1
|
Ailloud F, Gottschall W, Suerbaum S. Methylome evolution suggests lineage-dependent selection in the gastric pathogen Helicobacter pylori. Commun Biol 2023; 6:839. [PMID: 37573385 PMCID: PMC10423294 DOI: 10.1038/s42003-023-05218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The bacterial pathogen Helicobacter pylori, the leading cause of gastric cancer, is genetically highly diverse and harbours a large and variable portfolio of restriction-modification systems. Our understanding of the evolution and function of DNA methylation in bacteria is limited. Here, we performed a comprehensive analysis of the methylome diversity in H. pylori, using a dataset of 541 genomes that included all known phylogeographic populations. The frequency of 96 methyltransferases and the abundance of their cognate recognition sequences were strongly influenced by phylogeographic structure and were inter-correlated, positively or negatively, for 20% of type II methyltransferases. Low density motifs were more likely to be affected by natural selection, as reflected by higher genomic instability and compositional bias. Importantly, direct correlation implied that methylation patterns can be actively enriched by positive selection and suggests that specific sites have important functions in methylation-dependent phenotypes. Finally, we identified lineage-specific selective pressures modulating the contraction and expansion of the motif ACGT, revealing that the genetic load of methylation could be dependent on local ecological factors. Taken together, natural selection may shape both the abundance and distribution of methyltransferases and their specific recognition sequences, likely permitting a fine-tuning of genome-encoded functions not achievable by genetic variation alone.
Collapse
Affiliation(s)
- Florent Ailloud
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Wilhelm Gottschall
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sebastian Suerbaum
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
2
|
Pisciotta A, Sampino AM, Presentato A, Galardini M, Manteca A, Alduina R. The DNA cytosine methylome revealed two methylation motifs in the upstream regions of genes related to morphological and physiological differentiation in Streptomyces coelicolor A(3)2 M145. Sci Rep 2023; 13:7038. [PMID: 37120673 PMCID: PMC10148868 DOI: 10.1038/s41598-023-34075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
DNA methylation is an epigenetic modification detected in both prokaryotic and eukaryotic genomic DNAs. In bacteria, the importance of 5-methylcytosine (m5C) in gene expression has been less investigated than in eukaryotic systems. Through dot-blot analysis employing m5C antibodies against chromosomal DNA, we have previously demonstrated that m5C influences the differentiation of Streptomyces coelicolor A(3)2 M145 in solid sporulating and liquid non-sporulating complex media. Here, we mapped the methylated cytosines of the M145 strain growing in the defined Maltose Glutamate (MG) liquid medium. Sequencing of the M145 genome after bisulfite treatment (BS-sequencing) evidenced 3360 methylated cytosines and the two methylation motifs, GGCmCGG and GCCmCG, in the upstream regions of 321 genes. Besides, the role of cytosine methylation was investigated using the hypo-methylating agent 5'-aza-2'-deoxycytidine (5-aza-dC) in S. coelicolor cultures, demonstrating that m5C affects both growth and antibiotic biosynthesis. Finally, quantitative reverse-transcription polymerase-chain-reaction (RT-qPCR) analysis of genes containing the methylation motifs in the upstream regions showed that 5-aza-dC treatment influenced their transcriptional levels and those of the regulatory genes for two antibiotics. To the best of our knowledge, this is the first study that reports the cytosine methylome of S. coelicolor M145, supporting the crucial role ascribed to cytosine methylation in controlling bacterial gene expression.
Collapse
Affiliation(s)
- Annalisa Pisciotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessia Maria Sampino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Marco Galardini
- Department of Biology, University of Florence, Florence, Italy
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
3
|
Non-growth inhibitory doses of dimethyl sulfoxide alter gene expression and epigenetic pattern of bacteria. Appl Microbiol Biotechnol 2022; 107:299-312. [DOI: 10.1007/s00253-022-12296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
|
4
|
Nasrullah, Hussain A, Ahmed S, Rasool M, Shah AJ. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022; 13:1666-1685. [PMID: 34986742 PMCID: PMC8805842 DOI: 10.1080/21655979.2021.2014387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Nasrullah
- Center for Advanced Studies in Vaccinology & Biotechnology (Casvab), University of Baluchistan, Quetta- Pakistan. E-mails:
| | - Abrar Hussain
- Department of Biotechnology, Faculty of Life Sciences, Buitems, Quetta-Pakistan. E-mails:
| | - Sagheer Ahmed
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan. E-mails:
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mails:
| | - Abdul Jabbar Shah
- Department of Pharmaceutical Sciences, Comsats University, Abbottabad. E-mails:
| |
Collapse
|
5
|
DNA Methylation in Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:21-43. [DOI: 10.1007/978-3-031-11454-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Meng B, Epp N, Wijaya W, Mrázek J, Hoover TR. Methylation Motifs in Promoter Sequences May Contribute to the Maintenance of a Conserved m5C Methyltransferase in Helicobacter pylori. Microorganisms 2021; 9:microorganisms9122474. [PMID: 34946076 PMCID: PMC8706393 DOI: 10.3390/microorganisms9122474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylomes of Helicobacter pylori strains are complex due to the large number of DNA methyltransferases (MTases) they possess. H. pylori J99 M.Hpy99III is a 5-methylcytosine (m5C) MTase that converts GCGC motifs to Gm5CGC. Homologs of M.Hpy99III are found in essentially all H. pylori strains. Most of these homologs are orphan MTases that lack a cognate restriction endonuclease, and their retention in H. pylori strains suggest they have roles in gene regulation. To address this hypothesis, green fluorescent protein (GFP) reporter genes were constructed with six putative promoters that had a GCGC motif in the extended −10 region, and the expression of the reporter genes was compared in wild-type H. pylori G27 and a mutant lacking the M.Hpy99III homolog (M.HpyGIII). The expression of three of the GFP reporter genes was decreased significantly in the mutant lacking M.HpyGIII. In addition, the growth rate of the H. pylori G27 mutant lacking M.HpyGIII was reduced markedly compared to that of the wild type. These findings suggest that the methylation of the GCGC motif in many H. pylori GCGC-containing promoters is required for the robust expression of genes controlled by these promoters, which may account for the universal retention of M.Hpy99III homologs in H. pylori strains.
Collapse
Affiliation(s)
- Bowen Meng
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
| | - Naomi Epp
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
| | - Winsen Wijaya
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
| | - Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
7
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
8
|
Militello KT, Finnerty-Haggerty L, Kambhampati O, Huss R, Knapp R. DNA cytosine methyltransferase enhances viability during prolonged stationary phase in Escherichia coli. FEMS Microbiol Lett 2021; 367:5921177. [PMID: 33045036 DOI: 10.1093/femsle/fnaa166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
In Escherichia coli, DNA cytosine methyltransferase (Dcm) methylates the second cytosine in the sequence 5'CCWGG3' generating 5-methylcytosine. Dcm is not associated with a cognate restriction enzyme, suggesting Dcm impacts facets of bacterial physiology outside of restriction-modification systems. Other than gene expression changes, there are few phenotypes that have been identified in strains with natural or engineered Dcm loss, and thus Dcm function has remained an enigma. Herein, we demonstrate that Dcm does not impact bacterial growth under optimal and selected stress conditions. However, Dcm does impact viability in long-term stationary phase competition experiments. Dcm+ cells outcompete cells lacking dcm under different conditions. Dcm knockout cells have more RpoS-dependent HPII catalase activity than wild-type cells. Thus, the impact of Dcm on stationary phase may involve changes in RpoS activity. Overall, our data reveal a new role for Dcm during long-term stationary phase.
Collapse
Affiliation(s)
- Kevin T Militello
- Biology Department, State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
| | - Lara Finnerty-Haggerty
- Biology Department, State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
| | - Ooha Kambhampati
- Biology Department, State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
| | - Rebecca Huss
- Biology Department, State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
| | - Rachel Knapp
- Biology Department, State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
| |
Collapse
|
9
|
Payelleville A, Brillard J. Novel Identification of Bacterial Epigenetic Regulations Would Benefit From a Better Exploitation of Methylomic Data. Front Microbiol 2021; 12:685670. [PMID: 34054792 PMCID: PMC8160106 DOI: 10.3389/fmicb.2021.685670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation can be part of epigenetic mechanisms, leading to cellular subpopulations with heterogeneous phenotypes. While prokaryotic phenotypic heterogeneity is of critical importance for a successful infection by several major pathogens, the exact mechanisms involved in this phenomenon remain unknown in many cases. Powerful sequencing tools have been developed to allow the detection of the DNA methylated bases at the genome level, and they have recently been extensively applied on numerous bacterial species. Some of these tools are increasingly used for metagenomics analysis but only a limited amount of the available methylomic data is currently being exploited. Because newly developed tools now allow the detection of subpopulations differing in their genome methylation patterns, it is time to emphasize future strategies based on a more extensive use of methylomic data. This will ultimately help to discover new epigenetic gene regulations involved in bacterial phenotypic heterogeneity, including during host-pathogen interactions.
Collapse
Affiliation(s)
- Amaury Payelleville
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France.,Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
10
|
Promiscuous DNA cleavage by HpyAII endonuclease is modulated by the HNH catalytic residues. Biosci Rep 2020; 40:226299. [PMID: 32880391 PMCID: PMC7494987 DOI: 10.1042/bsr20201633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H. pylori codes for an unusually large number of restriction-modification (R-M) systems and several of them are strain-specific and phase-variable. HpyAII is a novel Type IIs phase-variable restriction endonuclease present in 26695 strain of H. pylori. We show that HpyAII prefers two-site substrates over one-site substrates for maximal cleavage activity. HpyAII is less stringent in metal ion requirement and shows higher cleavage activity with Ni2+ over Mg2+. Mutational analysis of the putative residues of the HNH motif of HpyAII confirms that the protein has an active HNH site for the cleavage of DNA. However, mutation of the first Histidine residue of the HNH motif to Alanine does not abolish the enzymatic activity, but instead causes loss of fidelity compared with wildtype HpyAII. Previous studies have shown that mutation of the first Histidine residue of the HNH motif of all other known HNH motif motif-containing enzymes completely abolishes enzymatic activity. We found, in the case of HpyAII, mutation of an active site residue leads to the loss of endonuclease fidelity. The present study provides further insights into the evolution of restriction enzymes.
Collapse
|
11
|
Yano H, Alam MZ, Rimbara E, Shibata TF, Fukuyo M, Furuta Y, Nishiyama T, Shigenobu S, Hasebe M, Toyoda A, Suzuki Y, Sugano S, Shibayama K, Kobayashi I. Networking and Specificity-Changing DNA Methyltransferases in Helicobacter pylori. Front Microbiol 2020; 11:1628. [PMID: 32765461 PMCID: PMC7379913 DOI: 10.3389/fmicb.2020.01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic DNA base methylation plays important roles in gene expression regulation. We here describe a gene expression regulation network consisting of many DNA methyltransferases each frequently changing its target sequence-specificity. Our object Helicobacter pylori, a bacterium responsible for most incidence of stomach cancer, carries a large and variable repertoire of sequence-specific DNA methyltransferases. By creating a dozen of single-gene knockout strains for the methyltransferases, we revealed that they form a network controlling methylome, transcriptome and adaptive phenotype sets. The methyltransferases interact with each other in a hierarchical way, sometimes regulated positively by one methyltransferase but negatively with another. Motility, oxidative stress tolerance and DNA damage repair are likewise regulated by multiple methyltransferases. Their regulation sometimes involves translation start and stop codons suggesting coupling of methylation, transcription and translation. The methyltransferases frequently change their sequence-specificity through gene conversion of their target recognition domain and switch their target sets to remodel the network. The emerging picture of a metamorphosing gene regulation network, or firework, consisting of epigenetic systems ever-changing their specificity in search for adaptation, provides a new paradigm in understanding global gene regulation and adaptive evolution.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Md Zobaidul Alam
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Emiko Rimbara
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | | | | | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Mitsuyasu Hasebe
- National Institute for Basic Biology (NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Diseases, School of Medicine, Kyorin University, Mitaka, Japan.,Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
12
|
Kumar S, Karmakar BC, Nagarajan D, Mukhopadhyay AK, Morgan RD, Rao DN. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res 2019; 46:3429-3445. [PMID: 29481677 PMCID: PMC5909468 DOI: 10.1093/nar/gky126] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Many bacterial genomes exclusively display an N4-methyl cytosine base (m4C), whose physiological significance is not yet clear. Helicobacter pylori is a carcinogenic bacterium and the leading cause of gastric cancer in humans. Helicobacter pylori strain 26695 harbors a single m4C cytosine methyltransferase, M2.HpyAII which recognizes 5′ TCTTC 3′ sequence and methylates the first cytosine residue. To understand the role of m4C modification, M2.hpyAII deletion strain was constructed. Deletion strain displayed lower adherence to host AGS cells and reduced potential to induce inflammation and apoptosis. M2.hpyAII gene deletion strain exhibited reduced capacity for natural transformation, which was rescued in the complemented strain carrying an active copy of M2.hpyAII gene in the genome. Genome-wide gene expression and proteomic analysis were carried out to discern the possible reasons behind the altered phenotype of the M2.hpyAII gene deletion strain. Upon the loss of m4C modification a total of 102 genes belonging to virulence, ribosome assembly and cellular components were differentially expressed. The present study adds a functional role for the presence of m4C modification in H. pylori and provides the first evidence that m4C signal acts as a global epigenetic regulator in H. pylori.
Collapse
Affiliation(s)
- Sumith Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bipul C Karmakar
- Division of Bacteriology, National Institute for Cholera and Enteric Diseases, Kolkata 700010, India
| | - Deepesh Nagarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute for Cholera and Enteric Diseases, Kolkata 700010, India
| | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Estibariz I, Overmann A, Ailloud F, Krebes J, Josenhans C, Suerbaum S. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res 2019; 47:2336-2348. [PMID: 30624738 PMCID: PMC6412003 DOI: 10.1093/nar/gky1307] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori encodes a large number of restriction-modification (R-M) systems despite its small genome. R-M systems have been described as 'primitive immune systems' in bacteria, but the role of methylation in bacterial gene regulation and other processes is increasingly accepted. Every H. pylori strain harbours a unique set of R-M systems resulting in a highly diverse methylome. We identified a highly conserved GCGC-specific m5C MTase (JHP1050) that was predicted to be active in all of 459 H. pylori genome sequences analyzed. Transcriptome analysis of two H. pylori strains and their respective MTase mutants showed that inactivation of the MTase led to changes in the expression of 225 genes in strain J99, and 29 genes in strain BCM-300. Ten genes were differentially expressed in both mutated strains. Combining bioinformatic analysis and site-directed mutagenesis, we demonstrated that motifs overlapping the promoter influence the expression of genes directly, while methylation of other motifs might cause secondary effects. Thus, m5C methylation modifies the transcription of multiple genes, affecting important phenotypic traits that include adherence to host cells, natural competence for DNA uptake, bacterial cell shape, and susceptibility to copper.
Collapse
Affiliation(s)
- Iratxe Estibariz
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Annemarie Overmann
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
| | - Florent Ailloud
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Sebastian Suerbaum
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|
14
|
Prasad Y, Kumar R, Chaudhary AK, Dhanaraju R, Majumdar S, Rao DN. Kinetic and catalytic properties of M.HpyAXVII, a phase-variable DNA methyltransferase from Helicobacter pylori. J Biol Chem 2018; 294:1019-1034. [PMID: 30478171 DOI: 10.1074/jbc.ra118.003769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/10/2018] [Indexed: 01/26/2023] Open
Abstract
The bacterium Helicobacter pylori is one of the most common infectious agents found in the human stomach. H. pylori has an unusually large number of DNA methyltransferases (MTases), prompting speculation that they may be involved in the cancerization of epithelial cells. The mod-4a/4b locus, consisting of the hp1369 and hp1370 ORFs, encodes for a truncated and inactive MTase in H. pylori strain 26695. However, slipped-strand synthesis within the phase-variable polyguanine tract in hp1369 results in expression of an active HP1369-1370 fusion N 6-adenine methyltransferase, designated M.HpyAXVII. Sequence analysis of the mod-4a/4b locus across 74 H. pylori strain genomes has provided insights into the regulation of M.HpyAXVII expression. To better understand the role of M.HpyAXVII in the H. pylori biology, here we cloned and overexpressed the hp1369-70 fusion construct in Escherichia coli BL21(DE3) cells. Results from size-exclusion chromatography and multi-angle light scattering (MALS) analyses suggested that M.HpyAXVII exists as a dimer in solution. Kinetic studies, including product and substrate inhibition analyses, initial velocity dependence between substrates, and isotope partitioning, suggested that M.HpyAXVII catalyzes DNA methylation in an ordered Bi Bi mechanism in which the AdoMet binding precedes DNA binding and AdoMet's methyl group is then transferred to an adenine within the DNA recognition sequence. Altering the highly conserved catalytic motif (DPP(Y/F)) as well as the AdoMet-binding motif (FXGXG) by site-directed mutagenesis abolished the catalytic activity of M.HpyAXVII. These results provide insights into the enzyme kinetic mechanism of M.HpyAXVII. We propose that AdoMet binding conformationally "primes" the enzyme for DNA binding.
Collapse
Affiliation(s)
- Yedu Prasad
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Ritesh Kumar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Awanish Kumar Chaudhary
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Rajkumar Dhanaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Soneya Majumdar
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, Uttar Pradesh, India
| | - Desirazu N Rao
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| |
Collapse
|
15
|
Dong H, Peng X, Liu Y, Wu T, Wang X, De Y, Han T, Yuan L, Ding J, Wang C, Wu Q. BASI74, a Virulence-Related sRNA in Brucella abortus. Front Microbiol 2018; 9:2173. [PMID: 30271397 PMCID: PMC6146029 DOI: 10.3389/fmicb.2018.02173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are intracellular pathogens that infect a wide variety of mammals including humans, posing threats to the livestock industry and human health in developing countries. A number of genes associated with the intracellular trafficking and multiplication have so far been identified in Brucella spp. However, the sophisticated post-transcriptional regulation and coordination of gene expression that enable Brucella spp. to adapt to changes in environment and to evade host cell defenses are not fully understood. Bacteria small RNAs (sRNAs) play a significant role in post-transcriptional regulation, which has already been confirmed in a number of bacteria but the role of sRNAs in Brucella remains elusive. In this study, we identified several different sRNAs in Brucella spp., and found that over-expression of a sRNA, tentatively termed BASI74, led to alternation in virulence of Brucella in macrophage infection model. The expression level of BASI74 increased while Brucella abortus 2308 was grown in acidic media. In addition, BASI74 affected the growth ratio of the Brucella cells in minimal media and iron limiting medium. Using a two-plasmid reporter system, we identified four genes as the target of BASI74. One target gene, BABI1154, was predicted to encode a cytosine-N4-specific DNA methyltransferase, which protects cellular DNA from the restriction endonuclease in Brucella. These results show that BASI74 plays an important role in Brucella survival in macrophage infection model, speculatively by its connection with stress response or impact on restriction-modification system. Our study promotes the understanding of Brucella sRNAs, as well as the mechanism by which sRNAs use to influence Brucella physiology and pathogenesis.
Collapse
Affiliation(s)
- Hao Dong
- China Animal Disease Control Center, Beijing, China
| | - Xiaowei Peng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Yufu Liu
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tonglei Wu
- Key Laboratory of Preventive Veterinary Medicine of Hebei Province, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaolei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanyan De
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tao Han
- China Animal Disease Control Center, Beijing, China
| | - Lin Yuan
- China Animal Disease Control Center, Beijing, China
| | - Jiabo Ding
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | | | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2). Sci Rep 2018; 8:13686. [PMID: 30209340 PMCID: PMC6135851 DOI: 10.1038/s41598-018-32027-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Streptomyces coelicolor is a Gram-positive microorganism often used as a model of physiological and morphological differentiation in streptomycetes, prolific producers of secondary metabolites with important biological activities. In the present study, we analysed Streptomyces coelicolor growth and differentiation in the presence of the hypo-methylating agent 5′-aza-2′-deoxycytidine (5-aza-dC) in order to investigate whether cytosine methylation has a role in differentiation. We found that cytosine demethylation caused a delay in spore germination, aerial mycelium development, sporulation, as well as a massive impairment of actinorhodin production. Thus, we searched for putative DNA methyltransferase genes in the genome and constructed a mutant of the SCO1731 gene. The analysis of the SCO1731::Tn5062 mutant strain demonstrated that inactivation of SCO1731 leads to a strong decrease of cytosine methylation and almost to the same phenotype obtained after 5-aza-dC treatment. Altogether, our data demonstrate that cytosine methylation influences morphological differentiation and actinorhodin production in S. coelicolor and expand our knowledge on this model bacterial system.
Collapse
|
17
|
Hu L, Xiao P, Jiang Y, Dong M, Chen Z, Li H, Hu Z, Lei A, Wang J. Transgenerational Epigenetic Inheritance Under Environmental Stress by Genome-Wide DNA Methylation Profiling in Cyanobacterium. Front Microbiol 2018; 9:1479. [PMID: 30022974 PMCID: PMC6039552 DOI: 10.3389/fmicb.2018.01479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022] Open
Abstract
Epigenetic modifications such as DNA methylation are well known as connected with many important biological processes. Rapid accumulating evidence shows environmental stress can generate particular defense epigenetic changes across generations in eukaryotes. This transgenerational epigenetic inheritance in animals and plants has gained interest over the last years. Cyanobacteria play very crucial role in the earth, and as the primary producer they can adapt to nearly all diverse environments. However, few knowledge about the genome wide epigenetic information such as methylome information in cyanobacteria, especially under any environment stress, was reported so far. In this study we profiled the genome-wide cytosine methylation from a model cyanobacterium Synechocystis sp. PCC 6803, and explored the possibility of transgenerational epigenetic process in this ancient single-celled prokaryote by comparing the DNA methylomes among normal nitrogen medium cultivation, nitrogen starvation for 72 h and nitrogen recovery for about 12 generations. Our results shows that DNA methylation patterns in nitrogen starvation and nitrogen recovery are much more similar with each other, significantly different from that of the normal nitrogen. This study reveals the difference in global DNA methylation pattern of cyanobacteria between normal and nutrient stress conditions and reports the evidence of transgenerational epigenetic process in cyanobacteria. The results of this study may contribute to a better understanding of epigenetic regulation in prokaryotic adaptation to and survive in the ever changing environment.
Collapse
Affiliation(s)
- Lang Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingjie Dong
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Gurbanov R, S Ozek N, Tunçer S, Severcan F, Gozen AG. Aspects of silver tolerance in bacteria: infrared spectral changes and epigenetic clues. JOURNAL OF BIOPHOTONICS 2018; 11:e201700252. [PMID: 29243883 DOI: 10.1002/jbio.201700252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, the molecular profile changes leading to the adaptation of bacteria to survive and grow at inhibitory silver concentration were explored. The profile obtained through infrared (IR)-based measurements indicated extensive changes in all biomolecular components, which were supported by chemometric techniques. The changes in biomolecular profile were prominent, including nucleic acids. The changes in nucleic acid region (1350-950 cm-1 ) were encountered as a clue for conformational change in DNA. Further analysis of DNA by IR spectroscopy revealed changes in the backbone and sugar conformations. Moreover, Enzyme-Linked Immunosorbent Assay-based measurements of DNA methylation levels were performed to see if epigenetic mechanisms are in operation during bacterial adaptation to this environmental challenge. The results indicated a notable demethylation in Escherichia coli and methylation in Staphylococcus aureus likely to be associated with their elaborate adaptation process to sustain survival and growth.
Collapse
Affiliation(s)
- Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nihal S Ozek
- Department of Biology, Ataturk University, Erzurum, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Ayse G Gozen
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
19
|
Li YH, Zhou YH, Ren YZ, Xu CG, Liu X, Liu B, Chen JQ, Ding WY, Zhao YL, Yang YB, Wang S, Liu D. Inhibition of Streptococcus suis Adhesion and Biofilm Formation in Vitro by Water Extracts of Rhizoma Coptidis. Front Pharmacol 2018; 9:371. [PMID: 29713285 PMCID: PMC5911698 DOI: 10.3389/fphar.2018.00371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis is difficult to treat and responsible for various infections in humans and pigs. It can also form biofilms and induce persistent infections. Rhizoma Coptidis is a medicinal plant widely used in Traditional Chinese Medicine. Although the inhibitory effects of Rhizoma Coptidis on biofilm formation have been investigated in several studies, the ability of Rhizoma Coptidis to inhibit S. suis biofilm formation and the underlying mechanisms have not yet been reported. In this study, we showed that sub-minimal inhibitory concentrations (25 and 50 μg mL-1) of water extracts of Rhizoma Coptidis (Coptis deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) were sufficient to inhibit biofilm formation, as shown in the tissue culture plate (TCP) method and scanning electron microscopy. Real-time PCR and iTRAQ were used to measure gene and protein expression in S. suis. Sub-minimum inhibitory concentrations (25 and 50 μg mL-1) of Rhizoma Coptidis water extracts inhibited S. suis adhesion significantly in an anti-adherence assay. Some genes, such as gapdh, sly, and mrp, and proteins, such as antigen-like protein, CPS16V, and methyltransferase H, involved in adhesion were significantly modulated in cells treated with 50 μg mL-1 of Rhizoma Coptidis water extracts compared to untreated cells. The results from this study suggest that compounds in Rhizoma Coptidis water extracts play an important role in inhibiting adhesion of S. suis cells and, therefore, biofilm formation.
Collapse
Affiliation(s)
- Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yong-Hui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yong-Zhi Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Chang-Geng Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jian-Qing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen-Ya Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yu-Lin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yan-Bei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
20
|
Srikhanta YN, Gorrell RJ, Power PM, Tsyganov K, Boitano M, Clark TA, Korlach J, Hartland EL, Jennings MP, Kwok T. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci Rep 2017; 7:16140. [PMID: 29170397 PMCID: PMC5700931 DOI: 10.1038/s41598-017-15721-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 – modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5′-Gm6ACC-3′. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in a number of virulence genes, including motility-associated genes, and outer membrane protein genes. Motility and the number of flagella of H. pylori P12 wild-type were significantly higher than that of isogenic modH5 OFF or ΔmodH5 mutants, indicating that phase variable switching of modH5 expression plays a role in regulating H. pylori motility phenotypes. Using the flagellin A (flaA) gene as a model, we show that ModH5 modulates flaA promoter activity in a GACC methylation-dependent manner. These findings provide novel insights into the role of ModH5 in gene regulation and how it mediates epigenetic regulation of H. pylori motility.
Collapse
Affiliation(s)
- Yogitha N Srikhanta
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia
| | - Rebecca J Gorrell
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia.,Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia
| | - Peter M Power
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kirill Tsyganov
- Bioinformatics Platform, Monash University, Clayton, 3800, Victoria, Australia
| | | | | | | | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia.,Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, 3800, Victoria, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Terry Kwok
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia. .,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia. .,Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
21
|
Walworth NG, Hutchins DA, Dolzhenko E, Lee MD, Fu F, Smith AD, Webb EA. Biogeographic conservation of the cytosine epigenome in the globally important marine, nitrogen-fixing cyanobacterium Trichodesmium. Environ Microbiol 2017; 19:4700-4713. [PMID: 28925547 DOI: 10.1111/1462-2920.13934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 01/31/2023]
Abstract
Cytosine methylation has been shown to regulate essential cellular processes and impact biological adaptation. Despite its evolutionary importance, only a handful of bacterial, genome-wide cytosine studies have been conducted, with none for marine bacteria. Here, we examine the genome-wide, C5 -Methyl-cytosine (m5C) methylome and its correlation to global transcription in the marine nitrogen-fixing cyanobacterium Trichodesmium. We characterize genome-wide methylation and highlight conserved motifs across three Trichodesmium isolates and two Trichodesmium metagenomes, thereby identifying highly conserved, novel genomic signatures of potential gene regulation in Trichodesmium. Certain gene bodies with the highest methylation levels correlate with lower expression levels. Several methylated motifs were highly conserved across spatiotemporally separated Trichodesmium isolates, thereby elucidating biogeographically conserved methylation potential. These motifs were also highly conserved in Trichodesmium metagenomic samples from natural populations suggesting them to be potential in situ markers of m5C methylation. Using these data, we highlight predicted roles of cytosine methylation in global cellular metabolism providing evidence for a 'core' m5C methylome spanning different ocean regions. These results provide important insights into the m5C methylation landscape and its biogeochemical implications in an important marine N2 -fixer, as well as advancing evolutionary theory examining methylation influences on adaptation.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Egor Dolzhenko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael D Lee
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Feixue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrew D Smith
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
22
|
Mahan MJ, Heithoff DM, Barnes V L, Sinsheimer RL. Epigenetic Programming by Microbial Pathogens and Impacts on Acute and Chronic Disease. EPIGENETICS AND HUMAN HEALTH 2017:89-112. [DOI: 10.1007/978-3-319-55021-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
Brambila-Tapia AJL, Poot-Hernández AC, Perez-Rueda E, Rodríguez-Vázquez K. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics. Indian J Microbiol 2016; 56:134-41. [PMID: 27570304 DOI: 10.1007/s12088-015-0562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/23/2015] [Indexed: 11/29/2022] Open
Abstract
DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.
Collapse
Affiliation(s)
- Aniel Jessica Leticia Brambila-Tapia
- Departamento de Fisiología, Centro Universitario de Ciencias de La Salud (CUCS), Universidad de Guadalajara, Sierra Mojada #800, Colonia Independencia, 44340 Guadalajara, Jalisco Mexico ; Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Escolar #300, 04510 Ciudad Universitaria, Distrito Federal Mexico
| | - Augusto Cesar Poot-Hernández
- Departamento de Ingeniería celular y biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| | - Ernesto Perez-Rueda
- Departamento de Ingeniería celular y biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| | - Katya Rodríguez-Vázquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Escolar #300, 04510 Ciudad Universitaria, Distrito Federal Mexico
| |
Collapse
|
24
|
Casadesús J. Bacterial DNA Methylation and Methylomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:35-61. [PMID: 27826834 DOI: 10.1007/978-3-319-43624-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, "solitary" or "orphan" DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, Seville, 41080, Spain.
| |
Collapse
|
25
|
Gliniewicz K, Wildung M, Orfe LH, Wiens GD, Cain KD, Lahmers KK, Snekvik KR, Call DR. Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum. BMC Microbiol 2015; 15:179. [PMID: 26377311 PMCID: PMC4571129 DOI: 10.1186/s12866-015-0518-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
Background Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B.17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective immune response against challenge with the virulent CSF 259–93 strain. We hypothesized that rifampicin passage leads to an accumulation of genomic mutations that, by chance, reduce virulence. To assess the pattern of phenotypic and genotypic changes associated with passage, we examined proteomic, LPS and single-nucleotide polymorphism (SNP) differences for two F. psychrophilum strains (CSF 259–93 and THC 02–90) that were passaged with and without rifampicin selection. Results Rifampicin resistance was conveyed by expected mutations in rpoB, although affecting different DNA bases depending on the strain. One rifampicin-passaged CSF 259–93 strain (CR) was attenuated (4 % mortality) in challenged fish, but only accumulated eight nonsynonymous SNPs compared to the parent strain. A CSF 259–93 strain passaged without rifampicin (CN) accumulated five nonsynonymous SNPs and was partially attenuated (28 % mortality) compared to the parent strain (54.5 % mortality). In contrast, there were no significant change in fish mortalities among THC 02–90 wild-type and passaged strains, despite numerous SNPs accumulated during passage with (n = 174) and without rifampicin (n = 126). While only three missense SNPs were associated with attenuation, a Ser492Phe rpoB mutation in the CR strain may contribute to further attenuation. All strains except CR retained a gliding motility phenotype. Few proteomic differences were observed by 2D SDS-PAGE and there were no apparent changes in LPS between strains. Comparative methylome analysis of two strains (CR and TR) identified no shared methylation motifs for these two strains. Conclusion Multiple genomic changes arose during passage experiments with rifampicin selection pressure. Consistent with our hypothesis, unique strain-specific mutations were detected for the fully attenuated (CR), partially attenuated (CN) and another fully attenuated strain (B17). Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0518-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karol Gliniewicz
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Present address: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| | - Mark Wildung
- Molecular Biology and Genomics Core, Washington State University, Pullman, WA, USA.
| | - Lisa H Orfe
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| | - Gregory D Wiens
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, Leetown, WV, USA.
| | - Kenneth D Cain
- Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, USA.
| | - Kevin K Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| | - Kevin R Snekvik
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA.
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
26
|
Furuta Y, Konno M, Osaki T, Yonezawa H, Ishige T, Imai M, Shiwa Y, Shibata-Hatta M, Kanesaki Y, Yoshikawa H, Kamiya S, Kobayashi I. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection. PLoS One 2015; 10:e0127197. [PMID: 25978460 PMCID: PMC4433339 DOI: 10.1371/journal.pone.0127197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST) with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing) mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mutsuko Konno
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo-shi, Hokkaido, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Misaki Imai
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Mari Shibata-Hatta
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yu Kanesaki
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Sánchez-Romero MA, Cota I, Casadesús J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 2015; 25:9-16. [PMID: 25818841 DOI: 10.1016/j.mib.2015.03.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Formation of C(5)-methyl-cytosine, N(4)-methyl-cytosine, and N(6)-methyl-adenine in bacterial genomes is postreplicative, and occurs at specific targets. Base methylation can modulate the interaction of DNA-binding proteins with their cognate sites, and controls chromosome replication, correction of DNA mismatches, cell cycle-coupled transcription, and formation of epigenetic lineages by phase variation. During four decades, the roles of DNA methylation in bacterial physiology have been investigated by analyzing the contribution of individual methyl groups or small methyl group clusters to the control of DNA-protein interactions. Nowadays, single-molecule real-time sequencing can analyze the DNA methylation of the entire genome (the 'methylome'). Bacterial methylomes provide a wealth of information on the methylation marks present in bacterial genomes, and may open a new era in bacterial epigenomics.
Collapse
Affiliation(s)
| | - Ignacio Cota
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain.
| |
Collapse
|
28
|
Sitaraman R. Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization. Front Microbiol 2014; 5:115. [PMID: 24723914 PMCID: PMC3972471 DOI: 10.3389/fmicb.2014.00115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
|
29
|
Tsang J, Hoover TR. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species. SCIENTIFICA 2014; 2014:681754. [PMID: 24672734 PMCID: PMC3930126 DOI: 10.1155/2014/681754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.
Collapse
Affiliation(s)
- Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Kopitar AN, Skvarc M, Tepes B, Kos J, Ihan A. Helicobacter pylori susceptible/resistant to antibiotic eradication therapy differ in the maturation and activation of dendritic cells. Helicobacter 2013; 18:444-53. [PMID: 23859622 DOI: 10.1111/hel.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The natural course of Helicobacter pylori infection, as well as the success of antibiotic eradication is determined by the immune response to bacteria. The aim of the study is to investigate how different Helicobacter pylori isolates influence the dendritic cells maturation and antigen-presenting function in order to elucidate the differences between Helicobacter pylori strains, isolated from the patients with successful antibiotic eradication therapy or repeated eradication failure. MATERIALS AND METHODS Dendritic cells maturation and antigen presentation were monitored by flow cytometry analysis of the major histocompatibility complex class II (MHC-II), Toll-like receptor (TLR) and costimulatory molecules expression, and by determining cytokine secretion. RESULTS Dendritic cells stimulated with Helicobacter pylori isolated from patients with repeated antibiotic eradication failure expressed less human leukocyte antigen (HLA-DR), CD86, TLR-2, and interleukin-8 (IL-8) compared to Helicobacter pylori strains susceptible to antibiotic therapy; the latter expressed lower production of IL-10. Polymyxin B inhibition of lipopolysaccharide reduces IL-8 secretion in the group of Helicobacter pylori strains susceptible to antibiotic therapy. The differences in IL-8 secretion between both groups are lipopolysaccharide dependent, while the differences in secretion of IL-10 remain unchanged after lipopolysaccharide inhibition. Inhibitor of cathepsin X Mab 2F12 reduced the secretion of IL-6, and the secretion was significantly lower in the group of Helicobacter pylori strains isolated from patients with repeated antibiotic eradication failure. CONCLUSION Helicobacter pylori strains, susceptible/resistant to antibiotic eradication therapy, differ in their capability to induce DCs maturation and antigen-presenting function.
Collapse
Affiliation(s)
- Andreja N Kopitar
- Medical Faculty Ljubljana, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
31
|
Environmental determinants of transformation efficiency in Helicobacter pylori. J Bacteriol 2013; 196:337-44. [PMID: 24187089 DOI: 10.1128/jb.00633-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helicobacter pylori uses natural competence and homologous recombination to adapt to the dynamic environment of the stomach mucosa and maintain chronic colonization. Although H. pylori competence is constitutive, its rate of transformation is variable, and little is known about factors that influence it. To examine this, we first determined the transformation efficiency of H. pylori strains under low O2 (5% O2, 7.6% CO2, 7.6% H2) and high O2 (15% O2, 2.9% CO2, 2.9% H2) conditions using DNA containing an antibiotic resistance marker. H. pylori transformation efficiency was 6- to 32-fold greater under high O2 tension, which was robust across different H. pylori strains, genetic loci, and bacterial growth phases. Since changing the O2 concentration for these initial experiments also changed the concentrations of CO2 and H2, transformations were repeated under conditions where O2, CO2, and H2 were each varied individually. The results showed that the increase in transformation efficiency under high O2 was largely due to a decrease in CO2. An increase in pH similar to that caused by low CO2 was also sufficient to increase transformation efficiency. These results have implications for the physiology of H. pylori in the gastric environment, and they provide optimized conditions for the laboratory construction of H. pylori mutants using natural transformation.
Collapse
|
32
|
Siqueira FM, Thompson CE, Virginio VG, Gonchoroski T, Reolon L, Almeida LG, da Fonsêca MM, de Souza R, Prosdocimi F, Schrank IS, Ferreira HB, de Vasconcelos ATR, Zaha A. New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis. BMC Genomics 2013; 14:175. [PMID: 23497205 PMCID: PMC3610235 DOI: 10.1186/1471-2164-14-175] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae, the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts. RESULTS The overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M. flocculare and some contain sequence differences or lack of domains that are considered to be important for adhesion to host cells. The phylogenetic relationship of the three species was confirmed by a phylogenomic approach. The set of genes involved in metabolism, especially in the uptake of precursors for nucleic acids synthesis and nucleotide metabolism, display some differences in copy number and the presence/absence in the three species. CONCLUSIONS The comparative analyses of three mycoplasma species that inhabit the swine respiratory tract facilitated the identification of some characteristics that may be related to their different behaviors. M. hyopneumoniae and M. flocculare display many differences that may help to explain why one species is pathogenic and the other is considered to be commensal. However, it was not possible to identify specific virulence determinant factors that could explain the differences in the pathogenicity of the analyzed species. The M. hyorhinis genome contains differences in some components involved in metabolism and evasion of the host's immune system that may contribute to its growth aggressiveness. Several horizontal gene transfer events were identified. The phylogenomic analysis places M. hyopneumoniae, M. flocculare and M. hyorhinis in the hyopneumoniae clade.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica. UFRGS, Porto Alegre, Brazil
| | - Claudia Elizabeth Thompson
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Veridiana Gomes Virginio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
| | - Taylor Gonchoroski
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciano Reolon
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Marbella Maria da Fonsêca
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Rangel de Souza
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Francisco Prosdocimi
- Departamento de Bioquímica Médica. Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| | | | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica. UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| |
Collapse
|