1
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
2
|
Satou-Kobayashi Y, Kim JD, Fukamizu A, Asashima M. Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment. Sci Rep 2021; 11:14537. [PMID: 34267234 PMCID: PMC8282838 DOI: 10.1038/s41598-021-93524-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Activin, a member of the transforming growth factor-β (TGF-β) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann's organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.
Collapse
Affiliation(s)
- Yumeko Satou-Kobayashi
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Jun-Dal Kim
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan ,grid.267346.20000 0001 2171 836XDivision of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Akiyoshi Fukamizu
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Makoto Asashima
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| |
Collapse
|
3
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
4
|
Neitzel LR, Spencer ZT, Nayak A, Cselenyi CS, Benchabane H, Youngblood CQ, Zouaoui A, Ng V, Stephens L, Hann T, Patton JG, Robbins D, Ahmed Y, Lee E. Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway. Mech Dev 2019; 156:20-31. [PMID: 30904594 DOI: 10.1016/j.mod.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022]
Abstract
In a screen for human kinases that regulate Xenopus laevis embryogenesis, we identified Nagk and other components of the UDP-GlcNAc glycosylation salvage pathway as regulators of anteroposterior patterning and Wnt signaling. We find that the salvage pathway does not affect other major embryonic signaling pathways (Fgf, TGFβ, Notch, or Shh), thereby demonstrating specificity for Wnt signaling. We show that the role of the salvage pathway in Wnt signaling is evolutionarily conserved in zebrafish and Drosophila. Finally, we show that GlcNAc is essential for the growth of intestinal enteroids, which are highly dependent on Wnt signaling for growth and maintenance. We propose that the Wnt pathway is sensitive to alterations in the glycosylation state of a cell and acts as a nutritional sensor in order to couple growth/proliferation with its metabolic status. We also propose that the clinical manifestations observed in congenital disorders of glycosylation (CDG) in humans may be due, in part, to their effects on Wnt signaling during development.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zachary T Spencer
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Anmada Nayak
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher S Cselenyi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - CheyAnne Q Youngblood
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Natural Science, Northeastern State University, Tahlequah, OK 74464, USA
| | - Alya Zouaoui
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Victoria Ng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leah Stephens
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Trevor Hann
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - David Robbins
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn 2018; 247:903-913. [PMID: 29633424 DOI: 10.1002/dvdy.24633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T-box family proteins are DNA-binding transcriptional regulators that play crucial roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in the promotion of the third primary germ layer, ectoderm. RESULTS Here, we report that the T-box factor Tbx2 is both sufficient and necessary for ectodermal differentiation in the frog Xenopus laevis. Tbx2 is expressed zygotically in the presumptive ectoderm, during blastula and gastrula stages. Ectopic expression of Tbx2 represses mesoderm and endoderm, while loss of Tbx2 leads to inappropriate expression of mesoderm- and endoderm-specific genes in the region fated to give rise to ectoderm. Misexpression of Tbx2 also promotes neural tissue in animal cap explants, suggesting that Tbx2 plays a role in both the establishment of ectodermal fate and its dorsoventral patterning. CONCLUSIONS Our studies demonstrate that Tbx2 functions as a transcriptional repressor during germ layer formation, and suggest that this activity is mediated in part through repression of target genes that are stimulated, in the mesendoderm, by transactivating T-box proteins. Taken together, our results point to a critical role for Tbx2 in limiting the potency of blastula-stage progenitor cells during vertebrate germ layer differentiation. Developmental Dynamics 247:903-913, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sushma Teegala
- Department of Biology, The Graduate Center, City University of New York, New York.,Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Riddhi Chauhan
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Emily Lei
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Daniel C Weinstein
- Department of Biology, Queens College, City University of New York, Flushing, New York
| |
Collapse
|
6
|
The proteins of Vent-family and their mRNAs are located in different areas of the tails of Zebrafish and Xenopus embryos. Int J Biochem Cell Biol 2016; 79:388-392. [DOI: 10.1016/j.biocel.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
|