1
|
Drousiotis K, Herman R, Hawkhead J, Leech A, Wilkinson A, Thomas GH. Characterization of the l-arabinofuranose-specific GafABCD ABC transporter essential for l-arabinose-dependent growth of the lignocellulose-degrading bacterium Shewanella sp. ANA-3. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001308. [PMID: 36920280 PMCID: PMC10191376 DOI: 10.1099/mic.0.001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Microbes that have evolved to live on lignocellulosic biomass face unique challenges in the effective and efficient use of this material as food. The bacterium Shewanella sp. ANA-3 has the potential to utilize arabinan and arabinoxylan, and uptake of the monosaccharide, l-arabinose, derived from these polymers, is known to be mediated by a single ABC transporter. We demonstrate that the substrate binding protein of this system, GafASw, binds specifically to l-arabinofuranose, which is the rare furanose form of l-arabinose found in lignocellulosic biomass. The structure of GafASw was resolved to 1.7 Å and comparison to Escherichia coli YtfQ (GafAEc) revealed binding site adaptations that confer specificity for furanose over pyranose forms of monosaccharides, while selecting arabinose over another related monosaccharide, galactose. The discovery of a bacterium with a natural predilection for a sugar found abundantly in certain lignocellulosic materials suggests an intimate connection in the enzymatic release and uptake of the sugar, perhaps to prevent other microbes scavenging this nutrient before it mutarotates to l-arabinopyranose. This biological discovery also provides a clear route to engineer more efficient utilization of plant biomass components in industrial biotechnology.
Collapse
Affiliation(s)
| | - Reyme Herman
- Department of Biology, University of York, PO Box 373, York, UK
| | - Judith Hawkhead
- Department of Biology, University of York, PO Box 373, York, UK
| | - Andrew Leech
- Biology Technology Facility, University of York, PO Box 373, York. YO10 5YW, UK
| | - Anthony Wilkinson
- Department of Chemistry, York Structural Biology Laboratory, University of York, PO Box 373, York. YO10 5YW, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, PO Box 373, York, UK
| |
Collapse
|
2
|
Neelam A, Tabassum S. Optical Sensing Technologies to Elucidate the Interplay between Plant and Microbes. MICROMACHINES 2023; 14:195. [PMID: 36677256 PMCID: PMC9866067 DOI: 10.3390/mi14010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant-microbe interactions are critical for ecosystem functioning and driving rhizosphere processes. To fully understand the communication pathways between plants and rhizosphere microbes, it is crucial to measure the numerous processes that occur in the plant and the rhizosphere. The present review first provides an overview of how plants interact with their surrounding microbial communities, and in turn, are affected by them. Next, different optical biosensing technologies that elucidate the plant-microbe interactions and provide pathogenic detection are summarized. Currently, most of the biosensors used for detecting plant parameters or microbial communities in soil are centered around genetically encoded optical and electrochemical biosensors that are often not suitable for field applications. Such sensors require substantial effort and cost to develop and have their limitations. With a particular focus on the detection of root exudates and phytohormones under biotic and abiotic stress conditions, novel low-cost and in-situ biosensors must become available to plant scientists.
Collapse
Affiliation(s)
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
3
|
Colombi E, Perry BJ, Sullivan JT, Bekuma AA, Terpolilli JJ, Ronson CW, Ramsay JP. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb Genom 2021; 7. [PMID: 34605762 PMCID: PMC8627217 DOI: 10.1099/mgen.0.000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Mesorhizobium genus are soil bacteria that often form nitrogen-fixing symbioses with legumes. Most characterised Mesorhizobium spp. genomes are ~8 Mb in size and harbour extensive pangenomes including large integrative and conjugative elements (ICEs) carrying genes required for symbiosis (ICESyms). Here, we document and compare the conjugative mobilome of 41 complete Mesorhizobium genomes. We delineated 56 ICEs and 24 integrative and mobilizable elements (IMEs) collectively occupying 16 distinct integration sites, along with 24 plasmids. We also demonstrated horizontal transfer of the largest (853,775 bp) documented ICE, the tripartite ICEMspSymAA22. The conjugation systems of all identified ICEs and several plasmids were related to those of the paradigm ICESym ICEMlSymR7A, with each carrying conserved genes for conjugative pilus formation (trb), excision (rdfS), DNA transfer (rlxS) and regulation (fseA). ICESyms have likely evolved from a common ancestor, despite occupying a variety of distinct integration sites and specifying symbiosis with diverse legumes. We found extensive evidence for recombination between ICEs and particularly ICESyms, which all uniquely lack the conjugation entry-exclusion factor gene trbK. Frequent duplication, replacement and pseudogenization of genes for quorum-sensing-mediated activation and antiactivation of ICE transfer suggests ICE transfer regulation is constantly evolving. Pangenome-wide association analysis of the ICE identified genes potentially involved in symbiosis, rhizosphere colonisation and/or adaptation to distinct legume hosts. In summary, the Mesorhizobium genus has accumulated a large and dynamic pangenome that evolves through ongoing horizontal gene transfer of large conjugative elements related to ICEMlSymR7A.
Collapse
Affiliation(s)
- Elena Colombi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Amanuel A Bekuma
- Centre for Rhizobium Studies, Food Futures Institute, Murdoch University, Perth, WA, Australia, Murdoch University, Perth, WA, Australia.,Present address: Western Australian Department of Primary Industries and Regional Development, Research and Industry Innovation, South Perth, WA, Australia
| | - Jason J Terpolilli
- Centre for Rhizobium Studies, Food Futures Institute, Murdoch University, Perth, WA, Australia, Murdoch University, Perth, WA, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Curtin Medical School, Curtin University, Perth, WA, Australia
| |
Collapse
|
4
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
5
|
Pelosse M, Cottet-Rousselle C, Grichine A, Berger I, Schlattner U. Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism. ACTA ACUST UNITED AC 2017; 107:491-523. [PMID: 27812993 DOI: 10.1007/978-3-319-43589-3_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maintenance of energy homeostasis is a basic requirement for cell survival. Different mechanisms have evolved to cope with spatial and temporal mismatch between energy-providing and -consuming processes. Among these, signaling by AMP-activated protein kinase (AMPK) is one of the key players, regulated by and itself regulating cellular adenylate levels. Further understanding its complex cellular function requires deeper insight into its activation patterns in space and time at a single cell level. This may become possible with an increasing number of genetically encoded fluorescent biosensors, mostly based on fluorescence resonance energy transfer, which have been engineered to monitor metabolic parameters and kinase activities. Here, we review basic principles of biosensor design and function and the advantages and limitations of their use and provide an overview on existing FRET biosensors to monitor AMPK activation, ATP concentration, and ATP/ADP ratios, together with other key metabolites and parameters of energy metabolism.
Collapse
Affiliation(s)
- Martin Pelosse
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm, U1055 and U1209, Grenoble, France
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm, U1055 and U1209, Grenoble, France
| | - Alexei Grichine
- Inserm, U1055 and U1209, Grenoble, France.,Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | | | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France. .,Inserm, U1055 and U1209, Grenoble, France.
| |
Collapse
|
6
|
Shining a light on the dark world of plant root-microbe interactions. Proc Natl Acad Sci U S A 2017; 114:4281-4283. [PMID: 28377510 DOI: 10.1073/pnas.1703800114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
Lahme S, Trautwein K, Strijkstra A, Dörries M, Wöhlbrand L, Rabus R. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1. BMC Microbiol 2014; 14:269. [PMID: 25344702 PMCID: PMC4268860 DOI: 10.1186/s12866-014-0269-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion. Unlike the carbon catabolite repression-mediated discriminative utilization of carbohydrates, the substrate preferences of non-carbohydrate-utilizing bacteria for environmentally relevant compound classes (e.g., aliphatic or aromatic acids) are rarely investigated. The denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1 anaerobically degrades a wide variety of aliphatic and aromatic compounds and is unique for anaerobic degradation of 4-methylbenzoate. The latter proceeds via a distinct reaction sequence analogous to the central anaerobic benzoyl-CoA pathway to intermediates of central metabolism. Considering the presence of these two different anaerobic “aromatic ring degrading” pathways, substrate preferences of Magnetospirillum sp. strain pMbN1 were investigated. Anaerobic growth and substrate consumption were monitored in binary and ternary mixtures of 4-methylbenzoate, benzoate and succinate, in conjuction with time-resolved abundance profiling of selected transcripts and/or proteins related to substrate uptake and catabolism. Results Diauxic growth with benzoate preference was observed for binary and ternary substrate mixtures containing 4-methylbenzoate and succinate (despite adaptation of Magnetospirillum sp. strain pMbN1 to one of the latter two substrates). On the contrary, 4-methylbenzoate and succinate were utilized simultaneously from a binary mixture, as well as after benzoate depletion from the ternary mixture. Apparently, simultaneous repression of 4-methylbenzoate and succinate utilization from the ternary substrate mixture resulted from (i) inhibition of 4-methylbenzoate uptake, and (ii) combined inhibition of succinate uptake (via the two transporters DctPQM and DctA) and succinate conversion to acetyl-CoA (via pyruvate dehydrogenase). The benzoate-mediated repression of C4-dicarboxylate utilization in Magnetospirillum sp. strain pMbN1 differs from that recently described for “Aromatoleum aromaticum” EbN1 (involving only DctPQM). Conclusions The preferential or simultaneous utilization of benzoate and other aromatic acids from mixtures with aliphatic acids may represent a more common nutritional behavior among (anaerobic) degradation specialist than previously thought. Preference of Magnetospirillum sp. strain pMbN1 for benzoate from mixtures with 4-methylbenzoate, and thus temporal separation of the benzoyl-CoA (first) and 4-methylbenzoyl-CoA (second) pathway, may reflect a catabolic tuning towards metabolic efficiency and the markedly broader range of aromatic substrates feeding into the central anaerobic benzoyl-CoA pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0269-4) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
9
|
Abstract
Förster resonance energy transfer (FRET) is a phenomenon used for bioimaging ranging from single molecules to in vivo scale. A large variety of organic dyes and fluorescent proteins are available for FRET probes. In this review, we introduce the representative pairs of FRET probes developed thus far. The efficiency of FRET is depending on the spectral overlap of donor emission and acceptor absorption, the orientation of donor and acceptor and their distance. For FRET-based indicators composed of fluorescent proteins, their orientation and dimeric property of donor and acceptor largely affect the FRET efficiency, indicating the effect for the performance of indicators. In addition, three major applications of FRET, including genetically encoded indicators, single-molecule FRET, and enhancement of chemiluminescent proteins, have been introduced and their functions have also been discussed.
Collapse
|
10
|
Abstract
Bioprocess monitoring is used to track the progress of a cell culture and ensure that the product quality is maintained. Current schemes for monitoring metabolism rely on offline measurements of samples of the extracellular medium. However, in the era of synthetic biology, it is now possible to design and implement biosensors that consist of biological macromolecules and are able to report on the intracellular environment of cells. The use of fluorescent reporter signals allows non-invasive, non-destructive and online monitoring of the culture, which reduces the delay between measurement and any necessary intervention. The present mini-review focuses on protein-based biosensors that utilize FRET as the signal transduction mechanism. The mechanism of FRET, which utilizes the ratio of emission intensity at two wavelengths, has an inherent advantage of being ratiometric, meaning that small differences in the experimental set-up or biosensor expression level can be normalized away. This allows for more reliable quantitative estimation of the concentration of the target molecule. Existing FRET biosensors that are of potential interest to bioprocess monitoring include those developed for primary metabolites, redox potential, pH and product formation. For target molecules where a biosensor has not yet been developed, some candidate binding domains can be identified from the existing biological databases. However, the remaining challenge is to make the process of developing a FRET biosensor faster and more efficient.
Collapse
|
11
|
Jones AM, Grossmann G, Danielson JÅ, Sosso D, Chen LQ, Ho CH, Frommer WB. In vivo biochemistry: applications for small molecule biosensors in plant biology. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:389-95. [PMID: 23587939 PMCID: PMC3679211 DOI: 10.1016/j.pbi.2013.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 05/02/2023]
Abstract
Revolutionary new technologies, namely in the areas of DNA sequencing and molecular imaging, continue to impact new discoveries in plant science and beyond. For decades we have been able to determine properties of enzymes, receptors and transporters in vitro or in heterologous systems, and more recently been able to analyze their regulation at the transcriptional level, to use GFP reporters for obtaining insights into cellular and subcellular localization, and tp measure ion and metabolite levels with unprecedented precision using mass spectrometry. However, we lack key information on the location and dynamics of the substrates of enzymes, receptors and transporters, and on the regulation of these proteins in their cellular environment. Such information can now be obtained by transitioning from in vitro to in vivo biochemistry using biosensors. Genetically encoded fluorescent protein-based sensors for ion and metabolite dynamics provide highly resolved spatial and temporal information, and are complemented by sensors for pH, redox, voltage, and tension. They serve as powerful tools for identifying missing processes (e.g., glucose transport across ER membranes), components (e.g., SWEET sugar transporters for cellular sugar efflux), and signaling networks (e.g., from systematic screening of mutants that affect sugar transport or cytosolic and vacuolar pH). Combined with the knowledge of properties of enzymes and transporters and their interactions with the regulatory machinery, biosensors promise to be key diagnostic tools for systems and synthetic biology.
Collapse
Affiliation(s)
- Alexander M Jones
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|