1
|
Layous M, Gildor T, Nehrer T, Qassem A, Wolfenson H, Ben-Tabou de-Leon S. A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo. Proc Natl Acad Sci U S A 2025; 122:e2408628121. [PMID: 39739788 PMCID: PMC11725891 DOI: 10.1073/pnas.2408628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear. Here, we use the sea urchin larval skeletogenesis to investigate the role of substrate stiffness and focal adhesion kinase (FAK) in biomineralization. We demonstrate that substrate stiffness alters spicule morphology and growth, indicating a mechanosensitive response during skeletogenesis. We show that active FAK, F-actin, and vinculin are enriched around the spicules, indicating the formation of focal adhesion complexes and suggesting that the cells sense the mechanical properties of the biomineral. Furthermore, we find that FAK activity is regulated by Rho-associated protein kinase (ROCK) and is crucial for skeletal growth and normal branching. FAK and ROCK activate extracellular signal-regulated kinase (ERK), which regulates skeletogenic gene expression at the tips of the spicules. Thus, the FAK-ROCK-ERK circuit seems to provide essential mechanical feedback on spicule elongation to the skeletogenic gene regulatory network, enabling skeletal growth. Remarkably, the same factors govern mammalian osteoblast differentiation in vitro and pathological calcification in vivo. Thus, this study highlights a common mechanotransduction pathway in biomineralization that was probably independently co-opted across different organisms to shape mineralized structures in metazoans.
Collapse
Affiliation(s)
- Majed Layous
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Tovah Nehrer
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Areen Qassem
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa3525433, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| |
Collapse
|
2
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Targeted activation of androgen receptor signaling in the periosteum improves bone fracture repair. Cell Death Dis 2022; 13:123. [PMID: 35136023 PMCID: PMC8826926 DOI: 10.1038/s41419-022-04595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 12/03/2022]
Abstract
Low testosterone level is an independent predictor of osteoporotic fracture in elderly men as well as increased fracture risk in men undergoing androgen deprivation. Androgens and androgen receptor (AR) actions are essential for bone development and homeostasis but their linkage to fracture repair remains unclear. Here we found that AR is highly expressed in the periosteum cells and is co-localized with a mesenchymal progenitor cell marker, paired-related homeobox protein 1 (Prrx1), during bone fracture repair. Mice lacking the AR gene in the periosteum expressing Prrx1-cre (AR-/Y;Prrx1::Cre) but not in the chondrocytes (AR-/Y;Col-2::Cre) exhibits reduced callus size and new bone volume. Gene expression data analysis revealed that the expression of several collagens, integrins and cell adhesion molecules were downregulated in periosteum-derived progenitor cells (PDCs) from AR-/Y;Prrx1::Cre mice. Mechanistically, androgens-AR signaling activates the AR/ARA55/FAK complex and induces the collagen-integrin α2β1 gene expression that is required for promoting the AR-mediated PDCs migration. Using mouse cortical-defect and femoral graft transplantation models, we proved that elimination of AR in periosteum of host mice impairs fracture healing, regardless of AR existence of transplanted donor graft. While testosterone implanted scaffolds failed to complete callus bridging across the fracture gap in AR-/Y;Prrx1::Cre mice, cell-based transplantation using DPCs re-expressing AR could lead to rescue bone repair. In conclusion, targeting androgen/AR axis in the periosteum may provide a novel therapy approach to improve fracture healing.
Collapse
|
4
|
Dong W, Xu X, Luo Y, Yang C, He Y, Dong X, Wang J. PTX3 promotes osteogenic differentiation by triggering HA/CD44/FAK/AKT positive feedback loop in an inflammatory environment. Bone 2022; 154:116231. [PMID: 34653679 DOI: 10.1016/j.bone.2021.116231] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
The treatment of periodontitis-induced alveolar bone defects remains a clinical challenge. The secreted protein pentraxin 3 (PTX3) protects tissue during inflammation and maintains bone homeostasis in physiological conditions. However, the effects of PTX3 on osteoblast differentiation and bone regeneration after periodontitis remain unclear. Here, we found that MC3T3-E1 mouse pre-osteoblast cells secreted increased PTX3 under TNF-α-induced inflammatory conditions in vitro. Gain-of-function and loss-of-function experiments revealed that PTX3 overexpression promoted osteogenic potential in an inflammatory environment and vice versa. The promoting effect was attributed to the regulatory role of PTX3 on the hyaluronan (HA)-dependent pericellular matrix (PCM). PTX3 was found in the HA-dependent PCM of MC3T3-E1 cells, where it promoted HA synthesis and the expression of CD44 (main HA receptor), enhancing the HA-CD44 interaction. The HA-CD44 interaction further activated focal adhesion kinase (FAK)/protein kinase B (AKT) signaling cascade. FAK/AKT activation promoted the expression of HA synthases 1/2/3 (HAS1/2/3) and CD44 in MC3T3-E1 cells under inflammatory condition, forming a positive feedback loop that activated by PTX3. Importantly, when HA was digested or any one of these molecules in the positive feedback loop was blocked, PTX3 partially lost the ability to promote osteogenic differentiation in an inflammatory environment. Ligatures were removed after seven days of periodontitis induction in vivo, to investigate alveolar bone regeneration after periodontitis. Histological and Micro-CT evaluation after seven and 14 days of local PTX3 treatment showed that alveolar bone healing was significantly improved compared to the vehicle control group. These findings suggested that PTX3 can induce osteogenic differentiation in an in vitro inflammatory environment by triggering the HA/CD44/FAK/AKT positive feedback loop, and promote bone regeneration after periodontitis.
Collapse
Affiliation(s)
- Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
5
|
Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor. Int J Mol Sci 2020; 21:ijms21249579. [PMID: 33339165 PMCID: PMC7765567 DOI: 10.3390/ijms21249579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.
Collapse
|
6
|
Park KR, Leem HH, Cho M, Kang SW, Yun HM. Effects of the amide alkaloid piperyline on apoptosis, autophagy, and differentiation of pre-osteoblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153347. [PMID: 32992084 DOI: 10.1016/j.phymed.2020.153347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Amide alkaloidsare typical constituents in plants of the Piperaceae family. Most of the pharmacological properties of Piper nigrum L. are attributed to the major amide alkaloid, piperine. Piperyline (PIPE) is a further amide alkaloid that has been isolated from P. nigrum. HYPOTHESIS/PURPOSE This study was performed to examine the biological effects of PIPE on pre-osteoblasts and elucidate the underlying mechanisms. STUDY DESIGN We investigated the effects of PIPE in MC3T3E-1 cells, which are widely used for studying osteoblast behavior in in vitro cell systems. METHODS We evaluated cell viability based on the MTT assay, apoptosis by TUNEL staining, adhesion and migration by cell adhesion and migration assays, and osteoblast differentiation by alkaline phosphatase activity and staining. Western blot and immunocytochemical analyses were used to investigate cell signaling pathways. RESULTS We found that at concentrations ranging from 1 to 30 μM, PIPE inhibited cell growth and induced apoptosis in pre-osteoblasts, which was accompanied by the upregulation of apoptotic proteins but downregulation of anti-apoptotic proteins. In contrast, PIPE had no appreciable effect on the autophagy pathway. Nevertheless, PIPE reduced cell adhesion and migration via the inactivation of non-receptor tyrosine kinase (Src)/focal adhesion kinase (FAK) and mitogen-activated protein kinases, and also promoted the downregulation of matrix metalloproteinase 2 and 9 levels. Furthermore, at concentrations of 10 and 30 μM, PIPE suppressed osteoblast differentiation, as indicated by reductions in alkaline phosphatase staining and activity. In addition, PIPE reduced the protein levels of phospho-Smad1/5/8 and runt-related transcription factor 2, and the mRNA levels of osteopontin, alkaline phosphatase, and osteocalcin. CONCLUSION The findings of this study indicate that PIPE has biological effects associated with cell adhesion, migration, proliferation, and osteoblast differentiation, and suggest a potential role for this alkaloid in the treatment of bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea
| | - Hyun Hee Leem
- National Development Institute of Korean Medicine, Gyeongsan38540, South Korea
| | - MyoungLae Cho
- National Development Institute of Korean Medicine, Gyeongsan38540, South Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea.
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea.
| |
Collapse
|
7
|
7-HYB, a Phenolic Compound Isolated from Myristica fragrans Houtt Increases Cell Migration, Osteoblast Differentiation, and Mineralization through BMP2 and β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21218059. [PMID: 33137925 PMCID: PMC7663243 DOI: 10.3390/ijms21218059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
The seeds (nutmegs) of Myristica fragrans Houtt have been used as popular spices and traditional medicine to treat a variety of diseases. A phenolic compound, ((7S)-8′-(benzo[3′,4′]dioxol-1′-yl)-7-hydroxypropyl)benzene-2,4-diol (7-HYB) was isolated from the seeds of M. fragrans. This study aimed to investigate the anabolic effects of 7-HYB in osteogenesis and bone mineralization. In the present study, 7-HYB promotes the early and late differentiation of MC3T3-E1 preosteoblasts. 7-HYB also elevated cell migration rate during differentiation of the preosteoblasts with the increased phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, p38, and JNK. In addition, 7-HYB induced the protein level of BMP2, the phosphorylation of Smad1/5/8, and the expression of RUNX2. 7-HYB also inhibited GSK3β and subsequently increased the level of β-catenin. However, in bone marrow macrophages (BMMs), 7-HYB has no biological effects in cell viability, TRAP-positive multinuclear osteoclasts, and gene expression (c-Fos and NF-ATc1) in receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Our findings suggest that 7-HYB plays an important role in osteoblast differentiation through the BMP2 and β-catenin signaling pathway. It also indicates that 7-HYB might have a therapeutic effect for the treatment of bone diseases such as osteoporosis and periodontitis.
Collapse
|
8
|
TMARg, a Novel Anthraquinone Isolated from Rubia cordifolia Nakai, Increases Osteogenesis and Mineralization through BMP2 and β-Catenin Signaling. Int J Mol Sci 2020; 21:ijms21155332. [PMID: 32727092 PMCID: PMC7432489 DOI: 10.3390/ijms21155332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Plant extracts have long been regarded as useful medicines in the treatment of human diseases. Rubia cordifolia Nakai has been used as a traditional medicine, as it has pharmacological properties such as antioxidant and anti-inflammatory activity. However, the biological functions of TMARg, isolated from the roots of R. cordifolia, in osteoblast differentiation remain unknown. This study was performed to investigate the pharmacological effects and intracellular signaling of TMARg in the osteoblast differentiation of pre-osteoblast MC3T3-E1 cells and mesenchymal precursor C2C12 cells. Methods: Cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP), and by staining it with Alizarin red S (ARS). Cell migration was determined by using migration assays. Western blot analysis and immunocytochemical analysis were used to examine the intracellular signaling pathways and differentiation proteins. Results: In the present study, TMARg showed no cytotoxicity and increased the osteoblast differentiation in pre-osteoblasts, as assessed from the alkaline phosphate (ALP) staining and activity and ARS staining. TMARg also induced BMP2 expression and increased the p-smad1/5/8-RUNX2 and β-catenin pathways in both MC3T3-E1 and C2C12 cells. Furthermore, TMARg activated mitogen-activated protein kinases (MAPKs) and increased the cell migration rate. In addition, the TMARg-mediated osteoblast differentiation was suppressed by BMP and Wnt inhibitors with the downregulation of BMP2 expression. Conclusion: These findings demonstrate that TMARg exerts pharmacological and biological effects on osteoblast differentiation through the activation of BMP2 and β-catenin signaling pathways, and suggest that TMARg might be a potential phytomedicine for the treatment of bone diseases.
Collapse
|
9
|
A Phytochemical Constituent, (E)-Methyl-Cinnamate Isolated from Alpinia katsumadai Hayata Suppresses Cell Survival, Migration, and Differentiation in Pre-Osteoblasts. Int J Mol Sci 2020; 21:ijms21103700. [PMID: 32456334 PMCID: PMC7279157 DOI: 10.3390/ijms21103700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND (E)-methyl-cinnamate (EMC), a phytochemical constituent isolated from Alpinia katsumadai Hayata, is a natural flavor compound with anti-inflammatory properties, which is widely used in the food and commodity industry. However, the pharmacological effects of methyl-cinnamate on pre-osteoblasts remain unknown. This study aimed to investigate the pharmacological effects and mechanisms of EMC in pre-osteoblast MC3T3-E1 cells (pre-osteoblasts). METHODS Cell viability and apoptosis were evaluated using the MTT assay and TUNEL staining. Cell migration and osteoblast differentiation were examined using migration assays, as well as alkaline phosphatase activity and staining assays. Western blot analysis was used to examine intracellular signaling pathways and apoptotic proteins. RESULTS EMC decreased cell viability with morphological changes and increased apoptosis in pre-osteoblasts. EMC also induced the cleavage of Poly (ADP-ribose) polymerase (PARP) and caspase-3 and reduced the expression of anti-apoptotic proteins. In addition, EMC increased TUNEL-positive cells in pre-osteoblasts, decreased the activation of mitogen-activated protein kinases, and suppressed cell migration rate in pre-osteoblasts. Subsequently, EMC inhibited the osteoblast differentiation of pre-osteoblasts, as assessed by alkaline phosphatase staining and activity assays. CONCLUSION These findings demonstrate that EMC has a pharmacological and biological role in cell survival, migration, and osteoblast differentiation. It suggests that EMC might be a potential phytomedicine for treating abnormalities of osteoblast function in bone diseases.
Collapse
|
10
|
Mukherjee A, Singh R, Udayan S, Biswas S, Reddy PP, Manmadhan S, George G, Kumar S, Das R, Rao BM, Gulyani A. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. eLife 2020; 9:50571. [PMID: 32017701 PMCID: PMC7000222 DOI: 10.7554/elife.50571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Randhir Singh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sreeram Udayan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Saumya Manmadhan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shilpa Kumar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Bangalore, India
| | - Balaji M Rao
- North Carolina State University, Raleigh, United States
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
11
|
Veronesi F, Tschon M, Visani A, Fini M. Biosensors for real-time monitoring of physiological processes in the musculoskeletal system: A systematic review. J Cell Physiol 2019; 234:21504-21518. [PMID: 31062360 DOI: 10.1002/jcp.28753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 11/09/2022]
Abstract
Biosensors are composed of (bio)receptors, transducers, and detection systems and are able to convert the biological stimulus into a measurable signal. This systematic review evaluates the current state of the art of innovation and research in this field, identifying the biosensors that in vitro monitor the musculoskeletal system cellular processes. Two databases found 20 in vitro studies, from January 1, 2008 to December 31, 2017, dealing with musculoskeletal system cells. The biosensors were divided into two groups based on the transduction mechanism: optical or electrochemical. The first group evaluated osteoblasts or mesenchymal stem cell (MSC) biocompatibility, viability, differentiation, alkaline phosphatase, enzyme, and protein detection. The second group detected cell impedance, ATP release, and superoxide concentration in tenocytes, osteoblasts, MSCs, and myoblasts. This review highlighted that the in vitro scenario is still at an early phase and limited for what concerns both the type of bioanalyte and for the type of system detector used.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Visani
- Laboratory of Biomechanics and Technology Innovation, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
12
|
Heusschen R, Muller J, Binsfeld M, Marty C, Plougonven E, Dubois S, Mahli N, Moermans K, Carmeliet G, Léonard A, Baron F, Beguin Y, Menu E, Cohen-Solal M, Caers J. SRC kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma. Oncotarget 2017; 7:30712-29. [PMID: 27095574 PMCID: PMC5058712 DOI: 10.18632/oncotarget.8750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM)-associated osteolytic bone disease is a major cause of morbidity and mortality in MM patients and the development of new therapeutic strategies is of great interest. The proto-oncogene SRC is an attractive target for such a strategy. In the current study, we investigated the effect of treatment with the SRC inhibitor saracatinib (AZD0530) on osteoclast and osteoblast differentiation and function, and on the development of MM and its associated bone disease in the 5TGM.1 and 5T2MM murine MM models. In vitro data showed an inhibitory effect of saracatinib on osteoclast differentiation, polarization and resorptive function. In osteoblasts, collagen deposition and matrix mineralization were affected by saracatinib. MM cell proliferation and tumor burden remained unaltered following saracatinib treatment and we could not detect any synergistic effects with drugs that are part of standard care in MM. We observed a marked reduction of bone loss after treatment of MM-bearing mice with saracatinib as reflected by a restoration of trabecular bone parameters to levels observed in naive control mice. Histomorphometric analyses support that this occurs through an inhibition of bone resorption. In conclusion, these data further establish SRC inhibition as a promising therapeutic approach for the treatment of MM-associated osteolytic bone disease.
Collapse
Affiliation(s)
- Roy Heusschen
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Joséphine Muller
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Marilène Binsfeld
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Caroline Marty
- INSERM-UMR-1132, Hôpital Lariboisière and Université Paris Diderot, Paris, France
| | - Erwan Plougonven
- Department of Chemical Engineering, PEPs (Products, Environments, Processes), University of Liège, Liège, Belgium
| | - Sophie Dubois
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Nadia Mahli
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Angélique Léonard
- Department of Chemical Engineering, PEPs (Products, Environments, Processes), University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martine Cohen-Solal
- INSERM-UMR-1132, Hôpital Lariboisière and Université Paris Diderot, Paris, France
| | - Jo Caers
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| |
Collapse
|
13
|
Rajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J 2016; 31:937-953. [PMID: 27881487 DOI: 10.1096/fj.201600645r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/11/2022]
Abstract
Focal adhesion kinase (FAK) is critical in adhesion-dependent signaling, but its role in osteogenesis in vivo is ill defined. We deleted Fak in fibroblasts and osteoblasts in Floxed-Fak mice bred with those expressing Cre-recombinase driven by 3.6-kb α1(I)-collagen promoter. Compared with wild-type (WT), conditional FAK-knockout (CFKO) mice were shorter (2-fold; P < 0.0001) and had crooked, shorter tails (50%; P < 0.0001). Microcomputed tomography analysis showed reduced bone volume (4-fold in tails; P < 0.0001; 2-fold in mandibles; P < 0.0001), whereas bone surface area/bone volume increased (3-fold in tails; P < 0.0001; 2.5-fold in mandibles; P < 0.001). Collagen density and fiber alignment in periodontal ligament were reduced by 4-fold (P < 0.0001) and 30% (P < 0.05), respectively, in CFKO mice. In cultured CFKO osteoblasts, mineralization at d 7 and mineralizing colony-forming units at d 21 were 30% (P < 0.0001) and >3-fold less than WT, respectively. Disruptions of FAK function in osteoblasts by conditional knockout, siRNA-knockdown, or FAK inhibitor reduced mRNA and protein expression of Runx2 (>30%), Osterix (>25%), and collagen-1 (2-fold). Collagen synthesis was abrogated in WT osteoblasts with Runx2 knockdown and in Fak-null fibroblasts transfected with an FAK kinase domain mutant or a kinase-impaired mutant (Y397F). These data indicate that FAK regulates osteogenesis through transcription factors that regulate collagen synthesis.-Rajshankar, D., Wang, Y., McCulloch, C. A. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts.
Collapse
Affiliation(s)
- Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Xu W, Liu B, Liu X, Chiang MYM, Li B, Xu Z, Liao X. Regulation of BMP2-induced intracellular calcium increases in osteoblasts. J Orthop Res 2016; 34:1725-1733. [PMID: 26890302 DOI: 10.1002/jor.23196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023]
Abstract
Although bone morphogenetic protein-2 (BMP2) is a well-characterized regulator that stimulates osteoblast differentiation, little is known about how it regulates intracellular Ca2+ signaling. In this study, intracellular Ca2+ concentration ([Ca2+ ]i ) upon BMP2 application, focal adhesion kinase (FAK) and Src activities were measured in the MC3T3-E1 osteoblast cell line using fluorescence resonance energy transfer-based biosensors. Increase in [Ca2+ ]i , FAK, and Src activities were observed during BMP2 stimulation. The removal of extracellular calcium, the application of membrane channel inhibitors streptomycin or nifedipine, the FAK inhibitor PF-573228 (PF228), and the alkaline phosphatase (ALP) siRNA all blocked the BMP2-stimulated [Ca2+ ]i increase, while the Src inhibitor PP1 did not. In contrast, a gentle decrease of endoplasmic reticulum calcium concentration was found after BMP2 stimulation, which could be blocked by both streptomycin and PP1. Further experiments revealed that BMP2-induced FAK activation could not be inhibited by PP1, ALP siRNA or the calcium channel inhibitor nifedipine. PF228, but not PP1 or calcium channel inhibitors, suppressed ALP elevation resulting from BMP2 stimulation. Therefore, our results suggest that BMP2 can increase [Ca2+ ]i through extracellular calcium influx regulated by FAK and ALP and can deplete ER calcium through Src signaling simultaneously. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1725-1733, 2016.
Collapse
Affiliation(s)
- Wenfeng Xu
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Xue Liu
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Martin Y M Chiang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, 20899, Maryland
| | - Bo Li
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Zichen Xu
- Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
15
|
Usui M, Uno M, Nishida E. Src family kinases suppress differentiation of brown adipocytes and browning of white adipocytes. Genes Cells 2016; 21:302-10. [DOI: 10.1111/gtc.12340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Mai Usui
- Department of Cell and Development Biology Graduate School of Biostudies Kyoto University Sakyo‐ku Kyoto 606‐8502 Japan
| | - Masaharu Uno
- Department of Cell and Development Biology Graduate School of Biostudies Kyoto University Sakyo‐ku Kyoto 606‐8502 Japan
| | - Eisuke Nishida
- Department of Cell and Development Biology Graduate School of Biostudies Kyoto University Sakyo‐ku Kyoto 606‐8502 Japan
- AMED‐CREST 1‐7‐1 Otemachi, Chiyoda‐ku Tokyo 100‐0004 Japan
| |
Collapse
|
16
|
Mastrangelo F, Quaresima R, Grilli A, Tettamanti L, Vinci R, Sammartino G, Tetè S, Gherlone E. A comparison of bovine bone and hydroxyapatite scaffolds during initial bone regeneration: an in vitro evaluation. IMPLANT DENT 2015; 22:613-22. [PMID: 24185465 DOI: 10.1097/id.0b013e3182a69858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the different behavior of 3-dimensional biomaterial scaffolds-Bovine Bone (BB; Bio-Oss) and Hydroxyapatite (HA; ENGIpore)-during initial bone healing and development. MATERIALS AND METHODS Human dental papilla stem cells (hDPaSCs) were selected with FACsorter cytofluorimetric analysis, cultured with osteogenic medium, and analyzed with Alizarin red stained after differentiation. The obtained osteoblast-like cells (OCs) were cultured with BB and HA. alkaline phosphatase (ALP), OC, MEPE, and runt-related transcription factor 2 (RUNX2) expression markers were investigated performing Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analysis. After 40 days, samples were analyzed by light and electron microscopy. RESULTS All the samples showed high in vitro biocompatibility and qualitative differences of OCs adhesion. RT-PCR and Western blot data exhibited similar marker rate, but ALP, OC, MEPE, and RUNX2expression, during initial healing and bone regeneration phase, was higher and faster in human dental papilla onto BB than in HA scaffolds. In biomaterials growth, RUNX2 seems to play an important role as a key regulator in human OCs from dental papilla bone development. CONCLUSION Different surface BB scaffold characteristics seem to play a critical role in OCs differentiation showing different time of bone regeneration morphological characteristics as well as higher and faster levels of all observed markers.
Collapse
Affiliation(s)
- Filiberto Mastrangelo
- *Young Researcher, Department of Oral Medical Science and Biotechnology, University of Chieti, Chieti, Italy. †Associate Professor of Biomaterial Engineering, Department of Civil Engineering, Architecture and Environment, University of L'Aquila, L'Aquila, Italy. ‡Ordinary Professor of Biology, Department of Oral Medical Science and Biotechnology, University of Chieti, Chieti, Italy; Leonardo da Vinci Telematic University, Torrevecchia Teatina (Chieti), Chieti, Italy. §Researcher of Pedodontics and Orthodontics, Department of Oral Science, Insubria University of Varese, Varese, Italy. ‖Maxillofacial Surgeon, Department of Oral Science, University Vita e Salute Milano, Milan, Italy. ¶Associate Professor of Maxillofacial Surgery, Department of Surgical Science, University Federico II Napoli, Naples, Italy. #Associate Professor of Oral Surgery, Department of Oral Medical Science and Biotechnology, University of Chieti, Chieti, Italy. **Ordinary Professor and Dean of Oral and Maxillofacial Surgery, Department of Oral Science, University Vita e Salute Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Saidak Z, Le Henaff C, Azzi S, Marty C, Da Nascimento S, Sonnet P, Marie PJ. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem 2015; 290:6903-12. [PMID: 25631051 DOI: 10.1074/jbc.m114.621219] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The α5β1 integrin is a key fibronectin (FN) receptor that binds to RGD-containing peptides to mediate cell adhesion. We previously reported that α5β1 integrin promotes osteogenic differentiation in mesenchymal skeletal cells (MSCs), but the underlying mechanisms are not fully understood. In this study, we determined the signaling mechanisms induced by α5β1 integrin interaction with its high-affinity ligand CRRETAWAC in murine and human MSCs and in vivo. We show that cyclized CRRETAWAC fully displaced MSC adhesion to FN, whereas related peptides lacking the full RRET sequence produced a partial displacement, indicating that RRET acts as an RGD-like sequence that is required to antagonize FN-mediated cell adhesion. However, all peptides increased focal adhesion kinase phosphorylation, OSE2 transcriptional activity, osteoblast gene expression, and matrix mineralization in MSCs, indicating that peptide-induced α5β1 integrin priming can promote osteogenic differentiation independently of the RRET sequence. Biochemical analyses showed that peptide-induced α5β1 integrin priming transiently increased PI3K/Akt phosphorylation and promoted Wnt/β-catenin transcriptional activity independently of RRET. Consistently, pharmacological inhibition of PI3K activity reduced osteoblast differentiation and abolished Wnt regulatory gene expression induced by α5β1 integrin priming. In vivo, systemic delivery of cyclized GACRETAWACGA linked to (DSS)6 to allow delivery to bone-forming sites for 6 weeks increased serum osteocalcin levels and improved long bone mass and microarchitecture in SAMP-6 senescent osteopenic mice. The results support a mechanism whereby α5β1 integrin priming by high-affinity ligands integrates Wnt/β-catenin signaling to promote osteoblast differentiation independently of cell adhesion, which could be used to improve bone mass and microarchitecture in the aging skeleton.
Collapse
Affiliation(s)
- Zuzana Saidak
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Carole Le Henaff
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Sofia Azzi
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Caroline Marty
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Sophie Da Nascimento
- the Equipe Théra, Laboratoire de Glycochimie, des Antimicrobiens, et des Agroressources (LG2A)-FRE-CNRS 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France
| | - Pascal Sonnet
- the Equipe Théra, Laboratoire de Glycochimie, des Antimicrobiens, et des Agroressources (LG2A)-FRE-CNRS 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France
| | - Pierre J Marie
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| |
Collapse
|
18
|
Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 2015; 70:28-36. [PMID: 25138551 DOI: 10.1016/j.bone.2014.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/06/2023]
Abstract
Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Walid Zaher
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
19
|
Sondag GR, Salihoglu S, Lababidi SL, Crowder DC, Moussa FM, Abdelmagid SM, Safadi FF. Osteoactivin induces transdifferentiation of C2C12 myoblasts into osteoblasts. J Cell Physiol 2014; 229:955-66. [PMID: 24265122 DOI: 10.1002/jcp.24512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022]
Abstract
Osteoactivin (OA) is a novel osteogenic factor important for osteoblast differentiation and function. Previous studies showed that OA stimulates matrix mineralization and transcription of osteoblast specific genes required for differentiation. OA plays a role in wound healing and its expression was shown to increase in post fracture calluses. OA expression was reported in muscle as OA is upregulated in cases of denervation and unloading stress. The regulatory mechanisms of OA in muscle and bone have not yet been determined. In this study, we examined whether OA plays a role in transdifferentiation of C2C12 myoblast into osteoblasts. Infected C2C12 with a retroviral vector overexpressing OA under the CMV promoter were able to transdifferentiate from myoblasts into osteoblasts. Immunofluorescence analysis showed that skeletal muscle marker MF-20 was severely downregulated in cells overexpressing OA and contained significantly less myotubes compared to uninfected control. C2C12 myoblasts overexpressing OA showed an increase in expression of bone specific markers such as alkaline phosphatase and alizarin red staining, and also showed an increase in Runx2 protein expression. We also detected increased levels of phosphorylated focal adhesion kinase (FAK) in C2C12 myoblasts overexpressing OA compared to control. Taken together, our results suggest that OA is able to induce transdifferentiation of myoblasts into osteoblasts through increasing levels of phosphorylated FAK.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio
| | | | | | | | | | | | | |
Collapse
|
20
|
Rahman MM, Subramani J, Ghosh M, Denninger JK, Takeda K, Fong GH, Carlson ME, Shapiro LH. CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle. Front Physiol 2014; 4:402. [PMID: 24409152 PMCID: PMC3885827 DOI: 10.3389/fphys.2013.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/21/2013] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus, show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT) and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1), showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus, contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal stem cell therapies.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA ; Department of Anesthesiology, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Jiyeon K Denninger
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Kotaro Takeda
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Morgan E Carlson
- Center on Aging, University of Connecticut Health Center Farmington, CT, USA ; Drug Discovery, Genomics Institute of the Novartis Research Foundation San Diego, CA, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
21
|
Lu S, Wang Y. Single-cell imaging of mechanotransduction in endothelial cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:25-51. [PMID: 25081613 DOI: 10.1016/b978-0-12-394624-9.00002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) are constantly exposed to chemical and mechanical microenvironment in vivo. In mechanotransduction, cells can sense and translate the extracellular mechanical cues into intracellular biochemical signals, to regulate cellular processes. This regulation is crucial for many physiological functions, such as cell adhesion, migration, proliferation, and survival, as well as the progression of disease such as atherosclerosis. Here, we overview the current molecular understanding of mechanotransduction in ECs associated with atherosclerosis, especially those in response to physiological shear stress. The enabling technology of live-cell imaging has allowed the study of spatiotemporal molecular events and unprecedented understanding of intracellular signaling responses in mechanotransduction. Hence, we also introduce recent studies on mechanotransduction using single-cell imaging technologies.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Horikiri Y, Shimo T, Kurio N, Okui T, Matsumoto K, Iwamoto M, Sasaki A. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing. PLoS One 2013; 8:e76785. [PMID: 24124594 PMCID: PMC3790742 DOI: 10.1371/journal.pone.0076785] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/03/2013] [Indexed: 02/01/2023] Open
Abstract
Several biological studies have indicated that hedgehog signaling plays an important role in osteoblast proliferation and differentiation, and sonic hedgehog (SHH) expression is positively correlated with phosphorylated focal adhesion kinase (FAK) Tyr(397). However, the relationship between them and their role in the process of normal fracture repair has not been clarified yet. Immunohistochemical analysis revealed that SHH and pFAK Tyr(397) were expressed in bone marrow cells and that pFAK Tyr(397) was also detected in ALP-positive osteoblasts near the TRAP-positive osteoclasts in the fracture site in the ribs of mice on day 5 after fracture. SHH and pFAK Tyr(397) were detectable in osteoblasts near the hypertrophic chondrocytes on day 14. In vitro analysis showed that SHH up-regulated the expression of FAK mRNA and pFAK Tyr(397) time dependently in osteoblastic MC3T3-E1 cells. Functional analysis revealed that 5 lentivirus encoding short hairpin FAK RNAs (shFAK)-infected MC3T3-E1 cell groups displayed a round morphology and decreased proliferation, adhesion, migration, and differentiation. SHH stimulated the proliferation and differentiation of MC3T3-E1 cells, but had no effect on the shFAK-infected cells. SHH also stimulated osteoclast formation in a co-culture system containing MC3T3-E1 and murine CD11b(+) bone marrow cells, but did not affect the shFAK-infected MC3T3-E1 co-culture group. These data suggest that SHH signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture and regulated their proliferation and differentiation, as well as osteoclast formation, via FAK signaling.
Collapse
Affiliation(s)
- Yuu Horikiri
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Naito Kurio
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Iwamoto
- Division of Orthopedic Surgery, the Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Liao X, Lu S, Wu Y, Xu W, Zhuo Y, Peng Q, Li B, Zhang L, Wang Y. The effect of differentiation induction on FAK and Src activity in live HMSCs visualized by FRET. PLoS One 2013; 8:e72233. [PMID: 24015220 PMCID: PMC3754985 DOI: 10.1371/journal.pone.0072233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022] Open
Abstract
FAK and Src signaling play important roles in cell differentiation, survival and migration. However, it remains unclear how FAK and Src activities are regulated at the initial stage of stem cell differentiation. We utilized fluorescence resonance energy transfer (FRET)-based FAK and Src biosensors to visualize these kinase activities at the plasma membrane of human mesenchymal stem cells (HMSCs) under the stimulation of osteogenic, myoblastic, or neural induction reagents. Our results indicate that the membrane FAK and Src activities are distinctively regulated by these differentiation induction reagents. FAK and Src activities were both up-regulated with positive feedback upon osteogenic induction, while myoblastic induction only activated Src, but not FAK. Neural induction, however, transiently activated FAK and subsequently Src, which triggered a negative feedback to partially inhibit FAK activity. These results unravel distinct regulation mechanisms of FAK and Src activities during HMSC fate decision, which should advance our understanding of stem cell differentiation in tissue engineering.
Collapse
Affiliation(s)
- Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
- Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Department of Integrative and Molecular Physiology, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Shaoying Lu
- Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Yiqian Wu
- Biomedical Engineering Programme, Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, NT, Hong Kong, People's Republic of China
| | - Wenfeng Xu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
| | - Yue Zhuo
- Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Qin Peng
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Bo Li
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
| | - Ling Zhang
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
| | - Yingxiao Wang
- Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Department of Integrative and Molecular Physiology, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Xu W, Liao X, Zhang L, Liu B. Tissue induction, the relationship between biomaterial’s microenvironment and mesenchymal stem cell differentiation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.61011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|