xue Sun
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA CNRS UMR 8251, Paris, France; Modern Diet and Physiology Research Center, New Haven, CT, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA; The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|