1
|
Ip YCA, Chang JJM, Oh RM, Quek ZBR, Chan YKS, Bauman AG, Huang D. Seq' and ARMS shall find: DNA (meta)barcoding of Autonomous Reef Monitoring Structures across the tree of life uncovers hidden cryptobiome of tropical urban coral reefs. Mol Ecol 2023; 32:6223-6242. [PMID: 35716352 DOI: 10.1111/mec.16568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
Coral reefs are among the richest marine ecosystems on Earth, but there remains much diversity hidden within cavities of complex reef structures awaiting discovery. While the abundance of corals and other macroinvertebrates are known to influence the diversity of other reef-associated organisms, much remains unknown on the drivers of cryptobenthic diversity. A combination of standardized sampling with 12 units of the Autonomous Reef Monitoring Structure (ARMS) and high-throughput sequencing was utilized to uncover reef cryptobiome diversity across the equatorial reefs in Singapore. DNA barcoding and metabarcoding of mitochondrial cytochrome c oxidase subunit I, nuclear 18S and bacterial 16S rRNA genes revealed the taxonomic composition of the reef cryptobiome, comprising 15,356 microbial ASVs from over 50 bacterial phyla, and 971 MOTUs across 15 metazoan and 19 non-metazoan eukaryote phyla. Environmental factors across different sites were tested for relationships with ARMS diversity. Differences among reefs in diversity patterns of metazoans and other eukaryotes, but not microbial communities, were associated with biotic (coral cover) and abiotic (distance, temperature and sediment) environmental variables. In particular, ARMS deployed at reefs with higher coral cover had greater metazoan diversity and encrusting plate cover, with larger-sized non-coral invertebrates influencing spatial patterns among sites. Our study showed that DNA barcoding and metabarcoding of ARMS constitute a valuable tool for quantifying cryptobenthic diversity patterns and can provide critical information for the effective management of coral reef ecosystems.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ren Min Oh
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zheng Bin Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Yong Kit Samuel Chan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Andrew G Bauman
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Nature-Based Climate Solutions, National University of Singapore, Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Di Carvalho JA, Wickham SA. Does spatiotemporal nutrient variation allow more species to coexist? Oecologia 2020; 194:695-707. [PMID: 33099656 PMCID: PMC7683490 DOI: 10.1007/s00442-020-04768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/21/2020] [Indexed: 12/05/2022]
Abstract
Temporal heterogeneity in nutrient availability is known to increase phytoplankton diversity by allowing more species to coexist under different resource niches. Spatial heterogeneity has also been positively correlated with species diversity. Here we investigated how temporal and spatial differences in nutrient addition together impact biodiversity in metacommunities varying in the degree of connectivity among the patches. We used a microcosm experimental design to test two spatiotemporal ways of supplying nutrients: synchronously (nutrients were added regionally-to all four patches at the same time) and asynchronously (nutrients were added locally-to a different patch each time), combined with two different degrees of connectivity among the patches (low or high connectivity). We used three species of algae and one species of cyanobacteria as the primary producers; and five ciliate and two rotifer species as the grazers. We expected higher diversity in metacommunities receiving an asynchronous nutrient supply, assuming stronger development of heterogeneous patches with this condition rather than with synchronous nutrient supply. This result was expected, however, to be dependent on the degree of connectivity among patches. We found significant effects of nutrient addition in both groups of organisms. Phytoplankton diversity increased until the fourth week (transiently) and zooplankton richness was persistently higher under asynchronous nutrient addition. Our results were consistent with our hypothesis that asynchronicity in nutrient supply would create a more favorable condition for species to co-occur. However, this effect was, in part, transient and was not influenced by the degree of connectivity.
Collapse
Affiliation(s)
- Josie Antonucci Di Carvalho
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Stephen A Wickham
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
3
|
Dispersal mitigates bacterial dominance over microalgal competitor in metacommunities. Oecologia 2020; 193:677-687. [PMID: 32648114 DOI: 10.1007/s00442-020-04707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
Ecological theory suggests that a combination of local and regional factors regulate biodiversity and community functioning in metacommunities. The relative importance of different factors structuring communities likely changes over successional time, but to date this concept is scarcely documented. In addition, the few studies describing successional dynamics in metacommunity regulation have only focused on a single group of organisms. Here, we report results of an experimental study testing the effect size of initial local community composition and dispersal between local patches on community dynamics of benthic microalgae and their associated bacteria over community succession. Our results show that over time dispersal outweighed initial effects of community composition on microalgal evenness and biomass, microalgal β-diversity, and the ratio of bacteria to microalgae. At the end of the experiment (ca. 20 microalgae generations), dispersal significantly decreased microalgal evenness and β-diversity by promoting one regionally superior competitor. Dispersal also decreased the ratio of bacteria to microalgae, while it significantly increased microalgal biomass. These results suggest that the dispersal-mediated establishment of a dominant and superior microalgae species prevented bacteria from gaining competitive advantage over the autotrophs in these metacommunities, ultimately maintaining the provision of autotrophic biomass. Our study emphasizes the importance of time for dispersal to be a relevant community-structuring mechanism. Moreover, we highlight the need for considering multiple competitors in complex metacommunity systems to properly pinpoint the consequences of local change in dominance through dispersal for metacommunity function.
Collapse
|
4
|
Antonucci Di Carvalho J, Wickham SA. Simulating eutrophication in a metacommunity landscape: an aquatic model ecosystem. Oecologia 2019; 189:461-474. [PMID: 30523402 PMCID: PMC6394664 DOI: 10.1007/s00442-018-4319-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/02/2018] [Indexed: 12/03/2022]
Abstract
Aquatic habitats are often characterized by both high diversity and the threat of multiple anthropogenic stressors. Our research deals with temporal and spatial aspects of two of the main threats for biodiversity, namely eutrophication and fragmentation. It is known that pulsed nutrient addition creates temporal differences in environmental conditions, promoting higher diversity by preventing the best competitor from dominating. Furthermore, a metacommunity landscape with intermediate connectivity increases autotrophs' diversity and stability. However, it is yet unclear if these two factors are additive in increasing diversity and if the effects extend to the consumer level. With the goal of understanding how eutrophication impacts biodiversity in a metacommunity landscape, we hypothesized that pulsed nutrient addition will increase diversity among both autotrophs and heterotrophs, and this effect will be even greater in a metacommunity landscape. We simulated eutrophication and fragmentation in a microcosm experiment using phytoplankton as primary producers and microzooplankton as grazers. Four treatment combinations were tested including two different landscapes (metacommunity and isolated community) and two forms of nutrient supply (pulsed and continuous): metacommunity/continuous nutrient addition (MC); metacommunity/pulsed nutrient addition (MP); isolated community/continuous nutrient addition (IC); isolated community/pulsed nutrient addition (IP). As expected, pulsed nutrient addition had a persistent positive effect on phytoplankton diversity, with a weaker influence of landscape type. In contrast, the grazer community strongly benefited from a metacommunity landscape, with less significance of pulsed or continuous nutrient addition. Overall, the metacommunity landscape with pulsed nutrient supply supported higher diversity of primary producers and grazers.
Collapse
Affiliation(s)
- Josie Antonucci Di Carvalho
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Stephen A Wickham
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
5
|
Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci Rep 2018; 8:8090. [PMID: 29795402 PMCID: PMC5967342 DOI: 10.1038/s41598-018-26332-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/09/2018] [Indexed: 11/08/2022] Open
Abstract
Coral reefs harbor diverse assemblages of organisms yet the majority of this diversity is hidden within the three dimensional structure of the reef and neglected using standard visual surveys. This study uses Autonomous Reef Monitoring Structures (ARMS) and amplicon sequencing methodologies, targeting mitochondrial cytochrome oxidase I and 18S rRNA genes, to investigate changes in the cryptic reef biodiversity. ARMS, deployed at 11 sites across a near- to off-shore gradient in the Red Sea were dominated by Porifera (sessile fraction), Arthropoda and Annelida (mobile fractions). The two primer sets detected different taxa lists, but patterns in community composition and structure were similar. While the microhabitat of the ARMS deployment affected the community structure, a clear cross-shelf gradient was observed for all fractions investigated. The partitioning of beta-diversity revealed that replacement (i.e. the substitution of species) made the highest contribution with richness playing a smaller role. Hence, different reef habitats across the shelf are relevant to regional diversity, as they harbor different communities, a result with clear implications for the design of Marine Protected Areas. ARMS can be vital tools to assess biodiversity patterns in the generally neglected but species-rich cryptic benthos, providing invaluable information for the management and conservation of hard-bottomed habitats over local and global scales.
Collapse
|
6
|
Smeti E, Roelke DL, Spatharis S. Spatial averaging and disturbance lead to high productivity in aquatic metacommunities. OIKOS 2015. [DOI: 10.1111/oik.02684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Evangelia Smeti
- Dept of Marine Sciences; Univ. of the Aegean, University Hill; GR-81100 Mytilene Greece
| | - Daniel L. Roelke
- Dept of Wildlife and Fisheries Sciences; Texas A&M University; 2258 TAMUS College Station TX 77843-2258 USA
| | - Sofie Spatharis
- Inst. of Biodiversity, Animal Health and Comparative Medicine, Univ. of Glasgow; Glasgow G12 8QQ Scotland UK
| |
Collapse
|
7
|
Martínez E, Rös M, Bonilla MA, Dirzo R. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields. PLoS One 2015. [PMID: 26197473 PMCID: PMC4510542 DOI: 10.1371/journal.pone.0128950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.
Collapse
Affiliation(s)
- Eliana Martínez
- Escuela de Posgrados, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| | - Matthias Rös
- Instituto de Ecología A. C., Red de Ecoetología, Xalapa, México
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Oaxaca, México
| | - María Argenis Bonilla
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
8
|
Pu Z, Jiang L. Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. OIKOS 2015. [DOI: 10.1111/oik.02079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zhichao Pu
- School of Biology, Georgia Inst. of Technology; 310 Ferst Drive Atlanta GA 30332 USA
| | - Lin Jiang
- School of Biology, Georgia Inst. of Technology; 310 Ferst Drive Atlanta GA 30332 USA
| |
Collapse
|