1
|
Jaiswal S, Jadhav PV, Jasrotia RS, Kale PB, Kad SK, Moharil MP, Dudhare MS, Kheni J, Deshmukh AG, Mane SS, Nandanwar RS, Penna S, Manjaya JG, Iquebal MA, Tomar RS, Kawar PG, Rai A, Kumar D. Transcriptomic signature reveals mechanism of flower bud distortion in witches'-broom disease of soybean (Glycine max). BMC PLANT BIOLOGY 2019; 19:26. [PMID: 30646861 PMCID: PMC6332543 DOI: 10.1186/s12870-018-1601-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/12/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Soybean (Glycine max L. Merril) crop is major source of edible oil and protein for human and animals besides its various industrial uses including biofuels. Phytoplasma induced floral bud distortion syndrome (FBD), also known as witches' broom syndrome (WBS) has been one of the major biotic stresses adversely affecting its productivity. Transcriptomic approach can be used for knowledge discovery of this disease manifestation by morpho-physiological key pathways. RESULTS We report transcriptomic study using Illumina HiSeq NGS data of FBD in soybean, revealing 17,454 differentially expressed genes, 5561 transcription factors, 139 pathways and 176,029 genic region putative markers single sequence repeats, single nucleotide polymorphism and Insertion Deletion. Roles of PmbA, Zn-dependent protease, SAP family and auxin responsive system are described revealing mechanism of flower bud distortion having abnormalities in pollen, stigma development. Validation of 10 randomly selected genes was done by qPCR. Our findings describe the basic mechanism of FBD disease, right from sensing of phytoplasma infection by host plant triggering molecular signalling leading to mobilization of carbohydrate and protein, phyllody, abnormal pollen development, improved colonization of insect in host plants to spread the disease. Study reveals how phytoplasma hijacks metabolic machinery of soybean manifesting FBD. CONCLUSIONS This is the first report of transcriptomic signature of FBD or WBS disease of soybean revealing morphological and metabolic changes which attracts insect for spread of disease. All the genic region putative markers may be used as genomic resource for variety improvement and new agro-chemical development for disease control to enhance soybean productivity.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012 India
| | - Pravin V. Jadhav
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012 India
| | - Prashant B. Kale
- National Research Centre on Plant Biotechnology, LBS Centre, PUSA Campus, New Delhi, 110012 India
| | - Snehal K. Kad
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Mangesh P. Moharil
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Mahendra S. Dudhare
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Jashminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat India
| | - Amit G. Deshmukh
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Shyamsundar S. Mane
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Ravindra S. Nandanwar
- Post Graduate Institute, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104 India
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Homi Bhabha National Institute, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085 India
| | - Joy G. Manjaya
- Nuclear Agriculture and Biotechnology Division, Homi Bhabha National Institute, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085 India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012 India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat India
| | - Prashant G. Kawar
- ICAR- Directorate of Floricultural Research, College of Agriculture, Pune, Maharashtra, 411 005, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012 India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012 India
| |
Collapse
|
2
|
Begheyn RF, Yates SA, Sykes T, Studer B. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass ( Lolium perenne L.). G3 (BETHESDA, MD.) 2018; 8:1897-1908. [PMID: 29626084 PMCID: PMC5982819 DOI: 10.1534/g3.117.300550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/29/2018] [Indexed: 01/17/2023]
Abstract
Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L.) germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391) segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL) were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.
Collapse
Affiliation(s)
- Rachel F Begheyn
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven A Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Timothy Sykes
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Iquebal MA, Soren KR, Gangwar P, Shanmugavadivel PS, Aravind K, Singla D, Jaiswal S, Jasrotia RS, Chaturvedi SK, Singh NP, Varshney RK, Rai A, Kumar D. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:958. [PMID: 28638398 PMCID: PMC5461349 DOI: 10.3389/fpls.2017.00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Background: Chickpea (Cicer arietinum L.) contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries. Weed not only competes with chickpea resulting into drastic yield reduction but also creates problem of harboring fungi, bacterial diseases and insect pests. Chemical approach having new herbicide discovery has constraint of limited lead molecule options, statutory regulations and environmental clearance. Through genetic approach, transgenic herbicide tolerant crop has given successful result but led to serious concern over ecological safety thus non-transgenic approach like marker assisted selection is desirable. Since large variability in tolerance limit of herbicide already exists in chickpea varieties, thus the genes offering herbicide tolerance can be introgressed in variety improvement programme. Transcriptome studies can discover such associated key genes with herbicide tolerance in chickpea. Results: This is first transcriptomic studies of chickpea or even any legume crop using two herbicide susceptible and tolerant genotypes exposed to imidazoline (Imazethapyr). Approximately 90 million paired-end reads generated from four samples were processed and assembled into 30,803 contigs using reference based assembly. We report 6,310 differentially expressed genes (DEGs), of which 3,037 were regulated by 980 miRNAs, 1,528 transcription factors associated with 897 DEGs, 47 Hub proteins, 3,540 putative Simple Sequence Repeat-Functional Domain Marker (SSR-FDM), 13,778 genic Single Nucleotide Polymorphism (SNP) putative markers and 1,174 Indels. Randomly selected 20 DEGs were validated using qPCR. Pathway analysis suggested that xenobiotic degradation related gene, glutathione S-transferase (GST) were only up-regulated in presence of herbicide. Down-regulation of DNA replication genes and up-regulation of abscisic acid pathway genes were observed. Study further reveals the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance. Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS) for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.
Collapse
Affiliation(s)
- Mir A. Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Khela R. Soren
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Priyanka Gangwar
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - P. S. Shanmugavadivel
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - K. Aravind
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Rahul S. Jasrotia
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sushil K. Chaturvedi
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Narendra P. Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Rajeev K. Varshney
- Genetic Gains, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| |
Collapse
|
4
|
Williams CR, Baccarella A, Parrish JZ, Kim CC. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq. BMC Bioinformatics 2017; 18:38. [PMID: 28095772 PMCID: PMC5240434 DOI: 10.1186/s12859-016-1457-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RNA-Seq has supplanted microarrays as the preferred method of transcriptome-wide identification of differentially expressed genes. However, RNA-Seq analysis is still rapidly evolving, with a large number of tools available for each of the three major processing steps: read alignment, expression modeling, and identification of differentially expressed genes. Although some studies have benchmarked these tools against gold standard gene expression sets, few have evaluated their performance in concert with one another. Additionally, there is a general lack of testing of such tools on real-world, physiologically relevant datasets, which often possess qualities not reflected in tightly controlled reference RNA samples or synthetic datasets. RESULTS Here, we evaluate 219 combinatorial implementations of the most commonly used analysis tools for their impact on differential gene expression analysis by RNA-Seq. A test dataset was generated using highly purified human classical and nonclassical monocyte subsets from a clinical cohort, allowing us to evaluate the performance of 495 unique workflows, when accounting for differences in expression units and gene- versus transcript-level estimation. We find that the choice of methodologies leads to wide variation in the number of genes called significant, as well as in performance as gauged by precision and recall, calculated by comparing our RNA-Seq results to those from four previously published microarray and BeadChip analyses of the same cell populations. The method of differential gene expression identification exhibited the strongest impact on performance, with smaller impacts from the choice of read aligner and expression modeler. Many workflows were found to exhibit similar overall performance, but with differences in their calibration, with some biased toward higher precision and others toward higher recall. CONCLUSIONS There is significant heterogeneity in the performance of RNA-Seq workflows to identify differentially expressed genes. Among the higher performing workflows, different workflows exhibit a precision/recall tradeoff, and the ultimate choice of workflow should take into consideration how the results will be used in subsequent applications. Our analyses highlight the performance characteristics of these workflows, and the data generated in this study could also serve as a useful resource for future development of software for RNA-Seq analysis.
Collapse
Affiliation(s)
- Claire R Williams
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Alyssa Baccarella
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, 94143, USA. .,Present address: Verily, South San Francisco, CA, 94080, USA.
| |
Collapse
|
5
|
Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Méhouas S, Arnaud P, Tomizawa SI, Andrews S, Kelsey G. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 2015; 16:209. [PMID: 26408185 PMCID: PMC4582738 DOI: 10.1186/s13059-015-0769-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
Background Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically test the link between transcription and the methylome. Results We perform deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis. This reveals thousands of novel non-annotated genes, as well as alternative promoters, for approximately 10 % of reference genes expressed in oocytes. In addition, a large fraction of novel promoters coincide with MaLR and ERVK transposable elements. Integration with our transcriptome assembly reveals that transcription correlates accurately with DNA methylation and accounts for approximately 85–90 % of the methylome. We generate a mouse model in which transcription across the Zac1/Plagl1 locus is abrogated in oocytes, resulting in failure of DNA methylation establishment at all CpGs of this locus. ChIP analysis in oocytes reveals H3K4me2 enrichment at the Zac1 imprinted control region when transcription is ablated, establishing a connection between transcription and chromatin remodeling at CpG islands by histone demethylases. Conclusions By precisely defining the mouse oocyte transcriptome, this work not only highlights transcription as a cornerstone of DNA methylation establishment in female germ cells, but also provides an important resource for developmental biology research. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0769-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge, UK. .,Bioinformatics Group, Babraham Institute, Cambridge, UK.
| | | | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, UK.
| | | | - Philippe Arnaud
- GReD, CNRS, INSERM, and Clermont University, 63001, Clermont-Ferrand, France.
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Japan.
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK.
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Guo J, Liu R, Huang L, Zheng XM, Liu PL, Du YS, Cai Z, Zhou L, Wei XH, Zhang FM, Ge S. Widespread and Adaptive Alterations in Genome-Wide Gene Expression Associated with Ecological Divergence of Two Oryza Species. Mol Biol Evol 2015; 33:62-78. [PMID: 26362653 DOI: 10.1093/molbev/msv196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological speciation is a common mechanism by which new species arise. Despite great efforts, the role of gene expression in ecological divergence and speciation is poorly understood. Here, we conducted a genome-wide gene expression investigation of two Oryza species that are evolutionarily young and distinct in ecology and morphology. Using digital gene expression technology and the paired-end RNA sequencing method, we obtained 21,415 expressed genes across three reproduction-related tissues. Of them, approximately 8% (1,717) differed significantly in expression levels between the two species and these differentially expressed genes are randomly distributed across the genome. Moreover, 62% (1,064) of the differentially expressed genes exhibited a signature of directional selection in at least one species. Importantly, the genes with differential expression between species evolved more rapidly at the 5' flanking sequences than the genes without differential expression relative to coding sequences, suggesting that cis-regulatory changes are likely adaptive and play an important role in the ecological divergence of the two species. Finally, we showed evidence of significant differentiation between species in phenotype traits and observed that genes with differential expression were overrepresented with functional terms involving phenotypic and ecological differentiation between the two species, including reproduction- and stress-related characteristics. Our findings demonstrate that ecological speciation is associated with widespread and adaptive alterations in genome-wide gene expression and provide new insights into the importance of regulatory evolution in ecological speciation in plants.
Collapse
Affiliation(s)
- Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ping-Li Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Palmieri N, Nolte V, Chen J, Schlötterer C. Genome assembly and annotation of a Drosophila simulans strain from Madagascar. Mol Ecol Resour 2014; 15:372-81. [PMID: 24961367 PMCID: PMC4344813 DOI: 10.1111/1755-0998.12297] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/02/2022]
Abstract
Drosophila simulans is a close relative of the genetic model D. melanogaster. Its worldwide distribution in combination with the absence of segregating chromosomal inversions makes this species an increasingly attractive model to study the molecular signatures of adaptation in natural and experimental populations. In an effort to improve the genomic resources for D. simulans, we assembled and annotated the genome of a strain originating from Madagascar (M252), the ancestral range of D. simulans. The comparison of the M252 genome to other available D. simulans assemblies confirmed its high quality, but also highlighted genomic regions that are difficult to assemble with NGS data. The annotation of M252 provides a clear improvement with alternative splicing for 52% of the multiple-exon genes, UTRs for 70% of the genes, 225 novel genes and 781 pseudogenes being reported. We anticipate that the M252 genome will be a valuable resource for many research questions.
Collapse
Affiliation(s)
- Nicola Palmieri
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | | | | | | |
Collapse
|
8
|
Kaiser VB, Bachtrog D. De novo transcriptome assembly reveals sex-specific selection acting on evolving neo-sex chromosomes in Drosophila miranda. BMC Genomics 2014; 15:241. [PMID: 24673816 PMCID: PMC3986819 DOI: 10.1186/1471-2164-15-241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Drosophila miranda neo-sex chromosome system is a useful resource for studying recently evolved sex chromosomes. However, the neo-Y genomic assembly is fragmented due to the accumulation of repetitive sequence. Furthermore, the separate assembly of the neo-X and neo-Y chromosomes into genomic scaffolds has proven to be difficult, due to their low level of sequence divergence, which in coding regions is about 1.5%. Here, we de novo assemble the transcriptome of D. miranda using RNA-seq data from several male and female tissues, and develop a bioinformatic pipeline to separately reconstruct neo-X and neo-Y transcripts. RESULTS We obtain 2,141 transcripts from the neo-X and 1,863 from the neo-Y. Neo-Y transcripts are generally shorter than their homologous neo-X transcripts (N50 of 2,048-bp vs. 2,775-bp) and expressed at lower levels. We find that 24% of expressed neo-Y transcripts harbor nonsense mutation within their open reading frames, yet most non-functional neo-Y genes are expressed throughout all of their length. We find evidence of gene loss of male-specific genes on the neo-X chromosome, and transcriptional silencing of testis-specific genes from the neo-X. CONCLUSIONS Nonsense mediated decay (NMD) has been implicated to degrade transcripts containing pre-mature termination codons (PTC) in Drosophila, but rampant description of neo-Y genes with pre-mature stop codons suggests that it does not play a major role in down-regulating transcripts from the neo-Y. Loss or transcriptional down-regulation of genes from the neo-X with male-biased function provides evidence for beginning demasculinization of the neo-X. Thus, evolving sex chromosomes can rapidly shift their gene content or patterns of gene expression in response to their sex-biased transmission, supporting the idea that sex-specific or sexually antagonistic selection plays a major role in the evolution of heteromorphic sex chromosomes.
Collapse
Affiliation(s)
| | - Doris Bachtrog
- Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Abstract
Orphans are genes restricted to a single phylogenetic lineage and emerge at high rates. While this predicts an accumulation of genes, the gene number has remained remarkably constant through evolution. This paradox has not yet been resolved. Because orphan genes have been mainly analyzed over long evolutionary time scales, orphan loss has remained unexplored. Here we study the patterns of orphan turnover among close relatives in the Drosophila obscura group. We show that orphans are not only emerging at a high rate, but that they are also rapidly lost. Interestingly, recently emerged orphans are more likely to be lost than older ones. Furthermore, highly expressed orphans with a strong male-bias are more likely to be retained. Since both lost and retained orphans show similar evolutionary signatures of functional conservation, we propose that orphan loss is not driven by high rates of sequence evolution, but reflects lineage-specific functional requirements. DOI:http://dx.doi.org/10.7554/eLife.01311.001 New genes are added to most genomes on a steady basis. A new gene can either begin as a copy of an existing gene from elsewhere in the genome, or is created entirely ‘from scratch’ from a DNA sequence that had not previously encoded for a protein. New genes that are not found in other related species are called orphan genes—and these genes can account for up to 30% of all the genes in the well-studied genomes. However, for reasons that are not fully understood, the total number of genes in most genomes remains fairly constant despite these regular additions. Now, Palmieri et al. have investigated this paradox by following the evolutionary fate of orphan genes in a small group of related species of fruit fly. Palmieri et al. discovered that most orphan genes are very short-lived, even though they showed clear signals of carrying out important functions. Most orphan genes died out quickly due to mutations that made them unable to be expressed as functional proteins, and a small number were deleted entirely from the genome. Unexpectedly, new orphan genes were more likely to die out than those that had been around for a while. Palmieri et al. also found that the expression levels of orphan genes determined their probability of dying with those genes that were expressed to the highest levels being most likely to persist longer. Furthermore, genes that were expressed more in males than in females were also less likely to die. The next challenge will be to identify the mechanisms that determine which orphan genes survive and which do not. DOI:http://dx.doi.org/10.7554/eLife.01311.002
Collapse
Affiliation(s)
- Nicola Palmieri
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | | |
Collapse
|
10
|
Wang H, You C, Chang F, Wang Y, Wang L, Qi J, Ma H. Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms. Front Genet 2014; 5:25. [PMID: 24575124 PMCID: PMC3921568 DOI: 10.3389/fgene.2014.00025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing (AS) is a process in eukaryotic gene expression, in which the primary transcript of a multi-exon gene is spliced into two or more different mature transcripts, thereby increasing proteome diversity. AS is often regulated differentially between different tissues or developmental stages. Recent studies suggested that up to 60% of intron-containing genes in Arabidopsis thaliana undergo AS. Yet little is known about this complicated and important process during floral development. To investigate the preferential expression of different isoforms of individual alternatively spliced genes, we used high throughput RNA-Seq technology to explore the transcriptomes of three floral development stages of Arabidopsis thaliana and obtained information of various AS events. We identified approximately 24,000 genes that were expressed at one or more of these stages, and found that nearly 25% of multi-exon genes had two or more spliced variants. This is less frequent than the previously reported 40–60% for multiple organs and stages of A. thaliana, indicating that many genes expressed in floral development function with a single predominant isoform. On the other hand, 1716 isoforms were differentially expressed between the three stages, suggesting that AS might still play important roles in stage transition during floral development. Moreover, 337 novel transcribed regions were identified and most of them have a single exon. Taken together, our analyses provide a comprehensive survey of AS in floral development and facilitate further genomic and genetic studies.
Collapse
Affiliation(s)
- Haifeng Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| |
Collapse
|
11
|
Suvorov A, Nolte V, Pandey RV, Franssen SU, Futschik A, Schlötterer C. Intra-specific regulatory variation in Drosophila pseudoobscura. PLoS One 2013; 8:e83547. [PMID: 24386226 PMCID: PMC3873948 DOI: 10.1371/journal.pone.0083547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
It is generally accepted that gene regulation serves an important role in determining the phenotype. To shed light on the evolutionary forces operating on gene regulation, previous studies mainly focused on the expression differences between species and their inter-specific hybrids. Here, we use RNA-Seq to study the intra-specific distribution of cis- and trans-regulatory variation in Drosophila pseudoobscura. Consistent with previous results, we find almost twice as many genes (26%) with significant trans-effects than genes with significant cis-effects (18%). While this result supports the previous suggestion of a larger mutational target of trans-effects, we also show that trans-effects may be subjected to purifying selection. Our results underline the importance of intra-specific analyses for the understanding of the evolution of gene expression.
Collapse
Affiliation(s)
- Anton Suvorov
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | - Andreas Futschik
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Department of Applied Statistics, Johannes Kepler Universität Linz, Linz, Austria
| | | |
Collapse
|
12
|
RNA-sequencing reveals previously unannotated protein- and microRNA-coding genes expressed in aleurone cells of rice seeds. Genomics 2013; 103:122-34. [PMID: 24200500 DOI: 10.1016/j.ygeno.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/03/2013] [Accepted: 10/25/2013] [Indexed: 01/14/2023]
Abstract
The rice genome annotation has been greatly improved in recent years, largely due to the availability of full length cDNA sequences derived from many tissues. Among those yet to be studied is the aleurone layer, which produces hydrolases for mobilization of seed storage reserves during seed germination and post germination growth. Herein, we report transcriptomes of aleurone cells treated with the hormones abscisic acid, gibberellic acid, or both. Using a comprehensive approach, we identified hundreds of novel genes. To minimize the number of false positives, only transcripts that did not overlap with existing annotations, had a high level of expression, and showed a high level of uniqueness within the rice genome were considered to be novel genes. This approach led to the identification of 553 novel genes that encode proteins and/or microRNAs. The transcriptome data reported here will help to further improve the annotation of the rice genome.
Collapse
|
13
|
Zickmann F, Lindner MS, Renard BY. GIIRA--RNA-Seq driven gene finding incorporating ambiguous reads. ACTA ACUST UNITED AC 2013; 30:606-13. [PMID: 24123675 DOI: 10.1093/bioinformatics/btt577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MOTIVATION The reliable identification of genes is a major challenge in genome research, as further analysis depends on the correctness of this initial step. With high-throughput RNA-Seq data reflecting currently expressed genes, a particularly meaningful source of information has become commonly available for gene finding. However, practical application in automated gene identification is still not the standard case. A particular challenge in including RNA-Seq data is the difficult handling of ambiguously mapped reads. RESULTS We present GIIRA (Gene Identification Incorporating RNA-Seq data and Ambiguous reads), a novel prokaryotic and eukaryotic gene finder that is exclusively based on a RNA-Seq mapping and inherently includes ambiguously mapped reads. GIIRA extracts candidate regions supported by a sufficient number of mappings and reassigns ambiguous reads to their most likely origin using a maximum-flow approach. This avoids the exclusion of genes that are predominantly supported by ambiguous mappings. Evaluation on simulated and real data and comparison with existing methods incorporating RNA-Seq information highlight the accuracy of GIIRA in identifying the expressed genes. AVAILABILITY AND IMPLEMENTATION GIIRA is implemented in Java and is available from https://sourceforge.net/projects/giira/.
Collapse
Affiliation(s)
- Franziska Zickmann
- Research Group Bioinformatics (NG4), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | |
Collapse
|
14
|
Bussotti G, Notredame C, Enright AJ. Detecting and comparing non-coding RNAs in the high-throughput era. Int J Mol Sci 2013; 14:15423-58. [PMID: 23887659 PMCID: PMC3759867 DOI: 10.3390/ijms140815423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023] Open
Abstract
In recent years there has been a growing interest in the field of non-coding RNA. This surge is a direct consequence of the discovery of a huge number of new non-coding genes and of the finding that many of these transcripts are involved in key cellular functions. In this context, accurately detecting and comparing RNA sequences has become important. Aligning nucleotide sequences is a key requisite when searching for homologous genes. Accurate alignments reveal evolutionary relationships, conserved regions and more generally any biologically relevant pattern. Comparing RNA molecules is, however, a challenging task. The nucleotide alphabet is simpler and therefore less informative than that of amino-acids. Moreover for many non-coding RNAs, evolution is likely to be mostly constrained at the structural level and not at the sequence level. This results in very poor sequence conservation impeding comparison of these molecules. These difficulties define a context where new methods are urgently needed in order to exploit experimental results to their full potential. This review focuses on the comparative genomics of non-coding RNAs in the context of new sequencing technologies and especially dealing with two extremely important and timely research aspects: the development of new methods to align RNAs and the analysis of high-throughput data.
Collapse
Affiliation(s)
- Giovanni Bussotti
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; E-Mail:
| | - Cedric Notredame
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Aiguader, 88, 08003 Barcelona, Spain; E-Mail:
| | - Anton J. Enright
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; E-Mail:
| |
Collapse
|
15
|
Pandey RV, Franssen SU, Futschik A, Schlötterer C. Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data. Mol Ecol Resour 2013; 13:740-5. [PMID: 23615333 PMCID: PMC3739924 DOI: 10.1111/1755-0998.12110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
Abstract
Estimating differences in gene expression among alleles is of high interest for many areas in biology and medicine. Here, we present a user-friendly software tool, Allim, to estimate allele-specific gene expression. Because mapping bias is a major problem for reliable estimates of allele-specific gene expression using RNA-seq, Allim combines two different strategies to account for the mapping biases. In order to reduce the mapping bias, Allim first generates a polymorphism-aware reference genome that accounts for the sequence variation between the alleles. Then, a sequence-specific simulation tool estimates the residual mapping bias. Statistical tests for allelic imbalance are provided that can be used with the bias corrected RNA-seq data.
Collapse
Affiliation(s)
- Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Buratti E, Romano M, Baralle FE. TDP-43 high throughput screening analyses in neurodegeneration: advantages and pitfalls. Mol Cell Neurosci 2013; 56:465-74. [PMID: 23500590 DOI: 10.1016/j.mcn.2013.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022] Open
Abstract
Dysfunctions in RNA processing and in particular the aberrant regulation of RNA binding proteins (RBPs) have recently been shown to play a fundamental role in the pathogenesis of neurodegenerative diseases. Understanding the pathogenic mechanisms involved will require the elucidation of the role(s) played by these RBPs in the general cell metabolism and neuronal survival in particular. In the past, the preferred approach has been to determine first of all the functional properties of the factor(s) of interest and then use this knowledge to determine targets in biologically relevant events. More recently, novel experimental approaches such as microarrays, RNA-seq and CLIP-seq have also become very popular to study RBPs. The advantage of these approaches, collectively known as high throughput screening (HTS), is their ability to determine gene expression changes or RNA/protein targets at a global cellular level. In theory, HTS strategies should be ideal for uncovering novel functional roles/targets of any RBP inside the cell. In practice, however, there are still difficulties in getting a coherent picture from all the huge amount of data they generate, frequently not validated experimentally and thus of unknown value. They may even act unfavorably towards a specific increase of knowledge of RBP functions, as the incomplete results are taken as solid data. In this work we will illustrate as an example the use of the HTS methodologies to characterize the interactions of a specific RBP: TDP-43. The multiple functions of this protein in RNA processing and its involvement in the pathogenesis of several forms of amyotrophic lateral sclerosis, frontotemporal lobar degeneration and other neurodegenerative diseases make it an excellent substrate for our analysis of the various advantages and limitations of different HTS experimental approaches.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB) 34012 Trieste, Italy
| | | | | |
Collapse
|