1
|
Albakova Z, Mangasarova Y. The HSP Immune Network in Cancer. Front Immunol 2021; 12:796493. [PMID: 34917098 PMCID: PMC8669653 DOI: 10.3389/fimmu.2021.796493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins are molecular chaperones which support tumor development by regulating various cellular processes including unfolded protein response, mitochondrial bioenergetics, apoptosis, autophagy, necroptosis, lipid metabolism, angiogenesis, cancer cell stemness, epithelial-mesenchymal transition and tumor immunity. Apart from their intracellular activities, HSPs have also distinct extracellular functions. However, the role that HSP chaperones play in the regulation of immune responses inside and outside the cell is not yet clear. Herein, we explore the intracellular and extracellular immunologic functions of HSPs in cancer. A broader understanding of how HSPs modulate immune responses may provide critical insights for the development of effective immunotherapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
2
|
Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. J Control Release 2020; 328:932-941. [DOI: 10.1016/j.jconrel.2020.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
|
3
|
Giuli MV, Diluvio G, Giuliani E, Franciosa G, Di Magno L, Pignataro MG, Tottone L, Nicoletti C, Besharat ZM, Peruzzi G, Pelullo M, Palermo R, Canettieri G, Talora C, d'Amati G, Bellavia D, Screpanti I, Checquolo S. Notch3 contributes to T-cell leukemia growth via regulation of the unfolded protein response. Oncogenesis 2020; 9:93. [PMID: 33071287 PMCID: PMC7569087 DOI: 10.1038/s41389-020-00279-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Unfolded protein response (UPR) is a conserved adaptive response that tries to restore protein homeostasis after endoplasmic reticulum (ER) stress. Recent studies highlighted the role of UPR in acute leukemias and UPR targeting has been suggested as a therapeutic approach. Aberrant Notch signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), as downregulation of Notch activity negatively affects T-ALL cell survival, leading to the employment of Notch inhibitors in T-ALL therapy. Here we demonstrate that Notch3 is able to sustain UPR in T-ALL cells, as Notch3 silencing favored a Bip-dependent IRE1α inactivation under ER stress conditions, leading to increased apoptosis via upregulation of the ER stress cell death mediator CHOP. By using Juglone, a naturally occurring naphthoquinone acting as an anticancer agent, to decrease Notch3 expression and induce ER stress, we observed an increased ER stress-associated apoptosis. Altogether our results suggest that Notch3 inhibition may prevent leukemia cells from engaging a functional UPR needed to compensate the Juglone-mediated ER proteotoxic stress. Notably, in vivo administration of Juglone to human T-ALL xenotransplant models significantly reduced tumor growth, finally fostering the exploitation of Juglone-dependent Notch3 inhibition to perturb the ER stress/UPR signaling in Notch3-dependent T-ALL subsets.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giulia Diluvio
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eugenia Giuliani
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenaghen, Copenaghen, Denmark
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | - Zein Mersini Besharat
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Rocco Palermo
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Gianluca Canettieri
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudio Talora
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Diana Bellavia
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy.
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy.
| |
Collapse
|
4
|
Kuo TC, Huang KY, Yang SC, Wu S, Chung WC, Chang YL, Hong TM, Wang SP, Chen HY, Hsiao TH, Yang PC. Monocarboxylate Transporter 4 Is a Therapeutic Target in Non-small Cell Lung Cancer with Aerobic Glycolysis Preference. Mol Ther Oncolytics 2020; 18:189-201. [PMID: 32695876 PMCID: PMC7364124 DOI: 10.1016/j.omto.2020.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Targeting metabolic reprogramming is an emerging strategy in cancer therapy. However, clinical attempts to target metabolic reprogramming have been proved to be challenging, with metabolic heterogeneity of cancer being one of many reasons that causes treatment failure. Here, we stratified non-small cell lung cancer (NSCLC) cells, mainly lung adenocarcinoma, based on their metabolic phenotypes and demonstrated that the aerobic glycolysis-preference NSCLC cell subtype was resistant to the OXPHOS-targeting inhibitors. We identified that monocarboxylate transporter 4 (MCT4), a lactate transporter, was highly expressed in the aerobic glycolysis-preference subtype with function supporting the proliferation of these cells. Glucose could induce the expression of MCT4 in these cells through a ΔNp63α and Sp1-dependent pathway. Next, we showed that knockdown of MCT4 increased intracellular lactate concentration and induced a reactive oxygen species (ROS)-dependent cellular apoptosis in the aerobic glycolysis-preference NSCLC cell subtype. By scanning a panel of monoclonal antibodies with MCT4 neutralizing activity, we further identified a MCT4 immunoglobulin M (IgM) monoclonal antibody showing capable anti-proliferation efficacy on the aerobic glycolysis-preference NSCLC cell subtype. Our findings indicate that the metabolic heterogeneity is a critical factor for NSCLC therapy and manipulating the expression or function of MCT4 can be an effective strategy in targeting the aerobic glycolysis-preference NSCLC cell subtype.
Collapse
Affiliation(s)
- Ting-Chun Kuo
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sean Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chia Chung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yih-Leong Chang
- Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
5
|
Pashov A, Shivarov V, Hadzhieva M, Kostov V, Ferdinandov D, Heintz KM, Pashova S, Todorova M, Vassilev T, Kieber-Emmons T, Meza-Zepeda LA, Hovig E. Diagnostic Profiling of the Human Public IgM Repertoire With Scalable Mimotope Libraries. Front Immunol 2019; 10:2796. [PMID: 31849974 PMCID: PMC6901697 DOI: 10.3389/fimmu.2019.02796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Specific antibody reactivities are routinely used as biomarkers, but the antibody repertoire reactivity (igome) profiles are still neglected. Here, we propose rationally designed peptide arrays as efficient probes for these system level biomarkers. Most IgM antibodies are characterized by few somatic mutations, polyspecificity, and physiological autoreactivity with housekeeping function. Previously, probing this repertoire with a set of immunodominant self-proteins provided a coarse analysis of the respective repertoire profiles. In contrast, here, we describe the generation of a peptide mimotope library that reflects the common IgM repertoire of 10,000 healthy donors. In addition, an appropriately sized subset of this quasi-complete mimotope library was further designed as a potential diagnostic tool. A 7-mer random peptide phage display library was panned on pooled human IgM. Next-generation sequencing of the selected phage yielded 224,087 sequences, which clustered in 790 sequence clusters. A set of 594 mimotopes, representative of the most significant sequence clusters, was shown to probe symmetrically the space of IgM reactivities in patients' sera. This set of mimotopes can be easily scaled including a greater proportion of the mimotope library. The trade-off between the array size and the resolution can be explored while preserving the symmetric sampling of the mimotope sequence and reactivity spaces. BLAST search of the non-redundant protein database with the mimotopes sequences yielded significantly more immunoglobulin J region hits than random peptides, indicating a considerable idiotypic connectivity of the targeted igome. The proof of principle predictors for random diagnoses was represented by profiles of mimotopes. The number of potential reactivity profiles that can be extracted from this library is estimated at more than 1070. Thus, a quasi-complete IgM mimotope library and a scalable representative subset thereof are found to address very efficiently the dynamic diversity of the human public IgM repertoire, providing informationally dense and structurally interpretable IgM reactivity profiles.
Collapse
Affiliation(s)
- Anastas Pashov
- Laboratory of Experimental Immunotherapy, Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Velizar Shivarov
- Laboratory of Clinical Immunology, Department of Clinical Hematology, Sofiamed University Hospital, Sofia, Bulgaria.,Faculty of Biology, Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Maya Hadzhieva
- Laboratory of Experimental Immunotherapy, Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Victor Kostov
- Laboratory of Experimental Immunotherapy, Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Neurosurgery Clinic, St. Ivan Rilsky Hospital, Sofia MU, Sofia, Bulgaria
| | - Dilyan Ferdinandov
- Neurosurgery Clinic, St. Ivan Rilsky Hospital, Sofia MU, Sofia, Bulgaria
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Shina Pashova
- Laboratory of Experimental Immunotherapy, Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milena Todorova
- Laboratory of Experimental Immunotherapy, Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tchavdar Vassilev
- Institute of Biology and Biomedicine, N.I. Lobachevsky University, Nizhny Novgorod, Russia
| | - Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Research Center, UAMS, Little Rock, AR, United States
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Unfolded Protein Response (UPR) in Survival, Dormancy, Immunosuppression, Metastasis, and Treatments of Cancer Cells. Int J Mol Sci 2019; 20:ijms20102518. [PMID: 31121863 PMCID: PMC6566956 DOI: 10.3390/ijms20102518] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has diverse functions, and especially misfolded protein modification is in the focus of this review paper. With a highly regulatory mechanism, called unfolded protein response (UPR), it protects cells from the accumulation of misfolded proteins. Nevertheless, not only does UPR modify improper proteins, but it also degrades proteins that are unable to recover. Three pathways of UPR, namely PERK, IRE-1, and ATF6, have a significant role in regulating stress-induced physiological responses in cells. The dysregulated UPR may be involved in diseases, such as atherosclerosis, heart diseases, amyotrophic lateral sclerosis (ALS), and cancer. Here, we discuss the relation between UPR and cancer, considering several aspects including survival, dormancy, immunosuppression, angiogenesis, and metastasis of cancer cells. Although several moderate adversities can subject cancer cells to a hostile environment, UPR can ensure their survival. Excessive unfavorable conditions, such as overloading with misfolded proteins and nutrient deprivation, tend to trigger cancer cell death signaling. Regarding dormancy and immunosuppression, cancer cells can survive chemotherapies and acquire drug resistance through dormancy and immunosuppression. Cancer cells can also regulate the downstream of UPR to modulate angiogenesis and promote metastasis. In the end, regulating UPR through different molecular mechanisms may provide promising anticancer treatment options by suppressing cancer proliferation and progression.
Collapse
|
7
|
Abdollahpour-Alitappeh M, Razavi-Vakhshourpour S, Abolhassani M. Development of a new anti-CD123 monoclonal antibody to target the human CD123 antigen as an acute myeloid leukemia cancer stem cell biomarker. Biotechnol Appl Biochem 2018; 65:841-847. [PMID: 29972607 DOI: 10.1002/bab.1681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/20/2023]
Abstract
Acute myeloid leukemia (AML) is a clonal hematologic malignancy arising from a small population of leukemic cells initiating the disease. CD123 is differentially expressed in AML blasts compared with normal hematopoietic stem and progenitor cells. The aim of this study was to develop specific monoclonal antibodies (mAbs) directed against AML. Three BALB/c mice were immunized with the human CD123 antigen, and the immune spleen cells were fused with the SP2/0 myeloma cell line. Hybridomas were screened by indirect enzyme-linked immunosorbent assay (ELISA), and the positive hybrids were cloned by limiting dilution. The mAb isotype was determined, ascitic fluids were produced, and antibodies were purified using Fast protein liquid chromatography (Sephacryl S-200). The specificity of the hybridomas was examined by ELISA, cell-based ELISA, and flow cytometry. After three rounds of cell cloning, four anti-CD123 secreting hybridomas were obtained with the IgM isotype. Among them, one stable hybrid, designated sC1, exhibited the higher ability to recognize the CD123 antigen, as compared with the other hybridomas. Our results showed that sC1 has the ability to bind specifically to the CD123 antigen (41.36%) on the cell surface. The anti-CD123 mAb produced in this study may be useful for the development of both diagnostic and therapeutic purposes for AML.
Collapse
Affiliation(s)
| | | | - Mohsen Abolhassani
- Hybridoma Lab, Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Shah DD, Singh SM, Dzieciatkowska M, Mallela KMG. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP). PLoS One 2017; 12:e0183975. [PMID: 28886061 PMCID: PMC5590874 DOI: 10.1371/journal.pone.0183975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022] Open
Abstract
Binding immunoglobulin protein (BiP) is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR) in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE). BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD) where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell.
Collapse
Affiliation(s)
- Dinen D Shah
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Surinder M Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Monika Dzieciatkowska
- Biological Mass Spectrometry Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.,Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Vanacker H, Vetters J, Moudombi L, Caux C, Janssens S, Michallet MC. Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance. Trends Cancer 2017; 3:491-505. [PMID: 28718404 DOI: 10.1016/j.trecan.2017.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis results in ER stress and activation of the unfolded protein response (UPR). This response alleviates cell stress, and is activated in both tumor cells and tumor infiltrating immune cells. The UPR plays a dual function in cancer biology, acting as a barrier to tumorigenesis at the premalignant stage, while fostering cancer maintenance in established tumors. In infiltrating immune cells, the UPR has been involved in both immunosurveillance and immunosuppressive functions. This review aims to decipher the role of the UPR at different stages of tumorigenesis and how the UPR shapes the balance between immunosurveillance and immune escape. This knowledge may improve existing UPR-targeted therapies and the design of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hélène Vanacker
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Jessica Vetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium and Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Lyvia Moudombi
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Sophie Janssens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium and Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Marie-Cécile Michallet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France.
| |
Collapse
|
10
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Chromikova V, Mader A, Hofbauer S, Göbl C, Madl T, Gach JS, Bauernfried S, Furtmüller PG, Forthal DN, Mach L, Obinger C, Kunert R. Introduction of germline residues improves the stability of anti-HIV mAb 2G12-IgM. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1536-44. [PMID: 25748881 PMCID: PMC4582045 DOI: 10.1016/j.bbapap.2015.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 11/02/2022]
Abstract
Immunoglobulins M (IgMs) are gaining increasing attention as biopharmaceuticals since their multivalent mode of binding can give rise to high avidity. Furthermore, IgMs are potent activators of the complement system. However, they are frequently difficult to express recombinantly and can suffer from low conformational stability. Here, the broadly neutralizing anti-HIV-1 antibody 2G12 was class-switched to IgM and then further engineered by introduction of 17 germline residues. The impact of these changes on the structure and conformational stability of the antibody was then assessed using a range of biophysical techniques. We also investigated the effects of the class switch and germline substitutions on the ligand-binding properties of 2G12 and its capacity for HIV-1 neutralization. Our results demonstrate that the introduced germline residues improve the conformational and thermal stability of 2G12-IgM without altering its overall shape and ligand-binding properties. Interestingly, the engineered protein was found to exhibit much lower neutralization potency than its wild-type counterpart, indicating that potent antigen recognition is not solely responsible for IgM-mediated HIV-1 inactivation.
Collapse
Affiliation(s)
- Veronika Chromikova
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexander Mader
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Christoph Göbl
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technical University Munich, Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias Madl
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technical University Munich, Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Neuherberg, Germany; Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CA, Irvine, USA
| | - Stefan Bauernfried
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of CA, Irvine, USA
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Renate Kunert
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
12
|
Abstract
Breast cancer is the most prevalent cancer in women, with over 200,000 new cases diagnosed each year. Over 70% of breast cancers express the estrogen receptor-α, and drugs targeting these receptors such as tamoxifen or Faslodex(®) often fail to cure these patients. Many estrogen receptor-positive tumors lose drug sensitivity, making endocrine resistance a major clinical problem. Recently, investigation into the molecular mechanisms of endocrine resistance has highlighted a causative role of the unfolded protein response in antiestrogen resistance. In particular, the master regulator of the unfolded protein response, GRP78, was observed to be elevated in endocrine-resistant breast cancer and directly affected antiestrogen therapy responsiveness. GRP78 was found to impact many different cellular processes that may affect breast cancer survival. Recently, various compounds have been reported to affect GRP78 activity and it may be advantageous to combine these drugs with antiestrogens to overcome endocrine therapy resistance.
Collapse
|
13
|
Simultaneous binding of the anti-cancer IgM monoclonal antibody PAT-SM6 to low density lipoproteins and GRP78. PLoS One 2013; 8:e61239. [PMID: 23620733 PMCID: PMC3631193 DOI: 10.1371/journal.pone.0061239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/06/2013] [Indexed: 11/30/2022] Open
Abstract
The tumour-derived monoclonal IgM antibody PAT-SM6 specifically kills malignant cells by an apoptotic mechanism linked to the excessive uptake of plasma lipids. The mechanism is postulated to occur via the multi-point attachment of PAT-SM6 to the unfolded protein response regulator GRP78, located on the surface of tumour cells, coupled to the simultaneous binding of plasma low density lipoprotein (LDL). We prepared and characterised LDL and oxidized LDL using sedimentation velocity and small-angle X-ray scattering (SAXS) analysis. Enzyme-linked immunosorbent (ELISA) techniques indicated apparent dissociation constants of approximately 20 nM for the binding of LDL or oxidized LDL to PAT-SM6. ELISA experiments showed cross competition with LDL inhibiting PAT-SM6 binding to immobilised GRP78, while, in the reverse experiment, GRP78 inhibited PAT-SM6 binding to immobilized LDL. In contrast to the results of the ELISA experiments, sedimentation velocity experiments indicated relatively weak interactions between LDL and PAT-SM6, suggesting immunoabsorbance to the microtiter plate is driven by an avidity-based binding mechanism. The importance of avidity and the multipoint attachment of antigens to PAT-SM6 was further investigated using antigen-coated polystyrene beads. Absorption of GRP78 or LDL to polystyrene microspheres led to an increase in the inhibition of PAT-SM6 binding to microtiter plates coated with GRP78 or LDL, respectively. These results support the hypothesis that the biological action of PAT-SM6 in tumour cell apoptosis depends on the multivalent nature of PAT-SM6 and the ability to interact simultaneously with LDL and multiple GRP78 molecules clustered on the tumour cell surface.
Collapse
|