1
|
Fulton RL, Sawyer BR, Downs DM. RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:339-352. [PMID: 39434937 PMCID: PMC11491847 DOI: 10.15698/mic2024.10.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. In vitro RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of E. coli or S. enterica without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in S. enterica and E. coli. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.
Collapse
Affiliation(s)
- Ronnie L. Fulton
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| | - Bryce R. Sawyer
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| | - Diana M Downs
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| |
Collapse
|
2
|
Shen W, Downs DM. Tetrahydrofolate levels influence 2-aminoacrylate stress in Salmonella enterica. J Bacteriol 2024; 206:e0004224. [PMID: 38563759 PMCID: PMC11025330 DOI: 10.1128/jb.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.
Collapse
Affiliation(s)
- Wangchen Shen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
The Cysteine Desulfurase IscS Is a Significant Target of 2-Aminoacrylate Damage in Pseudomonas aeruginosa. mBio 2022; 13:e0107122. [PMID: 35652590 PMCID: PMC9239102 DOI: 10.1128/mbio.01071-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa encodes eight members of the Rid protein superfamily. PA5339, a member of the RidA subfamily, is required for full growth and motility of P. aeruginosa. Our understanding of RidA integration into the metabolic network of P. aeruginosa is at an early stage, with analyses largely guided by the well-established RidA paradigm in Salmonella enterica. A P. aeruginosa strain lacking RidA has a growth and motility defect in a minimal glucose medium, both of which are exacerbated by exogenous serine. All described ridA mutant phenotypes are rescued by supplementation with isoleucine, indicating the primary generator of the reactive metabolite 2-aminoacrylate (2AA) in ridA mutants is a threonine/serine dehydratase. However, the critical (i.e., phenotype determining) targets of 2AA leading to growth and motility defects in P. aeruginosa remained undefined. This study was initiated to probe the effects of 2AA stress on the metabolic network of P. aeruginosa by defining the target(s) of 2AA that contribute to physiological defects of a ridA mutant. Suppressor mutations that restored growth to a P. aeruginosa ridA mutant were isolated, including an allele of iscS (encoding cysteine desulfurase). Damage to IscS was identified as a significant cause of growth defects of P. aeruginosa during enamine stress. A suppressing allele encoded an IscS variant that was less sensitive to damage by 2AA, resulting in a novel mechanism of phenotypic suppression of a ridA mutant. IMPORTANCE 2-aminoacrylate (2AA) is a reactive metabolite formed as an intermediate in various enzymatic reactions. In the absence of RidA, this metabolite can persist in vivo where it attacks and inactivates specific PLP-dependent enzymes, causing metabolic defects and organism-specific phenotypes. This work identifies the cysteine desulfurase IscS as the critical target of 2AA in Pseudomonas aeruginosa. A single substitution in IscS decreased sensitivity to 2AA and suppressed growth phenotypes of a ridA mutant. Here, we provide the first report of suppression of a ridA mutant phenotype by altering the sensitivity of a target enzyme to 2AA.
Collapse
|
5
|
Whitaker GH, Ernst DC, Downs DM. Absence of MMF1 disrupts heme biosynthesis by targeting Hem1pin Saccharomyces cerevisiae. Yeast 2021; 38:615-624. [PMID: 34559917 PMCID: PMC8958428 DOI: 10.1002/yea.3670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The RidA subfamily of the Rid (YjgF/YER057c/UK114) superfamily of proteins is broadly distributed and found in all domains of life. RidA proteins are enamine/imine deaminases. In the organisms that have been investigated, lack of RidA results in accumulation of the reactive enamine species 2-aminoacrylate (2AA) and/or its derivative imine 2-iminopropanoate (2IP). The accumulated enamine/imine species can damage specific pyridoxal phosphate (PLP)-dependent target enzymes. The metabolic imbalance resulting from the damaged enzymes is organism specific and based on metabolic network configuration. Saccharomyces cerevisiae encodes two RidA homologs, one localized to the cytosol and one to the mitochondria. The mitochondrial RidA homolog, Mmf1p, prevents enamine/imine stress and is important for normal growth and maintenance of mitochondrial DNA. Here, we show that Mmf1p is necessary for optimal heme biosynthesis. Biochemical and/or genetic data herein support a model in which accumulation of 2AA and or 2IP, in the absence of Mmf1p, inactivates Hem1p, a mitochondrially located PLP-dependent enzyme required for heme biosynthesis.
Collapse
Affiliation(s)
| | | | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| |
Collapse
|
6
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Borchert AJ, Ernst DC, Downs DM. Reactive Enamines and Imines In Vivo: Lessons from the RidA Paradigm. Trends Biochem Sci 2019; 44:849-860. [PMID: 31103411 PMCID: PMC6760865 DOI: 10.1016/j.tibs.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Metabolic networks are webs of integrated reactions organized to maximize growth and replication while minimizing the detrimental impact that reactive metabolites can have on fitness. Enamines and imines, such as 2-aminoacrylate (2AA), are reactive metabolites produced as short-lived intermediates in a number of enzymatic processes. Left unchecked, the inherent reactivity of enamines and imines may perturb the metabolic network. Genetic and biochemical studies have outlined a role for the broadly conserved reactive intermediate deaminase (Rid) (YjgF/YER057c/UK114) protein family, in particular RidA, in catalyzing the hydrolysis of enamines and imines to their ketone product. Herein, we discuss new findings regarding the biological significance of enamine and imine production and outline the importance of RidA in controlling the accumulation of reactive metabolites.
Collapse
Affiliation(s)
- Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Dustin C Ernst
- Current address: Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Shukla S, Mahadevan S. The ridA gene of E. coli is indirectly regulated by BglG through the transcriptional regulator Lrp in stationary phase. Microbiology (Reading) 2019; 165:683-696. [DOI: 10.1099/mic.0.000806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shambhavi Shukla
- 1 Department of Molecular Reproduction, Development and Genetics Indian Institute of Science, Bangalore 560012, India
| | - S. Mahadevan
- 1 Department of Molecular Reproduction, Development and Genetics Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Borchert AJ, Downs DM. Analyses of variants of the Ser/Thr dehydratase IlvA provide insight into 2-aminoacrylate metabolism in Salmonella enterica. J Biol Chem 2018; 293:19240-19249. [PMID: 30327426 PMCID: PMC6302184 DOI: 10.1074/jbc.ra118.005626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
RidA is a conserved and broadly distributed protein that has enamine deaminase activity. In a variety of organisms tested thus far, lack of RidA results in the accumulation of the reactive metabolite 2-aminoacrylate (2AA), an obligate intermediate in the catalytic mechanism of several pyridoxal 5'-phosphate (PLP)-dependent enzymes. This study reports the characterization of variants of the biosynthetic serine/threonine dehydratase (EC 4.3.1.19; IlvA), which is a significant generator of 2AA in the bacteria Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa and the yeast Saccharomyces cerevisiae Two previously identified mutations, ilvA3210 and ilvA3211, suppressed the phenotypic growth consequences of 2AA accumulation in S. enterica Characterization of the respective protein variants suggested that they affect 2AA metabolism in vivo by two different catalytic mechanisms, both leading to an overall reduction in serine dehydratase activity. To emphasize the physiological relevance of the in vitro enzyme characterization, we sought to explain in vivo phenotypes using these data. A simple mathematical model describing the impact these catalytic deficiencies had on 2AA production was generally supported by our data. However, caveats arose when kinetic parameters, determined in vitro, were used to predict formation of the isoleucine precursor 2-ketobutyrate and model in vivo (growth) behaviors. Altogether, our data support the need for a holistic approach, including in vivo and in vitro analyses, to generate data used in understanding and modeling metabolism.
Collapse
Affiliation(s)
- Andrew J Borchert
- From the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Diana M Downs
- From the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
10
|
Expression of Pyridoxal 5'-Phosphate-Independent Racemases Can Reduce 2-Aminoacrylate Stress in Salmonella enterica. J Bacteriol 2018; 200:JB.00751-17. [PMID: 29440254 DOI: 10.1128/jb.00751-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/09/2018] [Indexed: 11/20/2022] Open
Abstract
The RidA protein (PF01042) from Salmonella enterica is a deaminase that quenches 2-aminoacrylate (2AA) and other reactive metabolites. In the absence of RidA, 2AA accumulates, damages cellular enzymes, and compromises the metabolic network. In vitro, RidA homologs from all domains of life deaminate 2AA, and RidA proteins from plants, bacteria, yeast, and humans complement the mutant phenotype of a ridA mutant strain of S. enterica In the present study, a methanogenic archaeon, Methanococcus maripaludis S2, was used to probe alternative mechanisms to restore metabolic balance. M. maripaludis MMP0739, which is annotated as an aspartate/glutamate racemase, complemented a ridA mutant strain and reduced the intracellular 2AA burden. The aspartate/glutamate racemase YgeA from Escherichia coli or S. enterica, when provided in trans, similarly restored wild-type growth to a ridA mutant. These results uncovered a new mechanism to ameliorate metabolic stress, and they suggest that direct quenching by RidA is not the only strategy to quench 2AA.IMPORTANCE 2-Aminoacrylate is an endogenously generated reactive metabolite that can damage cellular enzymes if not directly quenched by the conserved deaminase RidA. This study used an archaeon to identify a RidA-independent mechanism to prevent metabolic stress caused by 2AA. The data suggest that a gene product annotated as an aspartate/glutamate racemase (MMP0739) produces a metabolite that can quench 2AA, expanding our understanding of strategies available to quench reactive metabolites.
Collapse
|
11
|
Ernst DC, Downs DM. Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in Saccharomyces cerevisiae. mBio 2018; 9:e00084-18. [PMID: 29487232 PMCID: PMC5829821 DOI: 10.1128/mbio.00084-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
A variety of metabolic deficiencies and human diseases arise from the disruption of mitochondrial enzymes and/or loss of mitochondrial DNA. Mounting evidence shows that eukaryotes have conserved enzymes that prevent the accumulation of reactive metabolites that cause stress inside the mitochondrion. 2-Aminoacrylate is a reactive enamine generated by pyridoxal 5'-phosphate-dependent α,β-eliminases as an obligatory intermediate in the breakdown of serine. In prokaryotes, members of the broadly conserved RidA family (PF14588) prevent metabolic stress by deaminating 2-aminoacrylate to pyruvate. Here, we demonstrate that unmanaged 2-aminoacrylate accumulation in Saccharomyces cerevisiae mitochondria causes transient metabolic stress and the irreversible loss of mitochondrial DNA. The RidA family protein Mmf1p deaminates 2-aminoacrylate, preempting metabolic stress and loss of the mitochondrial genome. Disruption of the mitochondrial pyridoxal 5'-phosphate-dependent serine dehydratases (Ilv1p and Cha1p) prevents 2-aminoacrylate formation, avoiding stress in the absence of Mmf1p. Furthermore, chelation of iron in the growth medium improves maintenance of the mitochondrial genome in yeast challenged with 2-aminoacrylate, suggesting that 2-aminoacrylate-dependent loss of mitochondrial DNA is influenced by disruption of iron homeostasis. Taken together, the data indicate that Mmf1p indirectly contributes to mitochondrial DNA maintenance by preventing 2-aminoacrylate stress derived from mitochondrial amino acid metabolism.IMPORTANCE Deleterious reactive metabolites are produced as a consequence of many intracellular biochemical transformations. Importantly, reactive metabolites that appear short-lived in vitro have the potential to persist within intracellular environments, leading to pervasive cell damage and diminished fitness. To overcome metabolite damage, organisms utilize enzymatic reactive-metabolite defense systems to rid the cell of deleterious metabolites. In this report, we describe the importance of the RidA/YER057c/UK114 enamine/imine deaminase family in preventing 2-aminoacrylate stress in yeast. Saccharomyces cerevisiae lacking the enamine/imine deaminase Mmf1p was shown to experience pleiotropic growth defects and fails to maintain its mitochondrial genome. Our results provide the first line of evidence that uncontrolled 2-aminoacrylate stress derived from mitochondrial serine metabolism can negatively impact mitochondrial DNA maintenance in eukaryotes.
Collapse
Affiliation(s)
- Dustin C Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Endogenously generated 2-aminoacrylate inhibits motility in Salmonella enterica. Sci Rep 2017; 7:12971. [PMID: 29021529 PMCID: PMC5636819 DOI: 10.1038/s41598-017-13030-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the broadly distributed Rid/YER057c/UK114 protein family have imine/enamine deaminase activity, notably on 2-aminoacrylate (2AA). Strains of Salmonella enterica, and other organisms lacking RidA, have diverse growth phenotypes, attributed to the accumulation of 2AA. In S. enterica, 2AA inactivates a number of pyridoxal 5’-phosephate(PLP)-dependent enzymes, some of which have been linked to the growth phenotypes of a ridA mutant. This study used transcriptional differences between S. enterica wild-type and ridA strains to explore the breadth of the cellular consequences that resulted from accumulation of 2AA. Accumulation of endogenously generated 2AA in a ridA mutant resulted in lower expression of genes encoding many flagellar assembly components, which led to a motility defect. qRT-PCR results were consistent with the motility phenotype of a ridA mutant resulting from a defect in FlhD4C2 activity. In total, the results of comparative transcriptomics correctly predicted a 2AA-dependent motility defect and identified additional areas of metabolism impacted by the metabolic stress of 2AA in Salmonella enterica. Further, the data emphasized the value of integrating global approaches with biochemical genetic approaches to understand the complex system of microbial metabolism.
Collapse
|
13
|
The Response to 2-Aminoacrylate Differs in Escherichia coli and Salmonella enterica, despite Shared Metabolic Components. J Bacteriol 2017; 199:JB.00140-17. [PMID: 28461448 DOI: 10.1128/jb.00140-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
The metabolic network of an organism includes the sum total of the biochemical reactions present. In microbes, this network has an impeccable ability to sense and respond to perturbations caused by internal or external stimuli. The metabolic potential (i.e., network structure) of an organism is often drawn from the genome sequence, based on the presence of enzymes deemed to indicate specific pathways. Escherichia coli and Salmonella enterica are members of the Enterobacteriaceae family of Gram-negative bacteria that share the majority of their metabolic components and regulatory machinery as the "core genome." In S. enterica, the ability of the enamine intermediate 2-aminoacrylate (2AA) to inactivate a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes has been established in vivo In this study, 2AA metabolism and the consequences of its accumulation were investigated in E. coli The data showed that despite the conservation of all relevant enzymes, S. enterica and E. coli differed in both the generation and detrimental consequences of 2AA. In total, these findings suggest that the structure of the metabolic network surrounding the generation and response to endogenous 2AA stress differs between S. enterica and E. coliIMPORTANCE This work compared the metabolic networks surrounding the endogenous stressor 2-aminoacrylate in two closely related members of the Enterobacteriaceae The data showed that despite the conservation of all relevant enzymes in this metabolic node, the two closely related organisms diverged in their metabolic network structures. This work highlights how a set of conserved components can generate distinct network architectures and how this can impact the physiology of an organism. This work defines a model to expand our understanding of the 2-aminoacrylate stress response and the differences in metabolic structures and cellular milieus between S. enterica and E. coli.
Collapse
|
14
|
2-Aminoacrylate Stress Induces a Context-Dependent Glycine Requirement in ridA Strains of Salmonella enterica. J Bacteriol 2015; 198:536-43. [PMID: 26574511 DOI: 10.1128/jb.00804-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The reactive enamine 2-aminoacrylate (2AA) is a metabolic stressor capable of damaging cellular components. Members of the broadly conserved Rid (RidA/YER057c/UK114) protein family mitigate 2AA stress in vivo by facilitating enamine and/or imine hydrolysis. Previous work showed that 2AA accumulation in ridA strains of Salmonella enterica led to the inactivation of multiple target enzymes, including serine hydroxymethyltransferase (GlyA). However, the specific cause of a ridA strain's inability to grow during periods of 2AA stress had yet to be determined. Work presented here shows that glycine supplementation suppressed all 2AA-dependent ridA strain growth defects described to date. Depending on the metabolic context, glycine appeared to suppress ridA strain growth defects by eliciting a GcvB small RNA-dependent regulatory response or by serving as a precursor to one-carbon units produced by the glycine cleavage complex (GCV). In either case, the data suggest that GlyA is the most physiologically sensitive target of 2AA inactivation in S. enterica. The universally conserved nature of GlyA among free-living organisms highlights the importance of RidA in mitigating 2AA stress. IMPORTANCE The RidA stress response prevents 2-aminoacrylate (2AA) damage from occurring in prokaryotes and eukaryotes alike. 2AA inactivation of serine hydroxymethyltransferase (GlyA) from Salmonella enterica restricts glycine and one-carbon production, ultimately reducing fitness of the organism. The cooccurrence of genes encoding 2AA production enzymes and serine hydroxy-methyltransferase (SHMT) in many genomes may in part underlie the evolutionary selection for Rid proteins to maintain appropriate glycine and one-carbon metabolism throughout life.
Collapse
|
15
|
Downs DM, Ernst DC. From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Mol Microbiol 2015; 96:211-9. [PMID: 25620221 DOI: 10.1111/mmi.12945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/03/2023]
Abstract
The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2-aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5'-phosphate-dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602-2605, USA
| | | |
Collapse
|
16
|
Endogenous synthesis of 2-aminoacrylate contributes to cysteine sensitivity in Salmonella enterica. J Bacteriol 2014; 196:3335-42. [PMID: 25002544 DOI: 10.1128/jb.01960-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5'-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes.
Collapse
|
17
|
Niehaus TD, Nguyen TND, Gidda SK, ElBadawi-Sidhu M, Lambrecht JA, McCarty DR, Downs DM, Cooper AJL, Fiehn O, Mullen RT, Hanson AD. Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids. THE PLANT CELL 2014; 26:3010-22. [PMID: 25070638 PMCID: PMC4145128 DOI: 10.1105/tpc.114.126854] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 05/19/2023]
Abstract
RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase.
Collapse
Affiliation(s)
- Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Thuy N D Nguyen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mona ElBadawi-Sidhu
- Metabolics Core, UC Davis Genome Center, University of California, Davis, California 95616
| | | | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Oliver Fiehn
- Metabolics Core, UC Davis Genome Center, University of California, Davis, California 95616
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
18
|
Flynn JM, Christopherson MR, Downs DM. Decreased coenzyme A levels in ridA mutant strains of Salmonella enterica result from inactivated serine hydroxymethyltransferase. Mol Microbiol 2013; 89:751-9. [PMID: 23815688 DOI: 10.1111/mmi.12313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/28/2022]
Abstract
The RidA/Yer057/UK114 family of proteins is well represented across the domains of life and recent work has defined both an in vitro activity and an in vivo role for RidA. RidA proteins have enamine deaminase activity, and in their absence the reactive 2-aminoacrylate (2-AA) accumulates and inactivates at least some pyridoxal 5'-phosphate (PLP)-containing enzymes in Salmonella enterica. The conservation of RidA suggested that 2-AA was a ubiquitous cellular stressor that was generated in central metabolism. Phenotypically, strains of S. enterica that lack RidA accumulated significantly more pyruvate in the growth medium than wild-type strains. Here we dissected this ridA mutant phenotype and showed it was an indirect consequence of damage to serine hydroxymethyltransferase (GlyA; E.C. 2.1.2.1). The results here identified a fourth PLP enzyme as a target of enamine stress in Salmonella.
Collapse
Affiliation(s)
- Jeffrey M Flynn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
19
|
Lambrecht JA, Schmitz GE, Downs DM. RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. mBio 2013; 4:e00033-13. [PMID: 23386433 PMCID: PMC3565831 DOI: 10.1128/mbio.00033-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a coenzyme synthesized by all forms of life. Relevant to the work reported here is the mechanism of the PLP-dependent threonine/serine dehydratases, which generate reactive enamine/imine intermediates that are converted to keto acids by members of the RidA family of enzymes. The RidA protein of Salmonella enterica serovar Typhimurium LT2 is the founding member of this broadly conserved family of proteins (formerly known as YjgF/YER057c/UK114). RidA proteins were recently shown to be enamine deaminases. Here we demonstrate the damaging potential of enamines in the absence of RidA proteins. Notably, S. enterica strains lacking RidA have decreased activity of the PLP-dependent transaminase B enzyme IlvE, an enzyme involved in branched-chain amino acid biosynthesis. We reconstituted the threonine/serine dehydratase (IlvA)-dependent inhibition of IlvE in vitro, show that the in vitro system reflects the mechanism of RidA function in vivo, and show that IlvE inhibition is prevented by RidA proteins from all domains of life. We conclude that 2-aminoacrylate (2AA) inhibition represents a new type of metabolic damage, and this finding provides an important physiological context for the role of the ubiquitous RidA family of enamine deaminases in preventing damage by 2AA. IMPORTANCE External stresses that disrupt metabolic components can perturb cellular functions and affect growth. A similar consequence is expected if endogenously generated metabolites are reactive and persist in the cellular environment. Here we show that the metabolic intermediate 2-aminoacrylate (2AA) causes significant cellular damage if allowed to accumulate aberrantly. Furthermore, we show that the widely conserved protein RidA prevents this accumulation by facilitating conversion of 2AA to a stable metabolite. This work demonstrates that the reactive metabolite 2AA, previously considered innocuous in the cell due to a short half-life in aqueous solution, can survive in the cellular environment long enough to cause damage. This work provides insights into the roles and persistence of reactive metabolites in vivo and shows that the RidA family of proteins is able to prevent damage caused by a reactive intermediate that is created as a consequence of PLP-dependent chemistry.
Collapse
|