1
|
Mulleners OJ, van der Maarel LE, Christoffels VM, Jensen B. The trabecular and compact myocardium of adult vertebrate ventricles are transcriptionally similar despite morphological differences. Ann N Y Acad Sci 2025; 1545:76-90. [PMID: 39934982 PMCID: PMC11918530 DOI: 10.1111/nyas.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A poorly understood, major event in heart evolution is the convergent prioritization in mammals and birds of compact myocardium over trabecular myocardium. Compact myocardium is thought to facilitate the greater cardiac outputs that distinguish endothermic mammals and birds from ectotherms, but the underlying mechanism remains unclear. We used transcriptomics to investigate whether the compact layer myocardium is intrinsically different from that of the trabecular layer. In the embryonic mouse heart, spatial transcriptomics revealed that 3% of detected genes were differentially expressed between trabecular and compact myocardium. In the adult, this analysis yielded only 0.2% differentially expressed genes. Additionally, the transcriptomes of both embryonic trabecular and compact myocardium greatly differed from those of the adult myocardium. Reanalysis of available single-cell transcriptomes showed relationships between human embryonic and adult trabecular and compact myocardium similar to those in mice. Analysis of new and published transcriptomes from adult zebra finch, zebrafish, and tuna revealed few differentially expressed genes (<0.6%) and no conservation between species. We conclude that the transcriptional states of developing trabecular and compact myocardium do not persist into adulthood. In adult hearts, the compact layer myocardium is not intrinsically different from that of the trabecular layer despite the overt morphological differences.
Collapse
Affiliation(s)
- Otto J Mulleners
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lieve E van der Maarel
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Visoiu IS, Jensen B, Rimbas RC, Mihaila-Baldea S, Nicula AI, Vinereanu D. How the trabecular layer impacts on left ventricular function. J Cardiol 2025; 85:17-27. [PMID: 39214511 DOI: 10.1016/j.jjcc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The ventricular trabecular layer is crucial in embryonic life. In adults, the proportion of trabecular-to-compact myocardium varies substantially between individuals, within individuals over time, and yet exhibits almost no correlation to pump function since most individuals with excessive trabeculation are asymptomatic. The question of how functional is the myocardium of the trabecular layer, relative to the myocardium of the compact layer, has been difficult to answer but it is often assumed to be inferior. An answer is now emerging from recent advances and it can improve our understanding of how the trabecular layer impacts on pathogenicity. This narrative review concerns natural variation in trabeculation, tissue organization, transcriptomics, immunohistochemistry, vascularization, electrical propagation, diastolic function and compliance, systolic function, and ejection fraction. There are no overt transcriptional differences in the adult stage, and the myocardium is equally equipped with sarcomeric proteins, mitochondria, and vascular supply. The similar structural features are consistent with myocardium with a similar stroke work per gram tissue, along with a high ejection fraction of the trabecular layer. In conclusion, the myocardium of the trabecular and compact layers is highly similar and this offers a logical explanation for the reproducible observations that most individuals with excessive trabeculation are asymptomatic.
Collapse
Affiliation(s)
- Ionela Simona Visoiu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Roxana Cristina Rimbas
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Sorina Mihaila-Baldea
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Alina Ioana Nicula
- Department of Radiology, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Dragos Vinereanu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| |
Collapse
|
3
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
4
|
Olejnickova V, Hamor PU, Janacek J, Bartos M, Zabrodska E, Sankova B, Kvasilova A, Kolesova H, Sedmera D. Development of ventricular trabeculae affects electrical conduction in the early endothermic heart. Dev Dyn 2024; 253:78-90. [PMID: 36400745 DOI: 10.1002/dvdy.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.
Collapse
Affiliation(s)
- Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Uriel Hamor
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Janacek
- Laboratory of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Stomatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Jensen B, Moorman AFM. Evolutionary Aspects of Chamber Formation and Septation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:227-238. [PMID: 38884714 DOI: 10.1007/978-3-031-44087-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The formed hearts of vertebrates are widely different in anatomy and performance, yet their embryonic hearts are surprisingly similar. Developmental and molecular biology are making great advances in reconciling these differences by revealing an evolutionarily conserved building plan to the vertebrate heart. This suggests that perspectives from evolution may improve our understanding of the formation of the human heart. Here, we exemplify this approach by discussing atrial and ventricular septation and the associated processes of remodeling of the atrioventricular junction and formation of the atrioventricular insulating plane.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
6
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Elbrønd VS, Thomsen MB, Isaksen JL, Lunde ED, Vincenti S, Wang T, Tranum-Jensen J, Calloe K. Intramural Purkinje fibers facilitate rapid ventricular activation in the equine heart. Acta Physiol (Oxf) 2023; 237:e13925. [PMID: 36606541 DOI: 10.1111/apha.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Purkinje fibers convey the electrical impulses at much higher speed than the working myocardial cells. Thus, the distribution of the Purkinje network is of paramount importance for the timing and coordination of ventricular activation. The Purkinje fibers are found in the subendocardium of all species of mammals, but some mammals also possess an intramural Purkinje fiber network that provides for relatively instantaneous, burst-like activation of the entire ventricular wall, and gives rise to an rS configuration in lead II of the ECG. AIM To relate the topography of the horse heart and the distribution and histology of the conduction system to the pattern of ventricular activation as a mechanism for the unique electrical axis of the equine heart. METHODS The morphology and distribution of the cardiac conduction system was determined by histochemistry. The electrical activity was measured using ECG in the Einthoven and orthogonal configuration. RESULTS The long axis of the equine heart is close to vertical. Outside the nodal regions the conduction system consisted of Purkinje fibers connected by connexin 43 and long, slender parallel running transitional cells. The Purkinje fiber network extended deep into the ventricular walls. ECGs recorded in an orthogonal configuration revealed a mean electrical axis pointing in a cranial-to-left direction indicating ventricular activation in an apex-to-base direction. CONCLUSION The direction of the mean electrical axis in the equine heart is determined by the architecture of the intramural Purkinje network, rather than being a reflection of ventricular mass.
Collapse
Affiliation(s)
- Vibeke S Elbrønd
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas L Isaksen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ester D Lunde
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Stefano Vincenti
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jørgen Tranum-Jensen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
8
|
Kvasilova A, Gregorovicova M, Olejnickova V, Kolesova H, Sedmera D. Myocardial development in crocodylians. Dev Dyn 2022; 251:2029-2047. [PMID: 36045487 DOI: 10.1002/dvdy.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Recent reports confirmed the notion that there exists a rudimentary cardiac conduction system (CCS) in the crocodylian heart, and development of its ventricular part is linked to septation. We thus analyzed myocardial development with the emphasis on the CCS components and vascularization in two different crocodylian species. RESULTS Using optical mapping and HNK-1 immunostaining, pacemaker activity was localized to the right-sided sinus venosus. The atrioventricular conduction was restricted to dorsal part of the atrioventricular canal. Within the ventricle, the impulse was propagated from base-to-apex initially by the trabeculae, later by the ventricular septum, in which strands of HNK-1 positivity were temporarily observed. Completion of ventricular septation correlated with transition of ventricular epicardial activation pattern to mature apex-to-base direction from two periapical foci. Despite a gradual thickening of the ventricular wall, no morphological differentiation of the Purkinje network was observed. Thin-walled coronary vessels with endothelium positive for QH1 obtained a smooth muscle coat after septation. Intramyocardial vessels were abundant especially in the rapidly thickening left ventricular wall. CONCLUSIONS Most of the CCS components present in the homeiotherm hearts can be identified in the developing crocodylian heart, with a notable exception of the Purkinje network distinct from the trabeculae carneae.
Collapse
Affiliation(s)
- Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovicova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Kuzmin V, Ushenin KS, Dzhumaniiazova IV, Abramochkin D, Vornanen M. High temperature and hyperkalemia cause exit block of action potentials at the atrioventricular junction of rainbow trout (Oncorhynchus mykiss) heart. J Therm Biol 2022; 110:103378. [PMID: 36462845 DOI: 10.1016/j.jtherbio.2022.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
At critically high temperatures, atrioventricular (AV) block causes ventricular bradycardia and collapse of cardiac output in fish. Here, the possible role of the AV canal in high temperature-induced heart failure was examined. To this end, optical mapping was used to measure action potential (AP) conduction in isolated AV junction preparations of the rainbow trout (Oncorhynchus mykiss) heart during acute warming/cooling in the presence of 4 or 8 mM external K+ concentration. The preparation included the AV canal and some atrial and ventricular tissue at its edges, and it was paced either from atrial or ventricular side at a frequency of 0.67 Hz (40 beats min-1) to trigger forward (anterograde) and backward (retrograde) conduction, respectively. The propagation of AP was fast in atrial and ventricular tissues, but much slower in the AV canal, causing an AV delay. Acute warming from 15 °C to 27 °C or cooling from 15 °C to 5 °C did not impair AP conduction in the AV canal, as both anterograde and retrograde excitations propagated regularly through the AV canal. In contrast, anterograde conduction through the AV canal did not trigger ventricular excitation at the boundary zone between the AV canal and the ventricle when extracellular K+ concentration was raised from 4 mM to 8 mM at 27 °C. Also, the retrograde conduction was blocked at the border between the AV canal and the atrium in high K+ at 27 °C. These findings suggest that the AV canal is resistant against high temperatures (and high K+), but the ventricular muscle cannot be excited by APs coming from the AV canal when temperature and external K+ concentration are simultaneously elevated. Therefore, bradycardia at high temperatures in fish may occur due to inability of AP of the AV canal to trigger ventricular AP at the junctional zone between the AV canal and the proximal part of the ventricle.
Collapse
Affiliation(s)
- Vladislav Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia.
| | - Konstantin S Ushenin
- Ural Federal University, Institute of Natural Sciences and Mathematics, Ekaterinburg, Kuybysheva Str., 48, Ekaterinburg, 620026, Russia
| | - Irina V Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia
| | - Denis Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, 80101, Joensuu, Finland
| |
Collapse
|
10
|
Meyer S, Lauridsen H, Pedersen K, Andersson SA, van Ooij P, Willems T, Berger RMF, Ebels T, Jensen B. Opportunities and short-comings of the axolotl salamander heart as a model system of human single ventricle and excessive trabeculation. Sci Rep 2022; 12:20491. [PMID: 36443330 PMCID: PMC9705478 DOI: 10.1038/s41598-022-24442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Few experimental model systems are available for the rare congenital heart diseases of double inlet left ventricle (DILV), a subgroup of univentricular hearts, and excessive trabeculation (ET), or noncompaction. Here, we explore the heart of the axolotl salamander (Ambystoma mexicanum, Shaw 1789) as model system of these diseases. Using micro-echocardiography, we assessed the form and function of the heart of the axolotl, an amphibian, and compared this to human DILV (n = 3). The main finding was that both in the axolotl and DILV, blood flows of disparate oxygen saturation can stay separated in a single ventricle. In the axolotl there is a solitary ventricular inlet and outlet, whereas in DILV there are two separate inlets and outlets. Axolotls had a lower resting heart rate compared to DILV (22 vs. 72 beats per minute), lower ejection fraction (47 vs. 58%), and their oxygen consumption at rest was higher than peak oxygen consumption in DILV (30 vs. 17 ml min-1 kg-1). Concerning the ventricular myocardial organization, histology showed trabeculations in ET (n = 5) are much closer to the normal human setting than to the axolotl setting. We conclude that the axolotl heart resembles some aspects of DILV and ET albeit substantial species differences exist.
Collapse
Affiliation(s)
- Sophie Meyer
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Kathrine Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Tineke Willems
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Tjark Ebels
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Corno AF, Zhou Z, Uppu SC, Huang S, Marino B, Milewicz DM, Salazar JD. The Secrets of the Frogs Heart. Pediatr Cardiol 2022; 43:1471-1480. [PMID: 35290490 DOI: 10.1007/s00246-022-02870-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
The heart of the African clawed frog has a double-inlet and single-outlet ventricle supporting systemic and pulmonary circulations via a truncus, and a lifespan of 25-30 years. We sought to understand the unique cardiac anatomic and physiologic characteristics, with balanced circulation and low metabolic rate, by comparing the basic anatomy structures with focused echocardiography and cardiac magnetic resonance imaging. Twenty-four adult female African clawed frogs were randomly subjected to anatomic dissection (n = 4), echocardiography (n = 10), and cardiac magnetic resonance (n = 10). All anatomical features were confirmed and compared with echocardiography and cardiac magnetic resonance imaging. The main characteristics of the cardiovascular circulation in frogs are the following: Intact interatrial septum, with two separate atrio-ventricular valves, preventing atrial mixing of oxygenated and desaturated blood. Single spongiform ventricular cavity, non-conducive for homogeneous mixing. Single outlet with a valve-like mobile spiral structure, actively streaming into systemic and pulmonary arteries. Intact interatrial septum, spongiform ventricle, and valve-like spiral in the conus arteriosus are likely responsible for balanced systemic and pulmonary circulation in frogs, in spite of double-inlet and single-outlet ventricle.
Collapse
Affiliation(s)
- Antonio F Corno
- Children's Heart Institute, Memorial Hermann Children's Hospital, McGovern Medical School, University of Texas Health, 6431 Fannin Street, MSB 6.274, Houston, TX, 77030, USA.
| | - Zhen Zhou
- Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health, Houston, TX, 77030, USA
| | - Santosh C Uppu
- Children's Heart Institute, Memorial Hermann Children's Hospital, McGovern Medical School, University of Texas Health, 6431 Fannin Street, MSB 6.274, Houston, TX, 77030, USA
| | - Shuning Huang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health, Houston, TX, 77030, USA
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, University La Sapienza, 00161, Roma, Italy
| | - Dianna M Milewicz
- Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health, Houston, TX, 77030, USA
| | - Jorge D Salazar
- Children's Heart Institute, Memorial Hermann Children's Hospital, McGovern Medical School, University of Texas Health, 6431 Fannin Street, MSB 6.274, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Badr A, Hassinen M, Vornanen M. Spatial uniformity of action potentials indicates base-to-apex depolarization and repolarization of rainbow trout (Oncorhynchus mykiss) ventricle. J Exp Biol 2022; 225:276292. [PMID: 35950359 DOI: 10.1242/jeb.244466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
The spatial pattern of electrical activation is crucial for a full understanding of fish heart function. However, it remains unclear whether there is regional variation in action potential (AP) morphologies and underlying ion currents. Because the direction of depolarization and spatial differences in the durations of ventricular APs set limits to potential patterns of ventricular repolarization, we determined AP morphologies, underlying ion currents, and ion channel expression in 4 different regions (spongy myocardium; and apex, base, and middle of the compact myocardium), and correlated them with in vivo electrocardiogram (ECG) in rainbow trout (Oncorhynchus mykiss). ECG recorded from 3 leads indicated that the depolarization and repolarization of AP propagate from base-to-apex, and the main depolarization axis of the ventricle is between +90° and +120°. AP shape was uniform across the whole ventricle, and little regional differences were found in density of repolarizing K+ currents or depolarizing Ca2+ and Na+ currents and the underlying transcripts of ion channels, providing compelling evidence for the suggested excitation pattern. The spatial uniformity of AP durations and base-to-apex propagation of activation with a relatively slow velocity of propagation indicates no special ventricular conduction pathway in the trout ventricle like the His-Purkinje system of mammalian hearts. The sequence of repolarization is solely determined by activation time without being affected by regional differences in AP duration.
Collapse
Affiliation(s)
- Ahmed Badr
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.,Sohag University, Faculty of Science, Department of Zoology, 82524 Sohag, Egypt
| | - Minna Hassinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
13
|
Jensen B, Strijkers GJ, Petersen SE, Sheppard MN, Oostra R, Christoffels VM. Reply to Stöllberger et al. J Anat 2022; 240:1207-1209. [PMID: 35106781 PMCID: PMC9119612 DOI: 10.1111/joa.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Bjarke Jensen
- Department of Medical BiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and PhysicsAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Steffen E. Petersen
- William Harvey Research InstituteNIHR Barts Biomedical Research CentreQueen Mary University of LondonLondonUnited Kingdom
- Barts Heart CentreSt Bartholomew’s HospitalBarts Health NHS TrustLondonUnited Kingdom
| | - Mary N. Sheppard
- Department of Cardiovascular PathologyCardiology Clinical Academic Group, Molecular and Clinical Sciences Research InstituteSt George’s University of LondonLondonUnited Kingdom
| | - Roelof‐Jan Oostra
- Department of Medical BiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Vincent M. Christoffels
- Department of Medical BiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
14
|
Starck JM, Wyneken J. Comparative and Functional Anatomy of the Ectothermic Sauropsid Heart. Vet Clin North Am Exot Anim Pract 2022; 25:337-366. [PMID: 35422257 DOI: 10.1016/j.cvex.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The heart development, form, and functional specializations of chelonians, squamates, crocodilians, and birds characterize how diverse structure and specializations arise from similar foundations. This review aims to summarize the morphologic diversity of sauropsid hearts and present it in an integrative functional and phylogenetic context. Besides the detailed morphologic descriptions, the integrative view of function, evolution, and development will aid understanding of the surprising diversity of sauropsid hearts. This integrated perspective is a foundation that strengthens appreciation that the sauropsid hearts are the outcome of biological evolution; disease often is linked to arising mismatch between adaptations and modern environments.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried D82152, Germany.
| | - Jeanette Wyneken
- Florida Atlantic University, FAU Marine Lab at Gumbo Limbo Environmental Complex, Boca Raton, FL 33431-0991, USA
| |
Collapse
|
15
|
Vaykshnorayte MA, Vityazev VA, Azarov JE. Seasonal changes of electrophysiological heterogeneities in the rainbow trout ventricular myocardium. Curr Res Physiol 2022; 5:93-98. [PMID: 35198999 PMCID: PMC8844795 DOI: 10.1016/j.crphys.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Thermal adaptation in fish is accompanied by morphological and electrophysiological changes in the myocardium. Little is known regarding seasonal changes of spatiotemporal organization of ventricular excitation and repolarization processes. We aimed to evaluate transmural and apicobasal heterogeneity of depolarization and repolarization characteristics in the rainbow trout in-situ ventricular myocardium in summer and winter conditions. Methods The experiments were done in summer-acclimatized (SA, 18°C, n = 8) and winter-acclimatized (WA, 3°C, n = 8) rainbow trout (Oncorhynchus mykiss). 24 unipolar electrograms were recorded with 3 plunge needle electrodes (eight lead terminals each) impaled into the ventricular wall. Activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARI, a surrogate for action potential duration) were determined as dV/dt min during QRS-complex, dV/dt max during T-wave, and RT-AT difference, respectively. Results The SA fish demonstrated relatively flat apicobasal and transmural AT and ARI profiles. In the WA animals, ATs and ARIs were longer as compared to SA animals (p≤0.001), ARIs were shorter in the compact layer than in the spongy layer (p≤0.050), and within the compact layer, the apical region had shorter ATs and longer ARIs as compared to the basal region (p≤0.050). In multiple linear regression analysis, ARI duration was associated with RR-interval and AT in SA and WA animals. The WA animals additionally demonstrated an independent association of ARIs with spatial localization across the ventricle. Conclusion Cold conditions led to the spatial redistribution of repolarization durations in the rainbow trout ventricle and the formation of repolarization gradients typically observed in mammalian myocardium. Spatiotemporal electrophysiological pattern is essential for cardiac function. A role of this pattern is unclear, specifically in seasonal changes in fish. Transmural repolarization gradients develop in cold conditions in rainbow trout.
Collapse
|
16
|
Peng X, Feng G, Zhang Y, Sun Y. PRC1 Stabilizes Cardiac Contraction by Regulating Cardiac Sarcomere Assembly and Cardiac Conduction System Construction. Int J Mol Sci 2021; 22:11368. [PMID: 34768802 PMCID: PMC8583368 DOI: 10.3390/ijms222111368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiac development is a complex process that is strictly controlled by various factors, including PcG protein complexes. Several studies have reported the critical role of PRC2 in cardiogenesis. However, little is known about the regulation mechanism of PRC1 in embryonic heart development. To gain more insight into the mechanistic role of PRC1 in cardiogenesis, we generated a PRC1 loss-of-function zebrafish line by using the CRISPR/Cas9 system targeting rnf2, a gene encoding the core subunit shared by all PRC1 subfamilies. Our results revealed that Rnf2 is not involved in cardiomyocyte differentiation and heart tube formation, but that it is crucial to maintaining regular cardiac contraction. Further analysis suggested that Rnf2 loss-of-function disrupted cardiac sarcomere assembly through the ectopic activation of non-cardiac sarcomere genes in the developing heart. Meanwhile, Rnf2 deficiency disrupts the construction of the atrioventricular canal and the sinoatrial node by modulating the expression of bmp4 and other atrioventricular canal marker genes, leading to an impaired cardiac conduction system. The disorganized cardiac sarcomere and defective cardiac conduction system together contribute to defective cardiac contraction. Our results emphasize the critical role of PRC1 in the cardiac development.
Collapse
Affiliation(s)
- Xixia Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Minhas R, Loeffler-Wirth H, Siddiqui YH, Obrębski T, Vashisht S, Abu Nahia K, Paterek A, Brzozowska A, Bugajski L, Piwocka K, Korzh V, Binder H, Winata CL. Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker. BMC Genomics 2021; 22:715. [PMID: 34600492 PMCID: PMC8487553 DOI: 10.1186/s12864-021-08016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. RESULTS To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. CONCLUSION Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.
Collapse
Affiliation(s)
- Rashid Minhas
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Yusra H Siddiqui
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- School of Human Sciences, College of Science and Engineering, University of Derby, Derby, UK
| | - Tomasz Obrębski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alexandra Paterek
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Angelika Brzozowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Bugajski
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, Warsaw, Poland
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
18
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
19
|
Gao R, Ren J. Zebrafish Models in Therapeutic Research of Cardiac Conduction Disease. Front Cell Dev Biol 2021; 9:731402. [PMID: 34422842 PMCID: PMC8371477 DOI: 10.3389/fcell.2021.731402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Malfunction in the cardiac conduction system (CCS) due to congenital anomalies or diseases can cause cardiac conduction disease (CCD), which results in disturbances in cardiac rhythm, leading to syncope and even sudden cardiac death. Insights into development of the CCS components, including pacemaker cardiomyocytes (CMs), atrioventricular node (AVN) and the ventricular conduction system (VCS), can shed light on the pathological and molecular mechanisms underlying CCD, provide approaches for generating human pluripotent stem cell (hPSC)-derived CCS cells, and thus improve therapeutic treatment for such a potentially life-threatening disorder of the heart. However, the cellular and molecular mechanisms controlling CCS development remain elusive. The zebrafish has become a valuable vertebrate model to investigate early development of CCS components because of its unique features such as external fertilization, embryonic optical transparency and the ability to survive even with severe cardiovascular defects during development. In this review, we highlight how the zebrafish has been utilized to dissect the cellular and molecular mechanisms of CCS development, and how the evolutionarily conserved developmental mechanisms discovered in zebrafish could be applied to directing the creation of hPSC-derived CCS cells, therefore providing potential therapeutic strategies that may contribute to better treatment for CCD patients.
Collapse
Affiliation(s)
- Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
New Insights into the Development and Morphogenesis of the Cardiac Purkinje Fiber Network: Linking Architecture and Function. J Cardiovasc Dev Dis 2021; 8:jcdd8080095. [PMID: 34436237 PMCID: PMC8397066 DOI: 10.3390/jcdd8080095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
The rapid propagation of electrical activity through the ventricular conduction system (VCS) controls spatiotemporal contraction of the ventricles. Cardiac conduction defects or arrhythmias in humans are often associated with mutations in key cardiac transcription factors that have been shown to play important roles in VCS morphogenesis in mice. Understanding of the mechanisms of VCS development is thus crucial to decipher the etiology of conduction disturbances in adults. During embryogenesis, the VCS, consisting of the His bundle, bundle branches, and the distal Purkinje network, originates from two independent progenitor populations in the primary ring and the ventricular trabeculae. Differentiation into fast-conducting cardiomyocytes occurs progressively as ventricles develop to form a unique electrical pathway at late fetal stages. The objectives of this review are to highlight the structure–function relationship between VCS morphogenesis and conduction defects and to discuss recent data on the origin and development of the VCS with a focus on the distal Purkinje fiber network.
Collapse
|
21
|
Romano V, Gallinoro CM, Mottola R, Serio A, Di Meglio F, Castaldo C, Sirico F, Nurzynska D. Patent Foramen Ovale-A Not So Innocuous Septal Atrial Defect in Adults. J Cardiovasc Dev Dis 2021; 8:60. [PMID: 34070460 PMCID: PMC8228640 DOI: 10.3390/jcdd8060060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Patent foramen ovale (PFO) is a common congenital atrial septal defect with an incidence of 15-35% in the adult population. The development of the interatrial septum is a process that begins in the fourth gestational week and is completed only after birth. During intrauterine life, the foramen ovale allows the passage of highly oxygenated blood from the right to the left atrium and into the systemic arteries, thus bypassing the pulmonary circulation. In 75% of the general population, the foramen ovale closes after birth, and only an oval depression, called fossa ovalis, remains on the right side of the interatrial septum. Patent foramen ovale can be associated with various clinically important conditions, including migraine and stroke, or decompression illness in divers. The aim of this review is to summarize the PFO developmental and anatomical features and to discuss the clinical risks associated with this atrial septal defect in adults.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Carlo Maria Gallinoro
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Rosita Mottola
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Alessandro Serio
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Franca Di Meglio
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Clotilde Castaldo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Felice Sirico
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (C.M.G.); (R.M.); (A.S.); (F.D.M.); (C.C.)
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry “ScuolaMedicaSalernitana”, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
22
|
Kolesnikova ЕE. Anatomical and Physiological Peculiarities
of the Heart in Jawless and Jawed Fish. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience 2021; 24:102387. [PMID: 33981974 PMCID: PMC8086021 DOI: 10.1016/j.isci.2021.102387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Collapse
Affiliation(s)
- Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovičová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
24
|
Coronel R, Potse M, Haïssaguerre M, Derval N, Rivaud MR, Meijborg VMF, Cluitmans M, Hocini M, Boukens BJ. Why Ablation of Sites With Purkinje Activation Is Antiarrhythmic: The Interplay Between Fast Activation and Arrhythmogenesis. Front Physiol 2021; 12:648396. [PMID: 33833689 PMCID: PMC8021688 DOI: 10.3389/fphys.2021.648396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ablation of sites showing Purkinje activity is antiarrhythmic in some patients with idiopathic ventricular fibrillation (iVF). The mechanism for the therapeutic success of ablation is not fully understood. We propose that deeper penetrance of the Purkinje network allows faster activation of the ventricles and is proarrhythmic in the presence of steep repolarization gradients. Reduction of Purkinje penetrance, or its indirect reducing effect on apparent propagation velocity may be a therapeutic target in patients with iVF.
Collapse
Affiliation(s)
- Ruben Coronel
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,UMR5251 Institut de mathématiques de Bordeaux, Talence, France.,Carmen Team, Inria Bordeaux - Sud-Ouest, Talence, France
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Nicolas Derval
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Mathilde R Rivaud
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs Cluitmans
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Offerhaus JA, Snelderwaard PC, Algül S, Faber JW, Riebel K, Jensen B, Boukens BJ. High heart rate associated early repolarization causes J-waves in both zebra finch and mouse. Physiol Rep 2021; 9:e14775. [PMID: 33709567 PMCID: PMC7953022 DOI: 10.14814/phy2.14775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
High heart rates are a feature of small endothermic—or warm‐blooded—mammals and birds. In small mammals, the QT interval is short, and local ventricular recordings reveal early repolarization that coincides with the J‐wave on the ECG, a positive deflection following the QRS complex. Early repolarization contributes to short QT‐intervals thereby enabling brief cardiac cycles and high heart rates. We therefore hypothesized high hearts rates associate with early repolarization and J‐waves on the ECG of endothermic birds. We tested this hypothesis by comparing isolated hearts of zebra finches and mice and recorded pseudo‐ECGs and optical action potentials (zebra finch, n = 8; mouse, n = 8). In both species, heart rate exceeded 300 beats per min, and total ventricular activation was fast (QRS < 10 ms). Ventricular activation progressed from the left to the right ventricle in zebra finch, whereas it progressed from apex‐to‐base in mouse. In both species, the early repolarization front followed the activation front, causing a positive J‐wave in the pseudo‐ECG. Inhibition of early repolarization by 4‐aminopyridine reduced J‐wave amplitude in both species. Action potential duration was similar between ventricles in zebra finch, whereas in mouse the left ventricular action potential was longer. Accordingly, late repolarization had opposite directions in zebra finch (left‐right) and mouse (right‐left). This caused a similar direction for the zebra finch J‐wave and T‐wave, whereas in the mouse they were discordant. Our findings demonstrate that early repolarization and the associated J‐wave may have evolved by convergence in association with high heart rates.
Collapse
Affiliation(s)
- Joost A Offerhaus
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Sila Algül
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
26
|
Hassinen M, Dzhumaniiazova I, Abramochkin DV, Vornanen M. Ionic basis of atrioventricular conduction: ion channel expression and sarcolemmal ion currents of the atrioventricular canal of the rainbow trout (Oncorhynchus mykiss) heart. J Comp Physiol B 2021; 191:327-346. [PMID: 33575867 PMCID: PMC7895799 DOI: 10.1007/s00360-021-01344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
Atrioventricular (AV) nodal tissue synchronizes activities of atria and ventricles of the vertebrate heart and is also a potential site of cardiac arrhythmia, e.g., under acute heat stress. Since ion channel composition and ion currents of the fish AV canal have not been previously studied, we measured major cation currents and transcript expression of ion channels in rainbow trout (Oncorhynchus mykiss) AV tissue. Both ion current densities and expression of ion channel transcripts indicate that the fish AV canal has a characteristic electrophysiological phenotype that differs from those of sinoatrial tissue, atrium and ventricle. Two types of cardiomyocytes were distinguished electrophysiologically in trout AV nodal tissue: the one (transitional cell) is functionally intermediate between working atrial/ventricular myocytes and the other (AV nodal cell) has a less negative resting membrane potential than atrial and ventricular myocytes and is a more similar to the sinoatrial nodal cells in ion channel composition. The AV nodal cells are characterized by a small or non-existent inward rectifier potassium current (IK1), low density of fast sodium current (INa) and relatively high expression of T-type calcium channels (CACNA3.1). Pacemaker channel (HCN4 and HCN2) transcripts were expressed in the AV nodal tissue but If current was not found in enzymatically isolated nodal myocytes. The electrophysiological properties of the rainbow trout nodal cells are appropriate for a slow rate of action potential conduction (small INa) and a moderate propensity for pacemaking activity (absence of IK1).
Collapse
Affiliation(s)
- Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| |
Collapse
|
27
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
28
|
Conith AJ, Hope SA, Chhouk BH, Albertson RC. Weak genetic signal for phenotypic integration implicates developmental processes as major regulators of trait covariation. Mol Ecol 2021; 30:464-480. [PMID: 33231336 PMCID: PMC8811731 DOI: 10.1111/mec.15748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
Phenotypic integration is an important metric that describes the degree of covariation among traits in a population, and is hypothesized to arise due to selection for shared functional processes. Our ability to identify the genetic and/or developmental underpinnings of integration is marred by temporally overlapping cell-, tissue- and structure-level processes that serve to continually 'overwrite' the structure of covariation among traits through ontogeny. Here, we examine whether traits that are integrated at the phenotypic level also exhibit a shared genetic basis (e.g. pleiotropy). We micro-CT scanned two hard tissue traits, and two soft tissue traits (mandible, pectoral girdle, atrium and ventricle, respectively) from an F5 hybrid population of Lake Malawi cichlids, and used geometric morphometrics to extract 3D shape information from each trait. Given the large degree of asymmetric variation that may reflect developmental instability, we separated symmetric from asymmetric components of shape variation. We then performed quantitative trait loci (QTL) analysis to determine the degree of genetic overlap between shapes. While we found ubiquitous associations among traits at the phenotypic level, except for a handful of notable exceptions, our QTL analysis revealed few overlapping genetic regions. Taken together, this indicates developmental interactions can play a large role in determining the degree of phenotypic integration among traits, and likely obfuscate the genotype to phenotype map, limiting our ability to gain a comprehensive picture of the genetic contributors responsible for phenotypic divergence.
Collapse
Affiliation(s)
- Andrew J. Conith
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| | - Sylvie A. Hope
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| | - Brian H Chhouk
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| | - R. Craig Albertson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| |
Collapse
|
29
|
Vityazev VA, Azarov JE. Stretch-excitation correlation in the toad heart. J Exp Biol 2020; 223:jeb228882. [PMID: 33161379 DOI: 10.1242/jeb.228882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022]
Abstract
The activation sequence of the ventricular myocardium in ectotherms is a matter of debate. We studied the correlation between the ventricular activation sequence and the pattern of local stretches in 13 toads (Bufo bufo). Epicardial potential mapping was done with a 56-lead sock array. Activation times were determined as dV/dt (min) in each lead. Initial epicardial foci of activation were found on the left side of the ventricular base, whereas regions on the apex and the right side of the base demonstrated late activation. Video recordings (50 frames s-1) showed that the median presystolic stretch in left-side ventricular regions was greater than that in right-side regions [4.70% (interquartile range 3.25-8.85%) versus 1.45% (interquartile range 0.38-3.05%), P=0.028, respectively]. Intracardiac bolus injection elicited ventricular activation with a similar sequence and duration. Thus, ventricular areas of earliest activation were associated with greater presystolic stretch, implying the existence of a stretch-excitation relationship in ectotherm hearts.
Collapse
Affiliation(s)
- Vladimir A Vityazev
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Komi Republic, Russia
| | - Jan E Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Komi Republic, Russia
- Department of Biochemistry and Physiology, Institute of Medicine of the Pitirim Sorokin Syktyvkar State University, Syktyvkar, 167001, Komi Republic, Russia
| |
Collapse
|
30
|
Kvasilova A, Olejnickova V, Jensen B, Christoffels VM, Kolesova H, Sedmera D, Gregorovicova M. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. ACTA ACUST UNITED AC 2020; 223:223/19/jeb229278. [PMID: 33046580 DOI: 10.1242/jeb.229278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
During development, the ventricles of mammals and birds acquire a specialized pattern of electrical activation with the formation of the atrioventricular conduction system (AVCS), which coincides with the completion of ventricular septation. We investigated whether AVCS formation coincides with ventricular septation in developing Siamese crocodiles (Crocodylus siamensis). Comparisons were made with Amazon toadhead turtle (Mesoclemmys heliostemma) with a partial septum only and no AVCS (negative control) and with chicken (Gallus gallus) (septum and AVCS, positive control). Optical mapping of the electrical impulse in the crocodile and chicken showed a similar developmental specialization that coincided with full ventricular septation, whereas in the turtle the ventricular activation remained primitive. Co-localization of neural marker human natural killer-1 (HNK-1) and cardiomyocyte marker anti-myosin heavy chain (MF20) identified the AVCS on top of the ventricular septum in the crocodile and chicken only. AVCS formation is correlated with ventricular septation in both evolution and development.
Collapse
Affiliation(s)
- Alena Kvasilova
- Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00 Prague, Czech Republic
| | - Veronika Olejnickova
- Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00 Prague, Czech Republic.,Czech Academy of Sciences, Institute of Physiology, Department of Developmental Cardiology, Videnska 1083, 142 20 Prague, Czech Republic
| | - Bjarke Jensen
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Vincent M Christoffels
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Hana Kolesova
- Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00 Prague, Czech Republic
| | - David Sedmera
- Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00 Prague, Czech Republic .,Czech Academy of Sciences, Institute of Physiology, Department of Developmental Cardiology, Videnska 1083, 142 20 Prague, Czech Republic
| | - Martina Gregorovicova
- Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00 Prague, Czech Republic .,Czech Academy of Sciences, Institute of Physiology, Department of Developmental Cardiology, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
31
|
López-Unzu MA, Soto-Navarrete MT, Sans-Coma V, Fernández B, Durán AC. Myosin heavy chain isoforms in the myocardium of the atrioventricular junction of Scyliorhinus canicula (Chondrichthyes, Carcharhiniformes). JOURNAL OF FISH BIOLOGY 2020; 97:734-739. [PMID: 32515493 DOI: 10.1111/jfb.14427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The atrioventricular junction of the fish heart, namely the segment interposed between the single atrium and the single ventricle, has been studied anatomically and histologically in several chondrichthyan and teleost species. Nonetheless, knowledge about myosin heavy chain (MyHC) in the atrioventricular myocardium remains scarce. The present report is the first one to provide data on the MyHC isoform distribution in the myocardium of the atrioventricular junction in chondrichthyans, specifically in the lesser spotted dogfish, Scyliorhinus canicula, a shark species whose heart reflects the primitive cardiac anatomical design in gnathostomes. Hearts from five dogfish were examined using histochemical and immunohistochemical techniques. The anti-MyHC A4.1025 antibody was used to detect differences in the occurrence of MyHC isoforms in the dogfish, as the fast-twitch isoforms MYH2 and MYH6 have a higher affinity for this antibody than the slow-twitch isoforms MYH7 and MYH7B. The histochemical findings show that myocardium of the atrioventricular junction connects the trabeculated myocardium of the atrium with the trabeculated layer of the ventricular myocardium. The immunohistochemical results indicate that the distribution of MyHC isoforms in the atrioventricular junction is not homogeneous. The atrial portion of the atrioventricular myocardium shows a positive reactivity against the A4.1025 antibody similar to that of the atrial myocardium. In contrast, the ventricular portion of the atrioventricular junction is not labelled, as is the case with the ventricular myocardium. This dual condition suggests that the myocardium of the atrioventricular junction has two contraction patterns: the myocardium of the atrial portion contracts in line with the atrial myocardium, whereas that of the ventricular portion follows the contraction pattern of the ventricular myocardium. Thus, the transition of the contraction wave from the atrium to the ventricle may be established in the atrioventricular segment because of its heterogeneous MyHC isoform distribution. The findings support the hypothesis that a distinct MyHC isoform distribution in the atrioventricular myocardium enables a synchronous contraction of inflow and outflow cardiac segments in vertebrates lacking a specialized cardiac conduction system.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Málaga, Spain
| |
Collapse
|
32
|
Scholman KT, Meijborg VMF, Gálvez-Montón C, Lodder EM, Boukens BJ. From Genome-Wide Association Studies to Cardiac Electrophysiology: Through the Maze of Biological Complexity. Front Physiol 2020; 11:557. [PMID: 32536879 PMCID: PMC7267057 DOI: 10.3389/fphys.2020.00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Genome Wide Association Studies (GWAS) have provided an enormous amount of data on genomic loci associated with cardiac electrophysiology and arrhythmias. Clinical relevance, however, remains unclear since GWAS do not provide a mechanistic explanation for this association. Determining the electrophysiological relevance of variants for arrhythmias would aid development of risk stratification models for patients with arrhythmias. In this review, we give an overview of genetic variants related to ECG intervals and arrhythmogenic pathologies and discuss how these variants may influence cardiac electrophysiology and the occurrence of arrhythmias.
Collapse
Affiliation(s)
- Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Jensen B, Christoffels VM. Reptiles as a Model System to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037226. [PMID: 31712265 DOI: 10.1101/cshperspect.a037226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev 2020; 22:241-256. [PMID: 31597012 PMCID: PMC9285691 DOI: 10.1111/ede.12322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The atrial septum enables efficient oxygen transport by separating the systemic and pulmonary venous blood returning to the heart. Only in placental mammals will the atrial septum form by the coming-together of the septum primum and the septum secundum. In up to one of four placental mammals, this complex morphogenesis is incomplete and yields patent foramen ovale. The incidence of incomplete atrial septum is unknown for groups with the septum primum only, such as birds and reptiles. We found a low incidence of incomplete atrial septum in 11 species of bird (0% of specimens) and 13 species of reptiles (3% of specimens). In reptiles, there was a trabecular interface between the atrial septum and the atrial epicardium which was without a clear boundary between left and right atrial cavities. In developing reptiles (four squamates and one crocodylian), the septum primum initiated as a sheet that acquired perforations and the trabecular interface developed late. We conclude that atrial septation from the septum primum only results in a low incidence of incompleteness. In reptiles, the atrial septum and atrial wall develop a trabecular interface, but previous studies on atrial hemodynamics suggest this interface has a very limited capacity for shunting.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - William Joyce
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Martina Gregorovicova
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - David Sedmera
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - Tobias Wang
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
35
|
Lewis M, Bouvard J, Eatwell K, Culshaw G. Standardisation of electrocardiographic examination in corn snakes ( Pantherophis guttatus). Vet Rec 2020; 186:e29. [PMID: 32201381 DOI: 10.1136/vr.105713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/13/2019] [Accepted: 02/25/2020] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Corn snakes are a very common pet reptile species, yet there is an absence of evidence-based literature standardising collection of ECG or detailing ECG deflection morphology in the normal animal. The authors describe a well-tolerated, reproducible technique and detail the cardiac cycle in terms of lead 2 equivalent waveforms and intervals. ANIMALS 29 adult corn snakes. MATERIALS AND METHODS This prospective study evaluated, under species-appropriate, standardised conditions, a technique for producing standard six-lead ECG tracings. Lead 2 equivalent cardiac cycles were described in detail and statistically analysed for sex, weight, length, heart rate and mean electrical axis. RESULTS High-quality tracings demonstrated common ECG characteristics for this species, including no Q, S or SV waves, prolonged PR and RT intervals, rhythmic oscillation of the baseline, short TP segments, and a right displaced mean electrical axis. An influence of sex, weight or length on heart rate and mean electrical axis was not identified. CONCLUSIONS To the authors' knowledge, this is the first study to describe a standardised technique for recording ECG in significant numbers of normal corn snakes. Ranges have been provided that may be of diagnostic value or form the basis for future development of reference intervals for this species.
Collapse
Affiliation(s)
- Martyn Lewis
- Exotics, The Royal (Dick) School of Veterinary Studies, Edinburgh, UK .,Exotics, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jonathan Bouvard
- Cardiology, The Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - Kevin Eatwell
- Hospital for Small Animals, Edinburgh University, Royal (Dick) School of Veterinary Studies, Roslin, Midlothian, UK
| | - Geoff Culshaw
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| |
Collapse
|
36
|
Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118509. [DOI: 10.1016/j.bbamcr.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
|
37
|
Cai W, Xu S, Li X. Cardiac arrhythmia caused by a novel type of atrial conduction block: A case report. Medicine (Baltimore) 2020; 99:e19264. [PMID: 32221062 PMCID: PMC7220769 DOI: 10.1097/md.0000000000019264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/08/2019] [Accepted: 01/20/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION We report an extremely rare case of atrial conduction block with unusual electrocardiogram (ECG) results, which has never been reported before. There are 2 types of atrial conduction block that result in atrial irregularities or complete atrial conduction block. The former is similar to other types of cardiac blocks such as sinus node to atrial block, atrial to ventricular block, or bundle branch blocks, which are characterized by 2 P waves at a specific frequency. This is due to the complete inner atrial block that results in the atrial muscle being divided into 2 parts without conduction between them so that each part has its rhythm generator. The objective of this report is to examine the cause of inner atrial conduction block and to promote awareness of this disorder. PATIENT CONCERNS An 81-year-old Chinese male patient was examined after complaining about chest discomfort, and it was found that he had atrial tachycardia; ECG results revealed a P wave loss at specific intervals (or P wave separation). DIAGNOSIS A diagnosis of P wave loss at specific intervals (or P wave separation) was made based on ECG results. INTERVENTIONS An ECG was performed on the patient OUTCOMES:: It was unclear whether this patient has atrial separation or a new type of atrial conduction block, but our results revealed that this case presents a novel type of atrial conduction block, which we named 'P wave block.' CONCLUSION The type of EKG shown in this case has never been reported. This EKG shows a new type of conduction block in the atrium, temporarily named as a new type of P wave block.
Collapse
Affiliation(s)
| | | | - Xiaodong Li
- Department of ECG, Resident physician, Zhejiang Province People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
38
|
Hanemaaijer J, Gregorovicova M, Nielsen JM, Moorman AFM, Wang T, Planken RN, Christoffels VM, Sedmera D, Jensen B. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development 2019; 146:dev.177121. [PMID: 31285354 DOI: 10.1242/dev.177121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
Abstract
Among lizards, only monitor lizards (Varanidae) have a functionally divided cardiac ventricle. The division results from the combined function of three partial septa, which may be homologous to the ventricular septum of mammals and archosaurs. We show in developing monitors that two septa, the 'muscular ridge' and 'bulbuslamelle', express the evolutionarily conserved transcription factors Tbx5, Irx1 and Irx2, orthologues of which mark the mammalian ventricular septum. Compaction of embryonic trabeculae contributes to the formation of these septa. The septa are positioned, however, to the right of the atrioventricular junction and they do not participate in the separation of incoming atrial blood streams. That separation is accomplished by the 'vertical septum', which expresses Tbx3 and Tbx5 and orchestrates the formation of the electrical conduction axis embedded in the ventricular septum. These expression patterns are more pronounced in monitors than in other lizards, and are associated with a deep electrical activation near the vertical septum, in contrast to the primitive base-to-apex activation of other lizards. We conclude that evolutionarily conserved transcriptional programmes may underlie the formation of the ventricular septa of monitors.
Collapse
Affiliation(s)
- Jermo Hanemaaijer
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Martina Gregorovicova
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.,Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Jan M Nielsen
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, 8200, Aarhus, Denmark
| | - Antoon F M Moorman
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic .,Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Bjarke Jensen
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
39
|
The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:16-29. [DOI: 10.1016/j.pbiomolbio.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
|
40
|
Prosheva V, Kaseva N, Dernovoj B. Morpho-functional characterization of the heart of Gallus gallus domesticus with special reference to the right muscular atrioventricular valve. J Anat 2019; 235:794-802. [PMID: 31148176 DOI: 10.1111/joa.13020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
In this work, we studied the structure and function of the adult chicken heart with a focus on the right muscular atrioventricular valve using anatomic and echocardiographic methods. We demonstrated that the free wall thickness of the right and left ventricles changes from the apex to the base of the heart. The right muscular atrioventricular valve (RAVV) is joined directly to both the parietal right ventricle free wall (one attachment) and the interventricular septum (two attachments: ventral and dorsal). This valve does not have chordae tendineae or papillary muscles. The quantitative morphological and functional characterization of the RAVV is given. In color Doppler echo, no regurgitation of blood flow in the RAVV was observed in any of the studied birds. The blood flow velocity in the RAVV is 56.2 ± 9.6 cm s-1 . A contractile function of the RAVV is shown. Based on the findings obtained, we conclude that the RAVV has a sufficient barrier function. In addition, as this valve is an integral part of the right ventricle free wall, it contributes to the right ventricle pump function. An agreed nomenclature of the parts of the RAVV is required.
Collapse
Affiliation(s)
- Valentina Prosheva
- Institute of Physiology of the Komi Scientific Center, The Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalya Kaseva
- Institute of Physiology of the Komi Scientific Center, The Russian Academy of Sciences, Syktyvkar, Russia
| | - Bronislav Dernovoj
- Institute of Physiology of the Komi Scientific Center, The Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
41
|
Olejníčková V, Šaňková B, Sedmera D, Janáček J. Trabecular Architecture Determines Impulse Propagation Through the Early Embryonic Mouse Heart. Front Physiol 2019; 9:1876. [PMID: 30670981 PMCID: PMC6331446 DOI: 10.3389/fphys.2018.01876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Most embryonic ventricular cardiomyocytes are quite uniform, in contrast to the adult heart, where the specialized ventricular conduction system is molecularly and functionally distinct from the working myocardium. We thus hypothesized that the preferential conduction pathway within the embryonic ventricle could be dictated by trabecular geometry. Mouse embryonic hearts of the Nkx2.5:eGFP strain between ED9.5 and ED14.5 were cleared and imaged whole mount by confocal microscopy, and reconstructed in 3D at 3.4 μm isotropic voxel size. The local orientation of the trabeculae, responsible for the anisotropic spreading of the signal, was characterized using spatially homogenized tensors (3 × 3 matrices) calculated from the trabecular skeleton. Activation maps were simulated assuming constant speed of spreading along the trabeculae. The results were compared with experimentally obtained epicardial activation maps generated by optical mapping with a voltage-sensitive dye. Simulated impulse propagation starting from the top of interventricular septum revealed the first epicardial breakthrough at the interventricular grove, similar to experimentally obtained activation maps. Likewise, ectopic activation from the left ventricular base perpendicular to dominant trabecular orientation resulted in isotropic and slower impulse spreading on the ventricular surface in both simulated and experimental conditions. We conclude that in the embryonic pre-septation heart, the geometry of the A-V connections and trabecular network is sufficient to explain impulse propagation and ventricular activation patterns.
Collapse
Affiliation(s)
- Veronika Olejníčková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Šaňková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
42
|
Katano W, Moriyama Y, Takeuchi JK, Koshiba-Takeuchi K. Cardiac septation in heart development and evolution. Dev Growth Differ 2018; 61:114-123. [PMID: 30549006 DOI: 10.1111/dgd.12580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/24/2023]
Abstract
The heart is one of the vital organs and is functionalized for blood circulation from its early development. Some vertebrates have altered their living environment from aquatic to terrestrial life over the course of evolution and obtained circulatory systems well adapted to their lifestyles. The morphology of the heart has been changed together with the acquisition of a sophisticated respiratory organ, the lung. Adaptation to a terrestrial environment requires the coordination of heart and lung development due to the intake of oxygen from the air and the production of the large amount of energy needed for terrestrial life. Therefore, vertebrates developed pulmonary circulation and a septated heart (four-chambered heart) with venous and arterial blood completely separated. In this review, we summarize how vertebrates change the structures and functions of their circulatory systems according to environmental changes.
Collapse
Affiliation(s)
- Wataru Katano
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | - Yuuta Moriyama
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Kazuko Koshiba-Takeuchi
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| |
Collapse
|
43
|
Evolutionarily conserved Tbx5- Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 2018; 115:E10615-E10624. [PMID: 30352852 DOI: 10.1073/pnas.1811624115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.
Collapse
|
44
|
Jensen B, Wang T, Moorman AFM. Evolution and Development of the Atrial Septum. Anat Rec (Hoboken) 2018; 302:32-48. [PMID: 30338646 PMCID: PMC6588001 DOI: 10.1002/ar.23914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/27/2017] [Accepted: 01/09/2018] [Indexed: 02/05/2023]
Abstract
The complete division of the atrial cavity by a septum, resulting in a left and right atrium, is found in many amphibians and all amniotes (reptiles, birds, and mammals). Surprisingly, it is only in eutherian, or placental, mammals that full atrial septation necessitates addition from a second septum. The high incidence of incomplete closure of the atrial septum in human, so-called probe patency, suggests this manner of closure is inefficient. We review the evolution and development of the atrial septum to understand the peculiar means of forming the atrial septum in eutherian mammals. The most primitive atrial septum is found in lungfishes and comprises a myocardial component with a mesenchymal cap on its leading edge, reminiscent to the primary atrial septum of embryonic mammals before closure of the primary foramen. In reptiles, birds, and mammals, the primary foramen is closed by the mesenchymal tissues of the atrioventricular cushions, the dorsal mesenchymal protrusion, and the mesenchymal cap. These tissues are also found in lungfishes. The closure of the primary foramen is preceded by the development of secondary perforations in the septal myocardium. In all amniotes, with the exception of eutherian mammals, the secondary perforations do not coalesce to a secondary foramen. Instead, the secondary perforations persist and are sealed by myocardial and endocardial growth after birth or hatching. We suggest that the error-prone secondary foramen allows large volumes of oxygen-rich blood to reach the cardiac left side, needed to sustain the growth of the extraordinary large offspring that characterizes eutherian mammals. Anat Rec, 302:32-48, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Antoon F M Moorman
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
45
|
Kvasilova A, Gregorovicova M, Kundrat M, Sedmera D. HNK‐1 in Morphological Study of Development of the Cardiac Conduction System in Selected Groups of Sauropsida. Anat Rec (Hoboken) 2018; 302:69-82. [DOI: 10.1002/ar.23925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Alena Kvasilova
- Institute of Anatomy, Charles University Prague Czech Republic
| | - Martina Gregorovicova
- Institute of Anatomy, Charles University Prague Czech Republic
- Institute of Physiology, The Czech Academy of Sciences Prague Czech Republic
| | - Martin Kundrat
- Center for Interdisciplinary Biosciences, Innovation and Technology Park, University of Pavol Jozef Safarik Kosice Slovak Republic
| | - David Sedmera
- Institute of Anatomy, Charles University Prague Czech Republic
- Institute of Physiology, The Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
46
|
Jensen B, H Smit T. Examples of Weak, If Not Absent, Form-Function Relations in the Vertebrate Heart. J Cardiovasc Dev Dis 2018; 5:E46. [PMID: 30205545 PMCID: PMC6162483 DOI: 10.3390/jcdd5030046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
That form and function are related is a maxim of anatomy and physiology. Yet, form-function relations can be difficult to prove. Human subjects with excessive trabeculated myocardium in the left ventricle, for example, are diagnosed with non-compaction cardiomyopathy, but the extent of trabeculations may be without relation to ejection fraction. Rather than rejecting a relation between form and function, we may ask whether the salient function is assessed. Is there a relation to electrical propagation, mean arterial blood pressure, or propensity to form blood clots? In addition, how should the extent of trabeculated muscle be assessed? While reviewing literature on trabeculated muscle, we applied Tinbergen's four types of causation-how does it work, why does it work, how is it made, and why did it evolve-to better parse what is meant by form and function. The paper is structured around cases that highlight advantages and pitfalls of applying Tinbergen's questions. It further uses the evolution of lunglessness in amphibians to argue that lung reduction impacts on chamber septation and it considers the evolution of an arterial outflow in fishes to argue that reductions in energy consumption may drive structural changes with little consequences to function. Concerning trabeculations, we argue they relate to pumping function in the embryo in the few weeks before the onset of coronary circulation. In human fetal and postnatal stages, a spectrum of trabeculated-to-compact myocardium makes no difference to cardiac function and in this period, form and function may appear unrelated.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Anderson RH, Mori S, Spicer DE, Sanchez-Quintana D, Jensen B. The Anatomy, Development, and Evolution of the Atrioventricular Conduction Axis. J Cardiovasc Dev Dis 2018; 5:jcdd5030044. [PMID: 30135383 PMCID: PMC6162790 DOI: 10.3390/jcdd5030044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/22/2022] Open
Abstract
It is now well over 100 years since Sunao Tawara clarified the location of the axis of the specialised myocardium responsible for producing coordinated ventricular activation. Prior to that stellar publication, controversies had raged as to how many bundles crossed the place of the atrioventricular insulation as found in mammalian hearts, as well as the very existence of the bundle initially described by Wilhelm His Junior. It is, perhaps surprising that controversies continue, despite the multiple investigations that have taken place since the publication of Tawara’s monograph. For example, we are still unsure as to the precise substrates for the so-called slow and fast pathways into the atrioventricular node. Much has been done, nonetheless, to characterise the molecular make-up of the specialised pathways, and to clarify their mechanisms of development. Of this work itself, a significant part has emanated from the laboratory coordinated for a quarter of a century by Antoon FM Moorman. In this review, which joins the others in recognising the value of his contributions and collaborations, we review our current understanding of the anatomy, development, and evolution of the atrioventricular conduction axis.
Collapse
Affiliation(s)
- Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 4EP, UK.
| | - Shumpei Mori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan.
| | - Diane E Spicer
- Department of Pediatric Cardiology, University of Florida, Gainesville, FL 32610, USA.
| | - Damian Sanchez-Quintana
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Extremadura, 06006 Badajoz, Spain.
| | - Bjarke Jensen
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, Chiba A, Reischauer S, Mochizuki N, Stainier DYR. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 2018; 145:145/14/dev164194. [PMID: 30061167 DOI: 10.1242/dev.164194] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
Abstract
Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGFβ signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo.
Collapse
Affiliation(s)
- Veronica Uribe
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Deepika Dogra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - S Javad Rasouli
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
49
|
Gregorovicova M, Sedmera D, Jensen B. Relative position of the atrioventricular canal determines the electrical activation of developing reptile ventricles. ACTA ACUST UNITED AC 2018; 221:jeb.178400. [PMID: 29674379 DOI: 10.1242/jeb.178400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 01/15/2023]
Abstract
Squamate reptiles appear to lack the specialized His-Purkinje system that enables the cardiac ventricle to be activated from apex to base as in mammals and birds. Instead, activation may simply spread from where the atrioventricular canal connects to the base. Gja5, which encodes Cx40, which allows fast impulse propagation, was expressed throughout the ventricles of developing anole lizards. Activation was optically recorded in developing corn snake and central bearded dragon. Early embryonic ventricles were broad in shape, and activation propagated from the base to the right. Elongated ventricles of later stages were activated from base to apex. Before hatching of the snake, the ventricle developed a cranial extension on the left and activation propagated from the base to the caudal apex and the cranial extension. In squamate reptiles, the pattern of electrical activation of the cardiac ventricle is dependent on the position of the atrioventricular canal and the shape of the ventricle.
Collapse
Affiliation(s)
- Martina Gregorovicova
- Institute of Anatomy, First Medical Faculty, Charles University, 12800 Prague, and Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Medical Faculty, Charles University, 12800 Prague, and Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, University of Amterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
50
|
Hippo Signaling Plays an Essential Role in Cell State Transitions during Cardiac Fibroblast Development. Dev Cell 2018; 45:153-169.e6. [PMID: 29689192 DOI: 10.1016/j.devcel.2018.03.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
During development, progenitors progress through transition states. The cardiac epicardium contains progenitors of essential non-cardiomyocytes. The Hippo pathway, a kinase cascade that inhibits the Yap transcriptional co-factor, controls organ size in developing hearts. Here, we investigated Hippo kinases Lats1 and Lats2 in epicardial diversification. Epicardial-specific deletion of Lats1/2 was embryonic lethal, and mutant embryos had defective coronary vasculature remodeling. Single-cell RNA sequencing revealed that Lats1/2 mutant cells failed to activate fibroblast differentiation but remained in an intermediate cell state with both epicardial and fibroblast characteristics. Lats1/2 mutant cells displayed an arrested developmental trajectory with persistence of epicardial markers and expanded expression of Yap targets Dhrs3, an inhibitor of retinoic acid synthesis, and Dpp4, a protease that modulates extracellular matrix (ECM) composition. Genetic and pharmacologic manipulation revealed that Yap inhibits fibroblast differentiation, prolonging a subepicardial-like cell state, and promotes expression of matricellular factors, such as Dpp4, that define ECM characteristics.
Collapse
|