1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Jin WY, Guo JX, Tang R, Wang J, Zhao H, Zhang M, Teng LZ, Sansonetti PJ, Gao YZ. In vivo detection of endogenous toxic phenolic compounds of intestine. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135526. [PMID: 39153300 DOI: 10.1016/j.jhazmat.2024.135526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Phenol and p-cresol are two common toxic small molecules related to various diseases. Existing reports confirmed that high L-tyrosine in the daily diet can increase the concentration of phenolic compounds in blood and urine. L-tyrosine is a common component of protein-rich foods. Some anaerobic bacteria in the gut can convert non-toxic l-tyrosine into these two toxic phenolic compounds, phenol and p-cresol. Existing methods have been constructed for measuring the concentration of phenolic compound in feces. However, there is still a lack of direct visual evidence to measure the phenolic compounds in the intestine. In this study, we aimed to construct a whole-cell biosensor for phenolic compounds detection based on the dmpR, the regulator from the phenol metabolism cluster. The commensal bacterium Citrobacter amalonaticus PS01 was selected and used as the chassis. Compared with the biosensor based on ECN1917, the biosensor PS01[dmpR] could better implant into the mouse gut through gavage and showed a higher sensitive to phenolic compound. And the concentration of phenolic compounds in the intestines could be observed with the help of in vivo imaging system using PS01[dmpR]. This paper demonstrated endogenous phenol synthesis in the gut and the strategy of using commensal bacteria to construct whole-cell biosensors for detecting small molecule compounds in the intestines.
Collapse
Affiliation(s)
- Wen-Yu Jin
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Guo
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rongkang Tang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jielin Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Zhang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; Pasteurian College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin-Zuo Teng
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Philippe J Sansonetti
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France.
| | - Yi-Zhou Gao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang Z, Cai Y, Zheng N, Deng Y, Gao L, Wang Q, Xia X. Diverse models of cavity engineering in enzyme modification: Creation, filling, and reshaping. Biotechnol Adv 2024; 72:108346. [PMID: 38518963 DOI: 10.1016/j.biotechadv.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Most enzyme modification strategies focus on designing the active sites or their surrounding structures. Interestingly, a large portion of the enzymes (60%) feature active sites located within spacious cavities. Despite recent discoveries, cavity-mediated enzyme engineering remains crucial for enhancing enzyme properties and unraveling folding-unfolding mechanisms. Cavity engineering influences enzyme stability, catalytic activity, specificity, substrate recognition, and docking. This article provides a comprehensive review of various cavity engineering models for enzyme modification, including cavity creation, filling, and reshaping. Additionally, it also discusses feasible tools for geometric analysis, functional assessment, and modification of cavities, and explores potential future research directions in this field. Furthermore, a promising universal modification strategy for cavity engineering that leverages state-of-the-art technologies and methodologies to tailor cavities according to the specific requirements of industrial production conditions is proposed.
Collapse
Affiliation(s)
- Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yongchao Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yu Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Qiong Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
4
|
Phenol sensing in nature is modulated via a conformational switch governed by dynamic allostery. J Biol Chem 2022; 298:102399. [PMID: 35988639 PMCID: PMC9556785 DOI: 10.1016/j.jbc.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The NtrC family of proteins senses external stimuli and accordingly stimulates stress and virulence pathways via activation of associated σ54-dependent RNA polymerases. However, the structural determinants that mediate this activation are not well understood. Here, we establish using computational, structural, biochemical, and biophysical studies that MopR, an NtrC protein, harbors a dynamic bidirectional electrostatic network that connects the phenol pocket to two distal regions, namely the “G-hinge” and the “allosteric linker.” While the G-hinge influences the entry of phenol into the pocket, the allosteric linker passes the signal to the downstream ATPase domain. We show that phenol binding induces a rewiring of the electrostatic connections by eliciting dynamic allostery and demonstrates that perturbation of the core relay residues results in a complete loss of ATPase stimulation. Furthermore, we found a mutation of the G-hinge, ∼20 Å from the phenol pocket, promotes altered flexibility by shifting the pattern of conformational states accessed, leading to a protein with 7-fold enhanced phenol binding ability and enhanced transcriptional activation. Finally, we conducted a global analysis that illustrates that dynamic allostery-driven conserved community networks are universal and evolutionarily conserved across species. Taken together, these results provide insights into the mechanisms of dynamic allostery-mediated conformational changes in NtrC sensor proteins.
Collapse
|
5
|
Roy R, Ray S, Chowdhury A, Anand R. Tunable Multiplexed Whole-Cell Biosensors as Environmental Diagnostics for ppb-Level Detection of Aromatic Pollutants. ACS Sens 2021; 6:1933-1939. [PMID: 33973468 DOI: 10.1021/acssensors.1c00329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatics such as phenols, benzene, and toluene are carcinogenic xenobiotics which are known to pollute water resources. By employing synthetic biology approaches combined with a structure-guided design, we created a tunable array of whole-cell biosensors (WCBs). The MopR genetic system that has the natural ability to sense and degrade phenol was adapted to detect phenol down to ∼1 ppb, making this sensor capable of directly detecting phenol in permissible limits in drinking water. Importantly, by using a single WCB design, we engineered mutations into the MopR gene that enabled generation of a battery of sensors for a wide array of pollutants. The engineered WCBs were able to sense inert compounds like benzene and xylene which lack active functional groups, without any loss in sensitivity. Overall, this universal programmable biosensor platform can be used to create WCBs that can be deployed on field for rapid testing and screening of suitable drinking water sources.
Collapse
Affiliation(s)
- Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Shamayeeta Ray
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
- DBT-Welcome Trust India Alliance Senior Fellow, Mumbai 400076, India
| |
Collapse
|
6
|
Kim H, Seong W, Rha E, Lee H, Kim SK, Kwon KK, Park KH, Lee DH, Lee SG. Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosens Bioelectron 2020; 170:112670. [DOI: 10.1016/j.bios.2020.112670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
|
7
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
8
|
Sullivan MV, Dennison SR, Archontis G, Reddy SM, Hayes JM. Toward Rational Design of Selective Molecularly Imprinted Polymers (MIPs) for Proteins: Computational and Experimental Studies of Acrylamide Based Polymers for Myoglobin. J Phys Chem B 2019; 123:5432-5443. [DOI: 10.1021/acs.jpcb.9b03091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark V. Sullivan
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sarah R. Dennison
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | | | - Subrayal M. Reddy
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M. Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
9
|
Guo KH, Chen PH, Lin C, Chen CF, Lee IR, Yeh YC. Determination of Gold Ions in Human Urine Using Genetically Engineered Microorganisms on a Paper Device. ACS Sens 2018; 3:744-748. [PMID: 29589435 DOI: 10.1021/acssensors.7b00931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a whole-cell biosensor that operates in conjunction with a smartphone-based fluorescence diagnostic system on a paper device to monitor the concentration of gold ions in human urine. The heavy metal-tolerant bacteria Cupriavidus metallidurans was genetically engineered for use as a chassis in a red fluorescent protein (RFP)-based microbial sensor. The biosensor is highly sensitive to gold ions, with a detection limit of 110 nM. The proposed smartphone-based analysis system provides a user-friendly approach to design tools of personal health monitoring for reporting the presence of gold ions in human urine.
Collapse
Affiliation(s)
- Kai-Hong Guo
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Pei-Hsuan Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Chieh Lin
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics , National Taiwan University , Taipei 106 , Taiwan
| | - I-Ren Lee
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| |
Collapse
|
10
|
Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 2017; 33:174. [DOI: 10.1007/s11274-017-2339-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/26/2022]
|
11
|
van Rossum T, Muras A, Baur MJ, Creutzburg SC, van der Oost J, Kengen SW. A growth- and bioluminescence-based bioreporter for the in vivo detection of novel biocatalysts. Microb Biotechnol 2017; 10:625-641. [PMID: 28393499 PMCID: PMC5404197 DOI: 10.1111/1751-7915.12612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/28/2022] Open
Abstract
The use of bioreporters in high-throughput screening for small molecules is generally laborious and/or expensive. The technology can be simplified by coupling the generation of a desired compound to cell survival, causing only positive cells to stay in the pool of generated variants. Here, a dual selection/screening system was developed for the in vivo detection of novel biocatalysts. The sensor part of the system is based on the transcriptional regulator AraC, which controls expression of both a selection reporter (LeuB or KmR; enabling growth) for rapid reduction of the initially large library size and a screening reporter (LuxCDABE; causing bioluminescence) for further quantification of the positive variants. Of four developed systems, the best system was the medium copy system with KmR as selection reporter. As a proof of principle, the system was tested for the selection of cells expressing an l-arabinose isomerase derived from mesophilic Escherichia coli or thermophilic Geobacillus thermodenitrificans. A more than a millionfold enrichment of cells with l-arabinose isomerase activity was demonstrated by selection and exclusion of false positives by screening. This dual selection/screening system is an important step towards an improved detection method for small molecules, and thereby for finding novel biocatalysts.
Collapse
Affiliation(s)
- Teunke van Rossum
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Aleksandra Muras
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Marco J.J. Baur
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Sjoerd C.A. Creutzburg
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - John van der Oost
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Servé W.M. Kengen
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| |
Collapse
|
12
|
Abstract
Phenolic aromatic compounds are a major source of environmental pollution. Currently there are no in situ methods for specifically and selectively detecting these pollutants. Here, we exploit the nature's biosensory machinery by employing Acinetobacter calcoaceticus NCIB8250 protein, MopR, as a model system to develop biosensors for selective detection of a spectrum of these pollutants. The X-ray structure of the sensor domain of MopR was used as a scaffold for logic-based tunable biosensor design. By employing a combination of in silico structure guided approaches, mutagenesis and isothermal calorimetric studies, we were able to generate biosensor templates, that can selectively and specifically sense harmful compounds like chlorophenols, cresols, catechol, and xylenols. Furthermore, the ability of native protein to selectively sense phenol as the primary ligand was also enhanced. Overall, this methodology can be extended as a suitable framework for development of a series of exclusive biosensors for accurate and selective detection of aromatic pollutants from real time environmental samples.
Collapse
Affiliation(s)
- Shamayeeta Ray
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Santosh Panjikar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra India
- Wadhwani
Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
13
|
Patil VV, Park KH, Lee SG, Woo E. Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR. Structure 2016; 24:624-630. [PMID: 27050690 DOI: 10.1016/j.str.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022]
Abstract
Positive phenol-degradative gene regulator (PoxR) is a σ(54)-dependent AAA+ ATPase transcription activator that regulates the catabolism of phenols. The PoxR sensory domain detects phenols and relays signals for the activation of transcription. Here we report the first structure of the phenol sensory domain bound to phenol and five derivatives. It exists as a tightly intertwined homodimer with a phenol-binding pocket buried inside, placing two C termini on the same side of the dimer. His102 and Trp130 interact with the hydroxyl group of the phenol in a cavity surrounded by rigid hydrophobic residues on one side and a flexible region on the other. Each monomer has a V4R fold with a unique zinc-binding site. A shift at the C-terminal helix suggests that there is a possible conformational change upon ligand binding. The results provide a structural basis of chemical effector binding for transcriptional regulation with broad implications for protein engineering.
Collapse
Affiliation(s)
- Vinod Vikas Patil
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Kwang-Hyun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-333, Korea
| | - Euijeon Woo
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea.
| |
Collapse
|
14
|
Chong H, Ching CB. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR. ACS Synth Biol 2016; 5:1290-1298. [PMID: 27346389 DOI: 10.1021/acssynbio.6b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is useful for whole-cell biosensors to be based on colorimetric detection because the output signal can be easily visualized. However, colorimetric-based whole-cell biosensors suffer higher detection limits as compared to bioluminescence- or fluorescence-based biosensors. In this work, we attempt to reduce the detection limit for a colorimetric-based whole-cell biosensor by applying directed evolution techniques on a transcription regulator, DmpR, to alter the expression level of its cognate promoter, which was fused to mRFP1 to output red coloration in the presence of organophosphate pesticides containing a phenolic group. We selected the two best-performing mutants, DM01 and DM12, which were able to develop red coloration in the presence of parathion as low as 10 μM after just 6 h of induction at 30 °C. This suggests that engineering of the transcription regulator in the sensing domain is useful for improving various properties of whole-cell biosensors, such as reducing the detection limit for simple colorimetric detection of organophosphate pesticides.
Collapse
Affiliation(s)
- Huiqing Chong
- Temasek Laboratories, National University of Singapore 117411, Singapore
| | - Chi Bun Ching
- Temasek Laboratories, National University of Singapore 117411, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585, Singapore
| |
Collapse
|
15
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
16
|
Ray S, Gunzburg MJ, Wilce M, Panjikar S, Anand R. Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator. ACS Chem Biol 2016; 11:2357-65. [PMID: 27362503 DOI: 10.1021/acschembio.6b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenol and its derivatives are common pollutants that are present in industrial discharge and are major xenobiotics that lead to water pollution. To monitor as well as improve water quality, attempts have been made in the past to engineer bacterial in vivo biosensors. However, due to the paucity of structural information, there is insufficiency in gauging the factors that lead to high sensitivity and selectivity, thereby impeding development. Here, we present the crystal structure of the sensor domain of MopR (MopR(AB)) from Acinetobacter calcoaceticus in complex with phenol and its derivatives to a maximum resolution of 2.5 Å. The structure reveals that the N-terminal residues 21-47 possess a unique fold, which are involved in stabilization of the biological dimer, and the central ligand binding domain belongs to the "nitric oxide signaling and golgi transport" fold, commonly present in eukaryotic proteins that bind long-chain fatty acids. In addition, MopR(AB) nests a zinc atom within a novel zinc binding motif, crucial for maintaining structural integrity. We propose that this motif is crucial for orchestrated motions associated with the formation of the effector binding pocket. Our studies reveal that residues W134 and H106 play an important role in ligand binding and are the key selectivity determinants. Furthermore, comparative analysis of MopR with XylR and DmpR sensor domains enabled the design of a MopR binding pocket that is competent in binding DmpR-specific ligands. Collectively, these findings pave way towards development of specific/broad based biosensors, which can act as useful tools for detection of this class of pollutants.
Collapse
Affiliation(s)
- Shamayeeta Ray
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Menachem J. Gunzburg
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew Wilce
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Santosh Panjikar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Wadhwani
Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 2015; 100:1109-1119. [PMID: 26615397 DOI: 10.1007/s00253-015-7160-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
Collapse
|
18
|
Ray S, Banerjee A. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis. J Environ Sci (China) 2015; 36:144-151. [PMID: 26456616 DOI: 10.1016/j.jes.2015.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/31/2015] [Indexed: 06/05/2023]
Abstract
Participation of Pseudomonas putida-derived methyl phenol (dmp) operon and DmpR protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentation documents that P. putida has DmpR protein which positively regulates dmp operon in the presence of inducers; like phenols. From the operon, phenol hydroxylase encoded by dmpN gene, participates in degrading phenols after dmp operon is expressed. For the purpose, the 3-D models of the four domains from DmpR protein and of the DNA sequences from the two Upstream Activation Sequences (UAS) present at the promoter region of the operon were demonstrated using discrete molecular modeling techniques. The best modeled structures satisfying their stereo-chemical properties were selected in each of the cases. To stabilize the individual structures, energy optimization was performed. In the presence of inducers, probable interactions among domains and then the two independent DNA structures with the fourth domain were perused by manifold molecular docking simulations. The complex structures were made to be stable by minimizing their overall energy. Responsible amino acid residues, nucleotide bases and binding patterns for the biodegradation, were examined. In the presence of the inducers, the biodegradation process is initiated by the interaction of phe50 from the first protein domain with the inducers. Only after the interaction of the last domain with the DNA sequences individually, the operon is expressed. This novel residue level study is paramount for initiating transcription in the operon; thereby leading to expression of phenol hydroxylase followed by phenol biodegradation.
Collapse
Affiliation(s)
- Sujay Ray
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741245 Nadia, West Bengal, India; Department of Biotechnology, Bengal College of Engineering and Technology, Shahid Sukumar Sarani, Bidhannagar, Durgapur-713212, West Bengal, India.
| | - Arundhati Banerjee
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
19
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
20
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
21
|
Xue H, Shi H, Yu Z, He S, Liu S, Hou Y, Pan X, Wang H, Zheng P, Cui C, Viets H, Liang J, Zhang Y, Chen S, Zhang HM, Ouyang Q. Design, construction, and characterization of a set of biosensors for aromatic compounds. ACS Synth Biol 2014; 3:1011-4. [PMID: 25524112 DOI: 10.1021/sb500023f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic pollutants in the environments pose significant threat to human health due to their persistence and toxicity. Here, we report the design and comprehensive characterization of a set of aromatic biosensors constructed using green fluorescence protein as the reporter and aromatics-responsive transcriptional regulators, namely, NahR, XylS, HbpR, and DmpR, as the detectors. The genetic connections between the detectors and the reporter were carefully adjusted to achieve fold inductions far exceeding those reported in previous studies. For each biosensor, the functional characteristics including the dose-responses, dynamic range, and the detection spectrum of aromatic species were thoroughly measured. In particular, the interferences that nontypical inducers exert on each biosensor's response to its strongest inducer were evaluated. These well-characterized biosensors might serve as potent tools for environmental monitoring as well as quantitative gene regulation.
Collapse
Affiliation(s)
- Haoran Xue
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Hailing Shi
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Yu
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Shuaixin He
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Shiyu Liu
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Yuhang Hou
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Xingjie Pan
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Huan Wang
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Pu Zheng
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Can Cui
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Helena Viets
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Jing Liang
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Yihao Zhang
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Shuobing Chen
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Haoqian M. Zhang
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| | - Qi Ouyang
- Peking University Team for the International Genetically Engineered
Machine Competition (iGEM), ‡Center for Quantitative Biology, and §Peking-Tsinghua Joint Center for
Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
EL-Sharif HF, Stevenson D, Warriner K, Reddy SM. Hydrogel-Based Molecularly Imprinted Polymers for Biological Detection. ADVANCED SYNTHETIC MATERIALS IN DETECTION SCIENCE 2014. [DOI: 10.1039/9781849737074-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecularly imprinted polymers (MIPs) have become an important tool in the preparation of artificial and robust recognition materials that are capable of mimicking natural systems. MIPs have been regarded as 'antibody mimics' and have shown clear advantages over real antibodies for sensor technology. Currently, on-site diagnostic (OSD) and point-of-care (POC) biosensor development are heavily dominated by antibody-dependent immuno-sensors such as the lateral flow immuno-assay. Although antibodies exhibit a high degree of selectivity, any biological recognition element is inherently unstable with limited shelf-life, even when stored under optimum conditions. OSD and POC tests are essential for disease screening and treatment monitoring as part of emergency management. Introduced or naturally occurring pathogens can cause significant disruptions, raise panic in the population, and result in significant economic losses. Cheaper, smaller, and smarter devices for early detection of disease or environmental hazards ultimately lead to rapid containment and corrective action. To this end, there has been extensive research on detection platforms based on genetic or immune techniques. MIPs have proven to produce selective biological extractions that rival immunoaffinity-based separations, but without the tediously lengthy time-consuming process. MIPs could provide an alternative to antibodies, and ultimately lead to cheaper, smaller, and smarter biosensors.
Collapse
Affiliation(s)
- Hazim F. EL-Sharif
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Derek Stevenson
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Keith Warriner
- Department of Food Science, University of Guelph Guelph ON Canada N1G 2W1
| | - Subrayal M. Reddy
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
23
|
Molecular manipulations for enhancing luminescent bioreporters performance in the detection of toxic chemicals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:137-49. [PMID: 25216954 DOI: 10.1007/978-3-662-43619-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial whole-cell bioreporters are genetically modified microorganisms that produce a quantifiable output in response to the presence of toxic chemicals or other stress factors. These bioreporters harbor a genetic fusion between a sensing element (usually a gene regulatory element responsive to the target) and a reporter element, the product of which may be quantitatively monitored either by its presence or by its activity. In this chapter we review genetic manipulations undertaken in order to improve bioluminescent bioreporter performance by increasing luminescent output, lowering the limit of detection, and shortening the response time. We describe molecular manipulations applied to all aspects of whole-cell bioreporters: the host strain, the expression system, the sensing element, and the reporter element. The molecular construction of whole-cell luminescent bioreporters, harboring fusions of gene promoter elements to reporter genes, has been around for over three decades; in most cases, these two genetic elements are combined "as is." This chapter outlines diverse molecular manipulations for enhancing the performance of such sensors.
Collapse
|
24
|
Xu T, Close D, Smartt A, Ripp S, Sayler G. Detection of organic compounds with whole-cell bioluminescent bioassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:111-51. [PMID: 25084996 PMCID: PMC4597909 DOI: 10.1007/978-3-662-43385-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.
Collapse
Affiliation(s)
- Tingting Xu
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abby Smartt
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Steven Ripp
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USADepartment of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Gary Sayler
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA; Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
25
|
Tseng HW, Tsai YJ, Yen JH, Chen PH, Yeh YC. A fluorescence-based microbial sensor for the selective detection of gold. Chem Commun (Camb) 2014; 50:1735-7. [DOI: 10.1039/c3cc48028c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|