1
|
Tu M, Ge B, Li J, Pan Y, Zhao B, Han J, Wu J, Zhang K, Liu G, Hou M, Yue M, Han X, Sun T, An Y. Emerging biological functions of Twist1 in cell differentiation. Dev Dyn 2025; 254:8-25. [PMID: 39254141 DOI: 10.1002/dvdy.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Twist1 is required for embryonic development and expresses after birth in mesenchymal stem cells derived from mesoderm, where it governs mesenchymal cell development. As a well-known regulator of epithelial-mesenchymal transition or embryonic organogenesis, Twist1 is important in a variety of developmental systems, including mesoderm formation, neurogenesis, myogenesis, cranial neural crest cell migration, and differentiation. In this review, we first highlight the physiological significance of Twist1 in cell differentiation, including osteogenic, chondrogenic, and myogenic differentiation, and then detail its probable molecular processes and signaling pathways. On this premise, we summarize the significance of Twist1 in distinct developmental disorders and diseases to provide a reference for studies on cell differentiation/development-related diseases.
Collapse
Affiliation(s)
- Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Bingqian Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
3
|
Retraction: Investigation of FGFR2-IIIC Signaling via FGF-2 Ligand for Advancing GCT Stromal Cell Differentiation. PLoS One 2019; 14:e0220356. [PMID: 31335911 PMCID: PMC6650062 DOI: 10.1371/journal.pone.0220356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Noh BJ, Park YK. Giant cell tumor of bone: updated molecular pathogenesis and tumor biology. Hum Pathol 2018; 81:1-8. [DOI: 10.1016/j.humpath.2018.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022]
|
5
|
Kim ST, Kim J, Shin S, Kim SY, Lee D, Ku B, Shin YS, Kim J, Lee J. 3-Dimensional micropillar drug screening identifies FGFR2-IIIC overexpression as a potential target in metastatic giant cell tumor. Oncotarget 2018; 8:36484-36491. [PMID: 28445128 PMCID: PMC5482670 DOI: 10.18632/oncotarget.16883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
We established two patient derived tumor cells (PDCs) from right and left pulmonary metastatic lesions respectively of a patient with giant cell tumor. At that time, patient-derived tumor cells from right and left surgical specimens were collected and cultured. High-throughput screening (HTS) for 24 drugs was conducted with a micropillar/microwell chip platform using giant cell tumor PDCs. Using 6 doses per drug in 6 replicates for giant cell tumor PDCs, the dose response curves and corresponding IC50 values were calculated from the scanned images using the S+ Chip Analyzer. A sensitive response was more significantly achieved for AZD4547 (FGFR2 inhibitor) in giant cell tumor PDCs originated from the right pulmonary nodule under the micropillar/microwell chip platform using 3D culture. This sensitivity was consistent with the target expression patterns of giant cell tumor PDCs (FGFR2-IIIC mRNA expression in giant cell tumor PDCs originated from the right pulmonary nodule was increased significantly as compared to those originated from left). However, in a conventional 2D cultured MTT assay, there was no difference for IC50 values of AZD4547 between giant cell tumor PDCs originated from right and left pulmonary nodules. An HTS platform based on 3D culture on micropillar/microwell chips and PDC models could be applied as a useful preclinical tool to evaluate the intrapatient tumor/response heterogeneity. This platform based on 3D culture might reflect far better the relation between the tumor-biology and the matched targeted agent as compared to a conventional 2D cultured MTT assay.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jusun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sumin Shin
- Department of Thoracic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongwoo Lee
- Medical and Bio Device Inc. Suwon, Gyeonggi-Do, Korea
| | - Bosung Ku
- Medical and Bio Device Inc. Suwon, Gyeonggi-Do, Korea
| | - Yong Sung Shin
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Jhingook Kim
- Department of Thoracic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Medeiros Tavares Marques JC, Cornélio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 2017; 7:17837. [PMID: 29259202 PMCID: PMC5736717 DOI: 10.1038/s41598-017-16224-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Although human mesenchymal stem cells (hMSCs) are a powerful tool for cell therapy, prolonged culture times result in replicative senescence or acquisition of tumorigenic features. To identify a molecular signature for senescence, we compared the transcriptome of senescent and young hMSCs with normal karyotype (hMSCs/n) and with a constitutional inversion of chromosome 3 (hMSC/inv). Senescent and young cells from both lineages showed differentially expressed genes (DEGs), with higher levels in senescent hMSCs/inv. Among the 30 DEGs in senescent hMSC/inv, 11 are new candidates for biomarkers of cellular senescence. The functional categories most represented in senescent hMSCs were related to cellular development, cell growth/proliferation, cell death, cell signaling/interaction, and cell movement. Mapping of DEGs onto biological networks revealed matrix metalloproteinase-1, thrombospondin 1, and epidermal growth factor acting as topological bottlenecks. In the comparison between senescent hMSCs/n and senescent hMSCs/inv, other functional annotations such as segregation of chromosomes, mitotic spindle formation, and mitosis and proliferation of tumor lines were most represented. We found that many genes categorized into functional annotations related to tumors in both comparisons, with relation to tumors being highest in senescent hMSCs/inv. The data presented here improves our understanding of the molecular mechanisms underlying the onset of cellular senescence as well as tumorigenesis.
Collapse
Affiliation(s)
- Joana Cristina Medeiros Tavares Marques
- Faculdade de Ciências da Saúde do Trairi (FACISA), Universidade Federal do Rio Grande do Norte (UFRN), Rua Traíri, S/N, Centro, Santa Cruz, Rio Grande do Norte (RN), 59200-000, Brazil
| | - Déborah Afonso Cornélio
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil
| | - Vivian Nogueira Silbiger
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - André Ducati Luchessi
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - Sandro de Souza
- Instituto do Cérebro, Instituto de Metrópole Digital, UFRN, Av. Nascimento de Castro, 2155, UFRN, 59056-450, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
7
|
Divisato G, Scotto di Carlo F, Pazzaglia L, Rizzo R, Coviello DA, Benassi MS, Picci P, Esposito T, Gianfrancesco F. The distinct clinical features of giant cell tumor of bone in pagetic and non-pagetic patients are associated with genetic, biochemical and histological differences. Oncotarget 2017; 8:63121-63131. [PMID: 28968976 PMCID: PMC5609908 DOI: 10.18632/oncotarget.18670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Giant Cell Tumor of Bone (GCT) is a tumor characterized by neoplastic mesenchymal stromal cells and a high number of osteoclast-like multinucleated giant cells. Rarely, GCT could arise in bones affected by Paget's disease of bone (GCT/PDB). Although it is already known that GCT/PDB and GCT show a different clinical profile regarding the age-onset and skeletal localization, our deep clinical comparison between the two GCT/PDB and GCT cohorts, permitted us to identify additional differences (e.g. focality, ALP serum levels, the 5-year survival rate and the familial recurrence), strongly suggesting a different molecular basis. Accordingly, driver somatic mutations in H3F3A and IDH2 were described in GCT patients, while we recently identified a germline mutation in ZNF687 as the genetic defect of GCT/PDB patients. Here, we detected H3F3A mutations in our GCT cohort, confirming its molecular screening as the elected diagnostic tool, and then we excluded the two-hit in H3F3A and IDH2 as the trigger event for the GCT/PDB development. Importantly, we also identified an alternative biochemical profile with GCT/PDB not exhibiting the up-regulation of the GCT marker FGFR2IIIc. Finally, our histological analysis also showed a different appearance of the two forms of the tumor, with GCT/PDB showing a higher number of osteoclast-like giant cells (twice), with an abnormal number of nuclei per cell, corroborating its different behaviour in terms of neoplastic properties. We demonstrated that the distinct clinical features of pagetic and conventional GCT are associated with different genetic background, resulting in a specific biochemical and histological behaviour of the tumour.
Collapse
Affiliation(s)
- Giuseppina Divisato
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy
| | - Federica Scotto di Carlo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | | | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy.,IRCCS INM Neuromed, Pozzilli, Italy
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy
| |
Collapse
|
8
|
LIAO YUXIANG, LV GUOHUA, WANG BING, KUANG LEI, WANG XIAOBIN. Imatinib promotes apoptosis of giant cell tumor cells by targeting microRNA-30a-mediated runt-related transcription factor 2. Mol Med Rep 2015; 13:1739-45. [DOI: 10.3892/mmr.2015.4722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/25/2015] [Indexed: 11/06/2022] Open
|
9
|
Sanui T, Tanaka U, Fukuda T, Toyoda K, Taketomi T, Atomura R, Yamamichi K, Nishimura F. Mutation of Spry2 Induces Proliferation and Differentiation of Osteoblasts but Inhibits Proliferation of Gingival Epithelial Cells. J Cell Biochem 2015; 116:628-39. [DOI: 10.1002/jcb.25014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/06/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Terukazu Sanui
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Urara Tanaka
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Takao Fukuda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kyosuke Toyoda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center; Kurume University School of Medicine; Kurume Fukuoka Japan
| | - Ryo Atomura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kensuke Yamamichi
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Fusanori Nishimura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
10
|
Zhu DY, Guo QS, Li YL, Cui B, Guo J, Liu JX, Li P. Twist1 correlates with poor differentiation and progression in gastric adenocarcinoma via elevation of FGFR2 expression. World J Gastroenterol 2014; 20:18306-18315. [PMID: 25561797 PMCID: PMC4277967 DOI: 10.3748/wjg.v20.i48.18306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/12/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the correlation between Twist-related protein (Twist)1, fibroblast growth factor receptor (FGFR)2 and gastric adenocarcinoma differentiation and progression.
METHODS: We evaluated Twist1 and FGFR2 in 52 gastric adenocarcinoma samples by immunohistochemistry and quantitative real time polymerase chain reaction, and analyzed the correlation between Twist1, FGFR2 and cancer differentiation. We also detected Twist1 and FGFR2 expression in gastric adenocarcinoma cell lines, and evaluated Twist1 influence on FGFR2 expression. In addition, we studied the role of FGFR2 in Twist1-promoted cancer progression, including proliferation, invasion and epithelial-mesenchymal transition (EMT).
RESULTS: Twist1 and FGFR2 were detected in almost all the gastric adenocarcinoma samples. Twist1 (P = 0.0213) and FGFR2 (P = 0.0310) mRNA levels had a significant association with gastric adenocarcinoma differentiation. Moreover, Twist1 and FGFR2 expression in poorly differentiated cells (SNU-1 and SNU-16) was notably higher than in well-differentiated cells (MKN-7 and MKN-28). In poorly differentiated gastric adenocarcinomas, FGFR2 mRNA level was significantly positively correlated with Twist1 mRNA level (P = 0.004). Twist1 was proved to promote FGFR2 by regulating Twist1 expression by knockdown and overexpression. Additionally, Twist1 could induce proliferation, invasion and EMT in gastric cancer; of these, FGFR2 was required for invasion and EMT, rather than proliferation.
CONCLUSION: Twist1 and FGFR2 are highly associated with differentiation of gastric adenocarcinoma; Twist1 can facilitate invasion and EMT in gastric adenocarcinoma via promotion of FGFR2 expression.
Collapse
|
11
|
Bahassi EM, Stambrook PJ. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 2014; 29:303-10. [PMID: 25150023 PMCID: PMC7318892 DOI: 10.1093/mutage/geu031] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Demand for new technologies that deliver fast, inexpensive and accurate genome information has never been greater. This challenge has catalysed the rapid development of advances in next-generation sequencing (NGS). The generation of large volumes of sequence data and the speed of data acquisition are the primary advantages over previous, more standard methods. In 2013, the Food and Drug Administration granted marketing authorisation for the first high-throughput NG sequencer, Illumina's MiSeqDx, which allowed the development and use of a large number of new genome-based tests. Here, we present a review of template preparation, nucleic acid sequencing and imaging, genome assembly and alignment approaches as well as recent advances in current and near-term commercially available NGS instruments. We also outline the broad range of applications for NGS technologies and provide guidelines for platform selection to best address biological questions of interest. DNA sequencing has revolutionised biological and medical research, and is poised to have a similar impact on the practice of medicine. This tool is but one of an increasing arsenal of developing tools that enhance our capabilities to identify, quantify and functionally characterise the components of biological networks that keep us healthy or make us sick. Despite advances in other 'omic' technologies, DNA sequencing and analysis, in many respects, have played the leading role to date. The new technologies provide a bridge between genotype and phenotype, both in man and model organisms, and have revolutionised how risk of developing a complex human disease may be assessed. The generation of large DNA sequence data sets is producing a wealth of medically relevant information on a large number of individuals and populations that will potentially form the basis of truly individualised medical care in the future.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology, UC Brain Tumor Center, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA
| |
Collapse
|
12
|
Mak IWY, Evaniew N, Popovic S, Tozer R, Ghert M. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab. J Bone Joint Surg Am 2014; 96:e127. [PMID: 25100780 DOI: 10.2106/jbjs.m.01332] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Giant cell tumor of bone is a primary bone tumor that is treated surgically and is associated with high morbidity in many cases. This tumor consists of giant cells expressing RANK (receptor activator of nuclear factor-κB) and mesenchymal spindle-like stromal cells expressing RANKL (RANK ligand); the interaction of these cells leads to bone resorption. Denosumab is a monoclonal antibody that binds RANKL and directly inhibits osteoclastogenesis. Clinical studies have suggested clinical and histological improvement when denosumab was administered to patients with a giant cell tumor. However, no studies have yet examined the viability and functional characteristics of tumor cells following denosumab treatment. METHODS Specimens were obtained from six patients with a histologically confirmed giant cell tumor. Two of the patients had been treated with denosumab for six months. Primary cultures of stromal cells from fresh tumor tissue were established. Cell proliferation was measured over a two-day time course. The expression of RANKL and osteoprotegerin was analyzed with use of real-time PCR (polymerase chain reaction). RESULTS Histological specimens from both patients who had completed denosumab treatment showed the absence of giant cells but persistence of stromal cells. Cell proliferation studies indicated that proliferation of stromal cells cultured from clinical specimens following denosumab treatment was approximately 50% slower than that of specimens from untreated patients. The expression of RANKL in the specimens from the treated patients was almost completely eliminated. CONCLUSIONS Once the giant cell tumor tissue was no longer exposed to denosumab, the stromal cells continued to proliferate in vitro, albeit to a lesser degree. However, they also showed almost complete loss of RANKL expression. CLINICAL RELEVANCE It is clear that treatment with denosumab only partially addresses the therapeutic need of patients with a giant cell tumor by wiping out the osteoclasts but leaving the neoplastic stromal cells proliferative.
Collapse
Affiliation(s)
- Isabella W Y Mak
- Departments of Surgery (I.W.Y.M., N.E., and M.G.), Pathology and Molecular Science (S.P.), and Oncology (R.T.), McMaster University, 711 Concession Street, Hamilton, ON L8V 1C3, Canada. E-mail addresses for I.W.Y. Mak: ; . E-mail address for N. Evaniew: . E-mail address for S. Popovic: . E-mail address for R. Tozer: . E-mail address for M. Ghert:
| | - Nathan Evaniew
- Departments of Surgery (I.W.Y.M., N.E., and M.G.), Pathology and Molecular Science (S.P.), and Oncology (R.T.), McMaster University, 711 Concession Street, Hamilton, ON L8V 1C3, Canada. E-mail addresses for I.W.Y. Mak: ; . E-mail address for N. Evaniew: . E-mail address for S. Popovic: . E-mail address for R. Tozer: . E-mail address for M. Ghert:
| | - Snezana Popovic
- Departments of Surgery (I.W.Y.M., N.E., and M.G.), Pathology and Molecular Science (S.P.), and Oncology (R.T.), McMaster University, 711 Concession Street, Hamilton, ON L8V 1C3, Canada. E-mail addresses for I.W.Y. Mak: ; . E-mail address for N. Evaniew: . E-mail address for S. Popovic: . E-mail address for R. Tozer: . E-mail address for M. Ghert:
| | - Richard Tozer
- Departments of Surgery (I.W.Y.M., N.E., and M.G.), Pathology and Molecular Science (S.P.), and Oncology (R.T.), McMaster University, 711 Concession Street, Hamilton, ON L8V 1C3, Canada. E-mail addresses for I.W.Y. Mak: ; . E-mail address for N. Evaniew: . E-mail address for S. Popovic: . E-mail address for R. Tozer: . E-mail address for M. Ghert:
| | - Michelle Ghert
- Departments of Surgery (I.W.Y.M., N.E., and M.G.), Pathology and Molecular Science (S.P.), and Oncology (R.T.), McMaster University, 711 Concession Street, Hamilton, ON L8V 1C3, Canada. E-mail addresses for I.W.Y. Mak: ; . E-mail address for N. Evaniew: . E-mail address for S. Popovic: . E-mail address for R. Tozer: . E-mail address for M. Ghert:
| |
Collapse
|