1
|
Buffi M, Kelliher JM, Robinson AJ, Gonzalez D, Cailleau G, Macalindong JA, Frau E, Schintke S, Chain PSG, Stanley CE, Künzler M, Bindschedler S, Junier P. Electrical signaling in fungi: past and present challenges. FEMS Microbiol Rev 2025; 49:fuaf009. [PMID: 40118505 PMCID: PMC11995700 DOI: 10.1093/femsre/fuaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025] Open
Abstract
Electrical signaling is a fundamental mechanism for integrating environmental stimuli and coordinating responses in living organisms. While extensively studied in animals and plants, the role of electrical signaling in fungi remains a largely underexplored field. Early studies suggested that filamentous fungi generate action potential-like signals and electrical currents at hyphal tips, yet their function in intracellular communication remained unclear. Renewed interest in fungal electrical activity has fueled developments such as the hypothesis that mycorrhizal networks facilitate electrical communication between plants and the emerging field of fungal-based electronic materials. Given their continuous plasma membrane, specialized septal pores, and insulating cell wall structures, filamentous fungi possess architectural features that could support electrical signaling over long distances. However, studying electrical phenomena in fungal networks presents unique challenges due to the microscopic dimensions of hyphae, the structural complexity of highly modular mycelial networks, and the limitations of traditional electrophysiological methods. This review synthesizes current evidence for electrical signaling in filamentous fungi, evaluates methodological approaches, and highlights experimental challenges. By addressing these challenges and identifying best practices, we aim to advance research in this field and provide a foundation for future studies exploring the role of electrical signaling in fungal biology.
Collapse
Affiliation(s)
- Matteo Buffi
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Julia M Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- Microbiology, Genetics,
and Immunology Department, Michigan State University, East Lansing, MI 48824, United States
| | - Aaron J Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Justine A Macalindong
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Eleonora Frau
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences and Arts Western Switzerland (HES-SO), CH-1401, Yverdon-les-Bains, Switzerland
| | - Silvia Schintke
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences and Arts Western Switzerland (HES-SO), CH-1401, Yverdon-les-Bains, Switzerland
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Markus Künzler
- Institute of Microbiology, Department of Biology
, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Ball B, Sukumaran A, Pladwig S, Kazi S, Chan N, Honeywell E, Modrakova M, Geddes-McAlister J. Proteome signatures reveal homeostatic and adaptive oxidative responses by a putative co-chaperone, Wos2, to influence fungal virulence determinants in cryptococcosis. Microbiol Spectr 2024; 12:e0015224. [PMID: 38953322 PMCID: PMC11302251 DOI: 10.1128/spectrum.00152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The increasing prevalence of invasive fungal pathogens is dramatically changing the clinical landscape of infectious diseases, posing an imminent threat to public health. Specifically, Cryptococcus neoformans, the human opportunistic pathogen, expresses elaborate virulence mechanisms and is equipped with sophisticated adaptation strategies to survive in harsh host environments. This study extensively characterizes Wos2, an Hsp90 co-chaperone homolog, featuring bilateral functioning for both cryptococcal adaptation and the resulting virulence response. In this study, we evaluated the proteome and secretome signatures associated with wos2 deletion in enriched and infection-mimicking conditions to reveal Wos2-dependent regulation of the oxidative stress response through global translational reprogramming. The wos2Δ strain demonstrates defective intracellular and extracellular antioxidant protection systems, measurable through a decreased abundance of critical antioxidant enzymes and reduced growth in the presence of peroxide stress. Additional Wos2-associated stress phenotypes were observed upon fungal challenge with heat shock, osmotic stress, and cell membrane stressors. We demonstrate the importance of Wos2 for intracellular lifestyle of C. neoformans during in vitro macrophage infection and provide evidence for reduced phagosomal replication levels associated with wos2Δ. Accordingly, wos2Δ featured significantly reduced virulence within impacting fungal burden in a murine model of cryptococcosis. Our study highlights a vulnerable point in the fungal chaperone network that offers a therapeutic opportunity to interfere with both fungal virulence and fitness.IMPORTANCEThe global impact of fungal pathogens, both emerging and emerged, is undeniable, and the alarming increase in antifungal resistance rates hampers our ability to protect the global population from deadly infections. For cryptococcal infections, a limited arsenal of antifungals and increasing rates of resistance demand alternative therapeutic strategies, including an anti-virulence approach, which disarms the pathogen of critical virulence factors, empowering the host to remove the pathogens and clear the infection. To this end, we apply state-of-the-art mass spectrometry-based proteomics to evaluate the impact of a recently defined novel co-chaperone, Wos2, toward cryptococcal virulence using in vitro and in vivo models of infection. We explore global proteome and secretome remodeling driven by the protein and uncover the novel role in modulating the fungal oxidative stress response. Complementation of proteome findings with in vitro infectivity assays demonstrated the protective role of Wos2 within the macrophage phagosome, influencing fungal replication and survival. These results underscore differential cryptococcal survivability and weakened patterns of dissemination in the absence of wos2. Overall, our study establishes Wos2 as an important contributor to fungal pathogenesis and warrants further research into critical proteins within global stress response networks as potential druggable targets to reduce fungal virulence and clear infection.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samanta Pladwig
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samiha Kazi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Norris Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Effie Honeywell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Manuela Modrakova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
3
|
Pajić T, Stevanović K, Todorović NV, Krmpot AJ, Živić M, Savić-Šević S, Lević SM, Stanić M, Pantelić D, Jelenković B, Rabasović MD. In vivo femtosecond laser nanosurgery of the cell wall enabling patch-clamp measurements on filamentous fungi. MICROSYSTEMS & NANOENGINEERING 2024; 10:47. [PMID: 38590818 PMCID: PMC10999429 DOI: 10.1038/s41378-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.
Collapse
Grants
- Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (Ministry of Education, Science and Technological Development of the Republic of Serbia)
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200178]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200007]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia; the Project HEMMAGINERO [Grant number 6066079] from Program PROMIS, Science Fund of the Republic of Serbia; and the Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia.
- The Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia
Collapse
Affiliation(s)
- Tanja Pajić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Stevanović
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Nataša V. Todorović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandar J. Krmpot
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Miroslav Živić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Svetlana Savić-Šević
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Steva M. Lević
- University of Belgrade, Faculty of Agriculture, Nemanjina Street 6, 11080 Belgrade, Serbia
| | - Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dejan Pantelić
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Brana Jelenković
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Mihailo D. Rabasović
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
4
|
Dong XY. Calcium Ion Channels in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:jof9050524. [PMID: 37233235 DOI: 10.3390/jof9050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Regulating calcium ion (Ca2+) channels to improve the cell cycle and metabolism is a promising technology, ensuring increased cell growth, differentiation, and/or productivity. In this regard, the composition and structure of Ca2+ channels play a vital role in controlling the gating states. In this review, Saccharomyces cerevisiae, as a model eukaryotic organism and an essential industrial microorganism, was used to discuss the effect of its type, composition, structure, and gating mechanism on the activity of Ca2+ channels. Furthermore, the advances in the application of Ca2+ channels in pharmacology, tissue engineering, and biochemical engineering are summarized, with a special focus on exploring the receptor site of Ca2+ channels for new drug design strategies and different therapeutic uses, targeting Ca2+ channels to produce functional replacement tissues, creating favorable conditions for tissue regeneration, and regulating Ca2+ channels to enhance biotransformation efficiency.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- College of Life and Health, Dalian University, Dalian 116622, China
| |
Collapse
|
5
|
Wang R, Zhang Q, Feng C, Zhang J, Qin Y, Meng L. Advances in the Pharmacological Activities and Effects of Perilla Ketone and Isoegomaketone. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8809792. [PMID: 36337585 PMCID: PMC9635969 DOI: 10.1155/2022/8809792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
As components of a traditional Chinese herbal medicine with many physiological activities, perilla ketone and isoegomaketone isolated from perilla essential oil are important active components of Perilla frutescens. Recent studies have shown that these two compounds have promising antitumor, antifungal, antirheumatoid arthritis, antiobesity, anti-inflammatory, healing-promoting, and other activities and can be used to combat toxicity from immunotherapy. Therefore, the multitude of pharmacological activities and effects demonstrate the broad research potential of perilla ketone and isoegomaketone. However, no reviews have been published related to the pharmacological activities or effects of perilla ketone and isoegomaketone. The purpose of this review is as follows: (1) outline the recent advances made in understanding the pharmacological activities of perilla ketone and isoegomaketone; (2) summarize their effects; and (3) discuss future research perspectives.
Collapse
Affiliation(s)
- Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianru Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengling Feng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juzhao Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxuan Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linghua Meng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Cai H, Zhang H, Guo DH, Wang Y, Gu J. Genomic Data Mining Reveals Abundant Uncharacterized Transporters in Coccidioides immitis and Coccidioides posadasii. J Fungi (Basel) 2022; 8:jof8101064. [PMID: 36294626 PMCID: PMC9604845 DOI: 10.3390/jof8101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Coccidioides immitis and Coccidioides posadasii are causative agents of coccidioidomycosis, commonly known as Valley Fever. The increasing Valley Fever cases in the past decades, the expansion of endemic regions, and the rising azole drug-resistant strains have underscored an urgent need for a better understanding of Coccidioides biology and new antifungal strategies. Transporters play essential roles in pathogen survival, growth, infection, and adaptation, and are considered as potential drug targets. However, the composition and roles of transport machinery in Coccidioides remain largely unknown. In this study, genomic data mining revealed an abundant, uncharacterized repertoire of transporters in Coccidioides genomes. The catalog included 1288 and 1235 transporter homologs in C. immitis and C. posadasii, respectively. They were further annotated to class, subclass, family, subfamily and range of substrates based on the Transport Classification (TC) system. They may play diverse roles in nutrient uptake, metabolite secretion, ion homeostasis, drug efflux, or signaling. This study represents an initial effort for a systems-level characterization of the transport machinery in these understudied fungal pathogens.
Collapse
Affiliation(s)
- Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Daniel H. Guo
- Strake Jesuit College Preparatory, Houston, TX 77036, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (Y.W.); (J.G.)
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA
- Correspondence: (Y.W.); (J.G.)
| |
Collapse
|
7
|
Kurian SM, Lichius A, Read ND. Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. J Fungi (Basel) 2022; 8:jof8010090. [PMID: 35050029 PMCID: PMC8780837 DOI: 10.3390/jof8010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is an important plant pathogen and an emerging opportunistic human pathogen. Germination of conidial spores and their fusion via conidial anastomosis tubes (CATs) are significant events during colony establishment in culture and on host plants and, hence, very likely on human epithelia. CAT fusion exhibited by conidial germlings of Fusarium species has been postulated to facilitate mitotic recombination, leading to heterokaryon formation and strains with varied genotypes and potentially increased virulence. Ca2+ signalling is key to many of the important physiological processes in filamentous fungi. Here, we tested pharmacological agents with defined modes of action in modulation of the mammalian Ca2+ signalling machinery for their effect on germination and CAT-mediated cell fusion in F. oxysporum. We found various drug-specific and dose-dependent effects. Inhibition of calcineurin by FK506 or cyclosporin A, as well as chelation of extracellular Ca2+ by BAPTA, exclusively inhibit CAT induction but not germ-tube formation. On the other hand, inhibition of Ca2+ channels by verapamil, calmodulin inhibition by calmidazolium, and inhibition of mitochondrial calcium uniporters by RU360 inhibited both CAT induction and germ-tube formation. Thapsigargin, an inhibitor of mammalian sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), partially inhibited CAT induction but had no effect on germ-tube formation. These results provide initial evidence for morphologically defining roles of Ca2+-signalling components in the early developmental stages of F. oxysporum colony establishment—most notably, the indication that calcium ions act as self-signalling molecules in this process. Our findings contribute an important first step towards the identification of Ca2+ inhibitors with fungas-specific effects that could be exploited for the treatment of infected plants and humans.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Correspondence:
| | - Alexander Lichius
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Nick D. Read
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
| |
Collapse
|
8
|
Pozdnyakov I, Safonov P, Skarlato S. Diversity of voltage-gated potassium channels and cyclic nucleotide-binding domain-containing channels in eukaryotes. Sci Rep 2020; 10:17758. [PMID: 33082475 PMCID: PMC7576140 DOI: 10.1038/s41598-020-74971-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/06/2020] [Indexed: 12/04/2022] Open
Abstract
Voltage-gated potassium channels (Kv) and cyclic nucleotide-binding domain-containing cation channels HCN, CNG, and KCNH are the evolutionarily related families of ion channels in animals. Their homologues were found in several lineages of eukaryotes and prokaryotes; however, the actual phylogenetic and structural diversity of these ion channels remains unclear. In this work, we present a taxonomically broad investigation of evolutionary relationships and structural diversity of Kv, HCN, CNG, and KCNH and their homologues in eukaryotes focusing on channels from different protistan groups. We demonstrate that both groups of channels consist of a more significant number of lineages than it was shown before, and these lineages can be grouped in two clusters termed Kv-like channels and CNBD-channels. Moreover, we, for the first time, report the unusual two-repeat tandem Kv-like channels and CNBD-channels in several eukaryotic groups, i.e. dinoflagellates, oomycetes, and chlorarachniophytes. Our findings reveal still underappreciated phylogenetic and structural diversity of eukaryotic ion channel lineages.
Collapse
Affiliation(s)
- Ilya Pozdnyakov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia.
| | - Pavel Safonov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Sergei Skarlato
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
9
|
Lewis A, McCrossan ZA, Manville RW, Popa MO, Cuello LG, Goldstein SAN. TOK channels use the two gates in classical K + channels to achieve outward rectification. FASEB J 2020; 34:8902-8919. [PMID: 32519783 DOI: 10.1096/fj.202000545r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.
Collapse
Affiliation(s)
- Anthony Lewis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Zoe A McCrossan
- NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, Southampton, UK
| | - Rían W Manville
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - M Oana Popa
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Steve A N Goldstein
- Departments of Physiology & Biophysics and Pediatrics, School of Medicine, Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Jegla T, Busey G, Assmann SM. Evolution and Structural Characteristics of Plant Voltage-Gated K + Channels. THE PLANT CELL 2018; 30:2898-2909. [PMID: 30389753 PMCID: PMC6354262 DOI: 10.1105/tpc.18.00523] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 05/18/2023]
Abstract
Plant voltage-gated K+ channels have been referred to as "plant Shakers" in reference to animal Shaker channels, the first K+ channels identified. Recent advances in our knowledge of K+ channel evolution and structure have significantly deepened the divide between these plant and animal K+ channels, suggesting that it is time to completely retire the "plant Shaker" designation. Evolutionary genomics reveals that plant voltage-gated K+ channels and metazoan Shakers derive from distinct prokaryotic ancestors. The plant channels belong to a lineage that includes cyclic nucleotide-gated channels and metazoan ether-à-go-go and hyperpolarization-activated, cyclic nucleotide-gated channels. We refer to this lineage as the CNBD channel superfamily, because all these channels share a cytoplasmic gating domain homologous to cyclic nucleotide binding domains. The first structures of CNBD superfamily channels reveal marked differences in coupling between the voltage sensor and ion-conducting pore relative to metazoan Shaker channels. Viewing plant voltage-gated K+ channel function through the lens of CNBD superfamily structures should lead to insights into how these channels are regulated.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology and Huck Institute for the Life Sciences, Penn State University, 230 Life Sciences Building, University Park, Pennsylvania 16802
| | - Gregory Busey
- Department of Biology, Penn State University, 225 Life Sciences Building, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Department of Biology, Penn State University, 354 North Frear, University Park, Pennsylvania 16802
| |
Collapse
|
11
|
Li Y, Sun L, Lu C, Gong Y, Li M, Sun S. Promising Antifungal Targets Against Candida albicans Based on Ion Homeostasis. Front Cell Infect Microbiol 2018; 8:286. [PMID: 30234023 PMCID: PMC6131588 DOI: 10.3389/fcimb.2018.00286] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
In recent decades, invasive fungal infections have been increasing significantly, contributing to high incidences and mortality in immunosuppressed patients. Candida albicans (C. albicans) is the most prevalent opportunistic fungal pathogen in humans that can cause severe and often fatal bloodstream infections. Current antifungal agents have several limitations, including that only a small number of classes of antifungals are available, certain of which have severe toxicity and high cost. Moreover, the emergence of drug resistance is a new limitation to successful patient outcomes. Therefore, the development of antifungals with novel targets is an essential strategy for the efficient management of C. albicans infections. It is widely recognized that ion homeostasis is crucial for all living cells. Many studies have identified that ion-signaling and transduction networks are central to fungal survival by regulating gene expression, morphological transition, host invasion, stress response, and drug resistance. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis of a growing number of compounds that elicit antifungal activity. Most of the potent antifungals have been widely used in the clinic, and certain of them have low toxicity, meaning that they may be expected to be used as antifungal drugs in the future. Hence, we briefly summarize the homeostasis regulation of several important ions, potential antifungal targets based on these ion-signaling networks, and antifungal compounds based on the disruption of ion homeostasis. This summary will help in designing effective drugs and identifying new targets for combating fungal diseases.
Collapse
Affiliation(s)
- Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Licui Sun
- Department of Pharmacy, Feicheng Mining Central Hospital, Feicheng, China
| | - Chunyan Lu
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Min Li
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
12
|
Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ 2018; 6:e4761. [PMID: 29740519 PMCID: PMC5937474 DOI: 10.7717/peerj.4761] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022] Open
Abstract
Many infectious diseases disproportionately affect people in the developing world. Cryptococcal meningitis is one of the most common mycoses in HIV-AIDS patients, with the highest burden of disease in sub-Saharan Africa. Current best treatment regimens still result in unacceptably high mortality rates, and more effective antifungal agents are needed urgently. Drug development is hampered by the difficulty of developing effective antifungal agents that are not also toxic to human cells, and by a reluctance among pharmaceutical companies to invest in drugs that cannot guarantee a high financial return. Drug repurposing, where existing drugs are screened for alternative activities, is becoming an attractive approach in antimicrobial discovery programs, and various compound libraries are now commercially available. As these drugs have already undergone extensive optimisation and passed regulatory hurdles this can fast-track their progress to market for new uses. This study screened the Screen-Well Enzo library of 640 compounds for candidates that phenotypically inhibited the growth of Cryptococcus deuterogattii. The anthelminthic agent flubendazole, and L-type calcium channel blockers nifedipine, nisoldipine and felodipine, appeared particularly promising and were tested in additional strains and species. Flubendazole was very active against all pathogenic Cryptococcus species, with minimum inhibitory concentrations of 0.039-0.156 μg/mL, and was equally effective against isolates that were resistant to fluconazole. While nifedipine, nisoldipine and felodipine all inhibited Cryptococcus, nisoldipine was also effective against Candida, Saccharomyces and Aspergillus. This study validates repurposing as a rapid approach for finding new agents to treat neglected infectious diseases.
Collapse
Affiliation(s)
- Megan Truong
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Leigh G Monahan
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.,Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
13
|
Guerrero-Galán C, Delteil A, Garcia K, Houdinet G, Conéjéro G, Gaillard I, Sentenac H, Zimmermann SD. Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum. Environ Microbiol 2018; 20:1873-1887. [PMID: 29614209 DOI: 10.1111/1462-2920.14122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Ectomycorrhizal fungi play an essential role in the ecology of boreal and temperate forests through the improvement of tree mineral nutrition. Potassium (K+ ) is an essential nutrient for plants and is needed in high amounts. We recently demonstrated that the ectomycorrhizal fungus Hebeloma cylindrosporum improves the K+ nutrition of Pinus pinaster under shortage conditions. Part of the transport systems involved in K+ uptake by the fungus has been deciphered, while the molecular players responsible for the transfer of this cation towards the plant remain totally unknown. Analysis of the genome of H. cylindrosporum revealed the presence of three putative tandem-pore outward-rectifying K+ (TOK) channels that could contribute to this transfer. Here, we report the functional characterization of these three channels through two-electrode voltage-clamp experiments in oocytes and yeast complementation assays. The expression pattern and physiological role of these channels were analysed in symbiotic interaction with P. pinaster. Pine seedlings colonized by fungal transformants overexpressing two of them displayed a larger accumulation of K+ in shoots. This study revealed that TOK channels have distinctive properties and functions in axenic and symbiotic conditions and suggested that HcTOK2.2 is implicated in the symbiotic transfer of K+ from the fungus towards the plant.
Collapse
Affiliation(s)
- Carmen Guerrero-Galán
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Amandine Delteil
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Kevin Garcia
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France.,Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007, USA
| | - Gabriella Houdinet
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Geneviève Conéjéro
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France.,Plateforme Histocytologie et Imagerie Cellulaire Végétale, INRA-CIRAD, Montpellier, France
| | - Isabelle Gaillard
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Hervé Sentenac
- BPMP, Université de Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | | |
Collapse
|
14
|
Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom. Front Microbiol 2017. [PMID: 28634472 PMCID: PMC5459920 DOI: 10.3389/fmicb.2017.00984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ubiquitous and multipotent components of the innate immune defense arsenal used by both prokaryotic and eukaryotic organisms. The search for new AMPs has increased in recent years, due to the growing development of microbial resistance to therapeutical drugs. In this work, we evaluate the effects of Tityus serrulatus venom (Tsv), its fractions and its major toxin Ts1, a beta-neurotoxin, on fungi growth. The fractions were obtained by ion-exchange chromatography of Tsv. The growth inhibition of 11 pathogenic and non-pathogenic filamentous fungi (Aspergillus fumigatus, A. nidulans, A. niger, A. terreus, Neurospora crassa, Penicillium corylophilum, P. ochrochloron, P. verrucosum, P. viridicatum, P. waksmanii, and Talaromyces flavus) was evaluated by quantitative microplate reader assay. Tsv (100 and 500 μg/well, which correspond to 1 and 5 mg/mL, respectively, of total soluble protein) was active in inhibiting growth of A. nidulans, A. terreus, P. corylophilum, and P. verrucosum, especially in the higher concentration used and at the first 30 h. After this period, fungi might have used Tsv components as alternative sources of nutrients, and therefore, increased their growth tax. Only fractions IX, X, XI, XIIA, XIIB (3 and 7.5 μg/well, which correspond to 30 and 75 μg/mL, respectively, of total soluble protein) and Ts1 (1.5, 3, and 6 μg/well, which correspond to 2.18, 4.36, and 8.72 μM, respectively) showed antifungal activity. Ts1 showed to be a non-morphogenic toxin with dose-dependent activity against A. nidulans, inhibiting 100% of fungal growth from 3 μg/well (4.36 μM). The inhibitory effect of Ts1 against A. nidulans growth was accompanied by fungistatic effects and was not amended by 1 mM CaCl2 or tetrodotoxin (46.98 and 93.96 μM). The structural differences between Ts1 and drosomycin, a potent cysteine-rich antifungal peptide, are discussed here. Our results highlight the antifungal potential of the first cysteine-containing scorpion toxin. Since Ts1 is a multifunctional toxin, we suggest that it could be used as a template in the design of engineered scorpion AMPs and in the search for new mechanisms of action of antifungal drugs.
Collapse
Affiliation(s)
- Welligton M Santussi
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Karla C F Bordon
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ana P N Rodrigues Alves
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Camila T Cologna
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Suraia Said
- Laboratory of Industrial Enzymology, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Eliane C Arantes
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
15
|
Katta S, Krieg M, Goodman MB. Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu Rev Cell Dev Biol 2016; 31:347-71. [PMID: 26566115 DOI: 10.1146/annurev-cellbio-100913-013426] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organisms as diverse as microbes, roundworms, insects, and mammals detect and respond to applied force. In animals, this ability depends on ionotropic force receptors, known as mechanoelectrical transduction (MeT) channels, that are expressed by specialized mechanoreceptor cells embedded in diverse tissues and distributed throughout the body. These cells mediate hearing, touch, and proprioception and play a crucial role in regulating organ function. Here, we attempt to integrate knowledge about the architecture of mechanoreceptor cells and their sensory organs with principles of cell mechanics, and we consider how engulfing tissues contribute to mechanical filtering. We address progress in the quest to identify the proteins that form MeT channels and to understand how these channels are gated. For clarity and convenience, we focus on sensory mechanobiology in nematodes, fruit flies, and mice. These themes are emphasized: asymmetric responses to applied forces, which may reflect anisotropy of the structure and mechanics of sensory mechanoreceptor cells, and proteins that function as MeT channels, which appear to have emerged many times through evolution.
Collapse
Affiliation(s)
- Samata Katta
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305;
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305;
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305;
| |
Collapse
|
16
|
A putative mitochondrial calcium uniporter in A. fumigatus contributes to mitochondrial Ca(2+) homeostasis and stress responses. Fungal Genet Biol 2016; 94:15-22. [PMID: 27378202 DOI: 10.1016/j.fgb.2016.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Ca(2+) uptake into mitochondria plays a central role in cell physiology by stimulating ATP production, shaping cytosolic Ca(2+) transients and regulating cell survival or death. Although this system has been studied extensively in mammalian cells, the physiological implications of Ca(2+) uptake into mitochondria in fungal cells are still unknown. In this study, a bi-directional best-hit BLASTP search revealed that the genome of Aspergillus fumigatus encodes a homolog of a putative mitochondrial Ca(2+) uniporter (MCU) and a mitochondrial carrier protein AGC1/MICU1 homolog. Both putative homologs are mitochondrially localized and required for the response to azole and oxidative stress such that the loss of either McuA or AgcA results in reduced susceptibility to azole and oxidative stress, suggesting a role in environmental stress adaptation. Overexpressing mcuA restores the azole-resistance phenotype of the ΔagcA strain to wild-type levels, but not vice versa, indicating McuA plays a dominant role during these stress responses. Using a mitochondrially targeted version of the calcium-sensitive photoprotein aequorin, we found that only mcuA deletion leads to dysfunctional [Ca(2+)]mt and [Ca(2+)]c homeostasis, suggesting that McuA, but not AgcA, contributes to Ca(2+) uptake into mitochondria. Further point-mutation experiments combined with extracellular Ca(2+) chelator treatment verified that two predicted Ca(2+)-binding sites in McuA are required for Ca(2+) uptake into mitochondria and stress responses through the regulation of [Ca(2+)]c homeostasis.
Collapse
|
17
|
Lange M, Weihmann F, Schliebner I, Horbach R, Deising HB, Wirsel SGR, Peiter E. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis. PLoS One 2016; 11:e0158561. [PMID: 27359114 PMCID: PMC4928787 DOI: 10.1371/journal.pone.0158561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/19/2016] [Indexed: 12/02/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fabian Weihmann
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivo Schliebner
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Horbach
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B. Deising
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan G. R. Wirsel
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
18
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
19
|
Meng Q, Chen Y, Zhang M, Chen Y, Yuan J, Murray SC. Molecular characterization and phylogenetic analysis of ZmMCUs in maize. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Scazzocchio C. Fungal biology in the post-genomic era. Fungal Biol Biotechnol 2014; 1:7. [PMID: 28955449 PMCID: PMC5611559 DOI: 10.1186/s40694-014-0007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
In this review I give a personal perspective of how fungal biology has changed since I started my Ph. D. in 1963. At that time we were working in the shadow of the birth of molecular biology as an autonomous and reductionistic discipline, embodied in Crick’s central dogma. This first period was methodologically characterised by the fact that we knew what genes were, but we could not access them directly. This radically changed in the 70s-80s when gene cloning, reverse genetics and DNA sequencing become possible. The “next generation” sequencing techniques have produced a further qualitative revolutionary change. The ready access to genomes and transcriptomes of any microbial organism allows old questions to be asked in a radically different way and new questions to be approached. I provide examples chosen somewhat arbitrarily to illustrate some of these changes, from applied aspects to fundamental problems such as the origin of fungal specific genes, the evolutionary history of genes clusters and the realisation of the pervasiveness of horizontal transmission. Finally, I address how the ready availability of genomes and transcriptomes could change the status of model organisms.
Collapse
Affiliation(s)
- Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK.,Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay, 91405 France
| |
Collapse
|
21
|
Gonçalves AP, Cordeiro JM, Monteiro J, Muñoz A, Correia-de-Sá P, Read ND, Videira A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death. J Cell Sci 2014; 127:3817-29. [PMID: 25037570 PMCID: PMC4150065 DOI: 10.1242/jcs.152058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The model organism Neurospora crassa undergoes programmed cell death when exposed to staurosporine. Here, we show that staurosporine causes defined changes in cytosolic free Ca2+ ([Ca2+]c) dynamics and a distinct Ca2+ signature that involves Ca2+ influx from the external medium and internal Ca2+ stores. We investigated the molecular basis of this Ca2+ response by using [Ca2+]c measurements combined with pharmacological and genetic approaches. Phospholipase C was identified as a pivotal player during cell death, because modulation of the phospholipase C signaling pathway and deletion of PLC-2, which we show to be involved in hyphal development, results in an inability to trigger the characteristic staurosporine-induced Ca2+ signature. Using Δcch-1, Δfig-1 and Δyvc-1 mutants and a range of inhibitors, we show that extracellular Ca2+ entry does not occur through the hitherto described high- and low-affinity Ca2+ uptake systems, but through the opening of plasma membrane channels with properties resembling the transient receptor potential (TRP) family. Partial blockage of the response to staurosporine after inhibition of a putative inositol-1,4,5-trisphosphate (IP3) receptor suggests that Ca2+ release from internal stores following IP3 formation combines with the extracellular Ca2+ influx.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J Miguel Cordeiro
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Monteiro
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Paulo Correia-de-Sá
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nick D Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Nilius B, Flockerzi V. What do we really know and what do we need to know: some controversies, perspectives, and surprises. Handb Exp Pharmacol 2014; 223:1239-80. [PMID: 24961986 DOI: 10.1007/978-3-319-05161-1_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRP channels comprise one of the most rapid growing research topics in ion channel research, in fields related to ion channels including channelopathies and translational medicine. We provide here a critical survey on our current knowledge of TRP channels and highlight some of the still open or controversial questions. This comprises questions related to evolution of TRP channels; biophysics, i.e., permeation; pore properties and gating; modulation; the still-elusive 3D structure; and channel subunits but also their role as general sensory channels and in human diseases. We will conclude that our knowledge on TRP channels is still at the very beginning of an exciting research journey.
Collapse
Affiliation(s)
- Bernd Nilius
- Department Cell Mol Medicine, Laboratory Ion Channel Research, KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, 3000, Leuven, Belgium,
| | | |
Collapse
|
23
|
Prole DL, Taylor CW. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One 2013; 8:e66068. [PMID: 23785469 PMCID: PMC3681921 DOI: 10.1371/journal.pone.0066068] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022] Open
Abstract
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
24
|
Cch1 and Mid1 are functionally required for vegetative growth under low-calcium conditions in the phytopathogenic ascomycete Botrytis cinerea. EUKARYOTIC CELL 2013; 12:712-24. [PMID: 23475703 DOI: 10.1128/ec.00338-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the filamentous phytopathogen Botrytis cinerea, the Ca(2+)/calcineurin signaling cascade has been shown to play an important role in fungal growth, differentiation, and virulence. This study deals with the functional characterization of two components of this pathway, the putative calcium channel proteins Cch1 and Mid1. The cch1 and mid1 genes were deleted, and single and double knockout mutants were analyzed during different stages of the fungal life cycle. Our data indicate that Cch1 and Mid1 are functionally required for vegetative growth under conditions of low extracellular calcium, since the growth of both deletion mutants is strongly impaired when they are exposed to the Ca(2+)-chelating agents EGTA and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The impact of external Ca(2+) was investigated by supplementing with CaCl(2) and the ionophore A23187, both of which resulted in elevated growth for all mutants. However, deletion of either gene had no impact on germination, sporulation, hyphal morphology, or virulence. By use of the aequorin reporter system to measure intracellular calcium levels, no differences between the mutant strains and the wild type were obtained. Localization studies revealed a subcellular distribution of the Mid1-green fluorescent protein (GFP) fusion protein in network-like filaments, probably the endoplasmic reticulum (ER) membranes, indicating that Mid1 is not a plasma membrane-located calcium channel in B. cinerea.
Collapse
|