1
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Abstract
Since the first resection of melanoma by Hunter in 1787, efforts to treat patients with this deadly malignancy have been ongoing. Initial work to understand melanoma biology for therapeutics development began with the employment of isolated cancer cells grown in cell cultures. However, these models lack in vivo interactions with the tumor microenvironment. Melanoma cell line transplantation into suitable animals such as mice has been informative and useful for testing therapeutics as a preclinical model. Injection of freshly isolated patient melanomas into immunodeficient animals has shown the capacity to retain the genetic heterogeneity of the tumors, which is lost during the long-term culture of melanoma cells. Upon advancement of technology, genetically engineered animals have been generated to study the spontaneous development of melanomas in light of newly discovered genetic aberrations associated with melanoma formation. Culturing melanoma cells in a matrix generate tumor spheroids, providing an in vitro environment that promotes the heterogeneity commonplace with human melanoma and displaces the need for animal care facilities. Advanced 3D cultures have been created simulating the structure and cellularity of human skin to permit in vitro testing of therapeutics on melanomas expressing the same phenotype as demonstrated in vivo. This review will discuss these models and their relevance to the study of melanomagenesis, growth, metastasis, and therapy.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
3
|
García-Caballero M, Quesada AR, Medina MA, Marí-Beffa M. Fishing anti(lymph)angiogenic drugs with zebrafish. Drug Discov Today 2017; 23:366-374. [PMID: 29081356 DOI: 10.1016/j.drudis.2017.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Zebrafish, an amenable small teleost fish with a complex mammal-like circulatory system, is being increasingly used for drug screening and toxicity studies. It combines the biological complexity of in vivo models with a higher-throughput screening capability compared with other available animal models. Externally growing, transparent embryos, displaying well-defined blood and lymphatic vessels, allow the inexpensive, rapid, and automatable evaluation of drug candidates that are able to inhibit neovascularisation. Here, we briefly review zebrafish as a model for the screening of anti(lymph)angiogenic drugs, with emphasis on the advantages and limitations of the different zebrafish-based in vivo assays.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ana R Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| | - Manuel Marí-Beffa
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Málaga, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Málaga, Spain.
| |
Collapse
|
4
|
Yan H, Zhang C, Wang Z, Tu T, Duan H, Luo Y, Feng J, Liu F, Yan X. CD146 is required for VEGF-C-induced lymphatic sprouting during lymphangiogenesis. Sci Rep 2017; 7:7442. [PMID: 28785085 PMCID: PMC5547131 DOI: 10.1038/s41598-017-06637-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/15/2017] [Indexed: 02/07/2023] Open
Abstract
VEGF-C is essential for lymphangiogenesis during development and tumor progression. VEGFR-3 is the well-known cognate receptor of VEGF-C to regulate lymphatic migration and proliferation, but the receptor of VEGF-C in regulating lymphatic sprouting, the initiating step of lymphangiogenesis, still remains elusive. Here we use both in vitro and in vivo methods to demonstrate CD146 as a receptor of VEGF-C to regulate lymphangiogenesis, especially at the sprouting step. Mechanistically, CD146 selectively activates the downstream p38 kinase, upon VEGF-C stimulation, to regulate lymphatic sprouting. Moreover, CD146 can also activate ERK to mediate VEGF-C regulation of the subsequent proliferation and migration of lymphatic endothelial cells. In zebrafish embryos, knockdown or dysfunction of CD146 results in similar developmental defects in lymphatic sprouting, capillary network, parachordal lymphangioblast (PL), and thoracic duct (TD) similar to down-regulation of VEGF-C. Altogether, our data reveals a critical role of CD146 to mediate VEGF-C signaling pathway in lymphangiogenesis.
Collapse
Affiliation(s)
- Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Sacco A, Roccaro AM, Ma D, Shi J, Mishima Y, Moschetta M, Chiarini M, Munshi N, Handin RI, Ghobrial IM. Cancer Cell Dissemination and Homing to the Bone Marrow in a Zebrafish Model. Cancer Res 2016; 76:463-71. [DOI: 10.1158/0008-5472.can-15-1926] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
|
6
|
van der Weyden L, Patton EE, Wood GA, Foote AK, Brenn T, Arends MJ, Adams DJ. Cross-species models of human melanoma. J Pathol 2016; 238:152-165. [PMID: 26354726 PMCID: PMC4832391 DOI: 10.1002/path.4632] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/18/2015] [Accepted: 09/06/2015] [Indexed: 01/29/2023]
Abstract
Although transformation of melanocytes to melanoma is rare, the rapid growth, systemic spread, as well as the chemoresistance of melanoma present significant challenges for patient care. Here we review animal models of melanoma, including murine, canine, equine, and zebrafish models, and detail the immense contribution these models have made to our knowledge of human melanoma development, and to melanocyte biology. We also highlight the opportunities for cross-species comparative genomic studies of melanoma to identify the key molecular events that drive this complex disease.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, The MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Alastair K Foote
- Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket, Suffolk, CB8 7NN, UK
| | - Thomas Brenn
- Pathology Department, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Mark J Arends
- Centre for Comparative Pathology, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
7
|
Blei F. Update December 2012. Lymphat Res Biol 2012. [DOI: 10.1089/lrb.2012.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|