1
|
Zhao L, Li J, Barrett RL, Liu B, Hu H, Lu L, Chen Z. Spatial heterogeneity of extinction risk for flowering plants in China. Nat Commun 2024; 15:6352. [PMID: 39069525 PMCID: PMC11284212 DOI: 10.1038/s41467-024-50704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Understanding the variability of extinction risk and its potential drivers across different spatial extents is crucial to revealing the underlying processes of biodiversity loss and sustainability. However, in countries with high climatic and topographic heterogeneity, studies on extinction risk are often challenged by complexities associated with extent effects. Here, using 2.02 million fine-grained distribution records and a phylogeny including 27,185 species, we find that the extinction risk of flowering plants in China is spatially concentrated in southwestern China. Our analyses suggest that spatial extinction risks of flowering plants in China may be caused by multiple drivers and are extent dependent. Vegetation structure based on proportion of growth forms is likely the dominant extinction driver at the national extent, followed by climatic and evolutionary drivers. Finer extent analyses indicate that the potential dominant extinction drivers vary across zones and vegetation regions. Despite regional heterogeneity, we detect a geographical continuity potential in extinction drivers, with variation in West China dominated by vegetation structure, South China by climate, and North China by evolution. Our findings highlight that identification of potential extent-dependent drivers of extinction risk is crucial for targeted conservation practice in countries like China.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Jinya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haihua Hu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
2
|
Daru BH, Rodriguez J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat Ecol Evol 2023:10.1038/s41559-023-02047-3. [PMID: 37127769 DOI: 10.1038/s41559-023-02047-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The ever-increasing human footprint even in very remote places on Earth has inspired efforts to document biodiversity vigorously in case organisms go extinct. However, the data commonly gathered come from either primary voucher specimens in a natural history collection or from direct field observations that are not traceable to tangible material in a museum or herbarium. Although both datasets are crucial for assessing how anthropogenic drivers affect biodiversity, they have widespread coverage gaps and biases that may render them inefficient in representing patterns of biodiversity. Using a large global dataset of around 1.9 billion occurrence records of terrestrial plants, butterflies, amphibians, birds, reptiles and mammals, we quantify coverage and biases of expected biodiversity patterns by voucher and observation records. We show that the mass production of observation records does not lead to higher coverage of expected biodiversity patterns but is disproportionately biased toward certain regions, clades, functional traits and time periods. Such coverage patterns are driven by the ease of accessibility to air and ground transportation, level of security and extent of human modification at each sampling site. Conversely, voucher records are vastly infrequent in occurrence data but in the few places where they are sampled, showed relative congruence with expected biodiversity patterns for all dimensions. The differences in coverage and bias by voucher and observation records have important implications on the utility of these records for research in ecology, evolution and conservation research.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Jordan Rodriguez
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Fu Q, Huang X, Li L, Jin Y, Qian H, Kuai X, Ye Y, Wang H, Deng T, Sun H. Linking evolutionary dynamics to species extinction for flowering plants in global biodiversity hotspots. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Quansheng Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- University of Chinese Academy of Sciences Beijing China
| | - Xianhan Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Lijuan Li
- University of Chinese Academy of Sciences Beijing China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| | - Yi Jin
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China Guizhou Normal University Guiyang China
| | - Hong Qian
- Research and Collections Center Illinois State Museum Springfield Illinois USA
| | - Xinyuan Kuai
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- School of Life Sciences Yunnan University Kunming China
| | - Yaojun Ye
- School of Life Sciences Yunnan Normal University Kunming China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| |
Collapse
|
4
|
Kittelberger KD, Neate-Clegg MHC, Blount JD, Posa MRC, McLaughlin J, Şekercioğlu ÇH. Biological Correlates of Extinction Risk in Resident Philippine Avifauna. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.664764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The majority of the world’s biodiversity occurs in the tropics, but human actions in these regions have precipitated an extinction crisis due to habitat degradation, overexploitation, and climate change. Understanding which ecological, biogeographical, and life-history traits predict extinction risk is critical for conserving species. The Philippines is a hotspot of biodiversity and endemism, but it is a region that also suffers from an extremely high level of deforestation, habitat degradation, and wildlife exploitation. We investigated the biological correlates of extinction risk based on the IUCN Red List threat status among resident Philippine birds using a broad range of ecological, biogeographical, and life history traits previously identified as correlates of extinction risk in birds. We found strong support across competing models for endemism, narrower elevational ranges, high forest dependency, and larger body size as correlates significantly associated with extinction risk. Additionally, we compared observed threat status with threat status fitted by our model, finding fourteen species that are not currently recognized by the IUCN Red List as threatened that may be more threatened than currently believed and therefore warrant heightened conservation focus, and predicted threat statuses for the four Philippine Data Deficient bird species. We also assessed species described in recent taxonomic splits that are recognized by BirdLife International, finding 12 species that have a fitted threat status more severe than their IUCN-designated ones. Our findings provide a framework for avian conservation efforts to identify birds with specific biological correlates that increase a species’ vulnerability to extinction both in the Philippine Archipelago and elsewhere on other tropical islands.
Collapse
|
5
|
Schmidt JP, Davies TJ, Farrell MJ. Opposing macroevolutionary and trait-mediated patterns of threat and naturalisation in flowering plants. Ecol Lett 2021; 24:1237-1250. [PMID: 33786974 DOI: 10.1111/ele.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Due to expanding global trade and movement of people, new plant species are establishing in exotic ranges at increasing rates while the number of native species facing extinction from multiple threats grows. Yet, how species losses and gains globally may, together, be linked to traits and macroevolutionary processes is poorly understood. Here, we show that, adjusting for diversification rate and clade age, the proportion of threatened species across flowering plant families is negatively related to the proportion of naturalised species per family. Moreover, naturalisation is positively associated with range size, short generation time, autonomous seed production and interspecific hybridisation, but negatively with age and diversification, whereas threat is negatively associated with range size and hybridisation, and positively with biotic pollination, age and diversification rate. That we find such a pronounced signature of naturalisation and threat across plant families suggests that both trait syndromes have coexisted over deep evolutionary time and counter to intuition, that neither strategy is necessarily superior to the other over long evolutionary timespans.
Collapse
Affiliation(s)
- John Paul Schmidt
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - T Jonathan Davies
- Departments of Botany, Forest & Conservation Sciences, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, 2092, South Africa
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Molina-Venegas R, Ramos-Gutiérrez I, Moreno-Saiz JC. Phylogenetic Patterns of Extinction Risk in the Endemic Flora of a Mediterranean Hotspot as a Guiding Tool for Preemptive Conservation Actions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon KL, Brewer RFA, Gâteblé G, Gonçalves SC, Govaerts R, Hollingsworth PM, Krisai‐Greilhuber I, Lirio EJ, Moore PGP, Negrão R, Onana JM, Rajaovelona LR, Razanajatovo H, Reich PB, Richards SL, Rivers MC, Cooper A, Iganci J, Lewis GP, Smidt EC, Antonelli A, Mueller GM, Walker BE. Extinction risk and threats to plants and fungi. PLANTS, PEOPLE, PLANET 2020; 2:389-408. [PMID: 0 DOI: 10.1002/ppp3.10146] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Affiliation(s)
| | - Steven P. Bachman
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Félix Forest
- Analytical Methods Royal Botanic Gardens, Kew Richmond UK
| | - John M. Halley
- Laboratory of Ecology Department of Biological Applications & Technology University of Ioannina Ioannina Greece
| | - Justin Moat
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | - Carmen Acedo
- Department of Biodiversity and Environment Management Faculty of Biological and Environmental Sciences Campus of Vegazana University of León León Spain
| | - Karen L. Bacon
- Botany & Plant Sciences School of Natural Sciences National University of Ireland Galway Ireland
| | - Ryan F. A. Brewer
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Gildas Gâteblé
- Equipe ARBOREAL Institut Agronomique néo‐Calédonien Mont‐Dore New Caledonia
| | - Susana C. Gonçalves
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Rafaël Govaerts
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Irmgard Krisai‐Greilhuber
- Mycology Research Group Division of Systematic and Evolutionary Biology Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Elton J. Lirio
- Departamento de Botânica Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Raquel Negrão
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Jean Michel Onana
- Systematics, Biodiversity and Conservation of Plants Faculty of Science University of Yaoundé I & National Herbarium of Cameroon Yaoundé Cameroon
| | - Landy R. Rajaovelona
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Henintsoa Razanajatovo
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota St. Paul MN USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | | | | | - Amanda Cooper
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
- Department of Biological Sciences Royal HollowayUniversity of London Egham UK
| | - João Iganci
- Instituto de Biologia Departamento de Botânica Universidade Federal de Pelotas Pelotas Brazil
- Instituto de Biociências Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew Richmond UK
| | - Eric C. Smidt
- Departamento de Botânica Universidade Federal do Paraná Curitiba Brazil
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew Richmond UK
- Gothenburg Global Biodiversity Centre Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Gregory M. Mueller
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Chicago IL USA
| | - Barnaby E. Walker
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| |
Collapse
|
8
|
Zettlemoyer MA, McKenna DD, Lau JA. Species characteristics affect local extinctions. AMERICAN JOURNAL OF BOTANY 2019; 106:547-559. [PMID: 30958894 DOI: 10.1002/ajb2.1266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Human activities threaten thousands of species with extinction. However, it remains difficult to predict extinction risk for many vulnerable species. Species traits, species characteristics such as rarity or habitat use, and phylogenetic patterns are associated with responses to anthropogenic environmental change and may help predict likelihood of extinction. METHODS We used historical botanical data from Kalamazoo County, Michigan, USA, to examine whether species traits (growth form, life history, nitrogen-fixation, photosynthetic pathway), species characteristics (community association, species origin, range edge, habitat specialization, rarity), or phylogenetic relatedness explain local species loss at the county level. KEY RESULTS Across Kalamazoo County, prairie species, species at the edge of their native range, regionally rare species, and habitat specialists were most likely to become locally extinct. Prairie species experienced the highest local extinction rates of any habitat type, and among prairie species, regionally rare and specialist species were most vulnerable to loss. We found no evidence for a phylogenetic pattern in plant extinctions. CONCLUSIONS Our study illustrates the value of historical datasets for understanding and potentially predicting biodiversity loss. Not surprisingly, rare, specialist species occupying threatened habitats are most at risk of local extinction. As a result, identifying mechanisms to conserve or restore rare or declining species and preventing further habitat destruction may be the most effective strategies for reducing future extinction.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824-6406, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, 49060-9505, USA
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, 38152-3560, USA
| | - Jennifer A Lau
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824-6406, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, 49060-9505, USA
- Department of Biology, Indiana University-Bloomington, Bloomington, Indiana, 47405-7005, USA
| |
Collapse
|
9
|
Daru BH, Park DS, Primack RB, Willis CG, Barrington DS, Whitfeld TJS, Seidler TG, Sweeney PW, Foster DR, Ellison AM, Davis CC. Widespread sampling biases in herbaria revealed from large-scale digitization. THE NEW PHYTOLOGIST 2018; 217:939-955. [PMID: 29083043 DOI: 10.1111/nph.14855] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
Nonrandom collecting practices may bias conclusions drawn from analyses of herbarium records. Recent efforts to fully digitize and mobilize regional floras online offer a timely opportunity to assess commonalities and differences in herbarium sampling biases. We determined spatial, temporal, trait, phylogenetic, and collector biases in c. 5 million herbarium records, representing three of the most complete digitized floras of the world: Australia (AU), South Africa (SA), and New England, USA (NE). We identified numerous shared and unique biases among these regions. Shared biases included specimens collected close to roads and herbaria; specimens collected more frequently during biological spring and summer; specimens of threatened species collected less frequently; and specimens of close relatives collected in similar numbers. Regional differences included overrepresentation of graminoids in SA and AU and of annuals in AU; and peak collection during the 1910s in NE, 1980s in SA, and 1990s in AU. Finally, in all regions, a disproportionately large percentage of specimens were collected by very few individuals. We hypothesize that these mega-collectors, with their associated preferences and idiosyncrasies, shaped patterns of collection bias via 'founder effects'. Studies using herbarium collections should account for sampling biases, and future collecting efforts should avoid compounding these biases to the extent possible.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel S Park
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | | | - Charles G Willis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - David S Barrington
- Pringle Herbarium, Plant Biology Department, University of Vermont, Torrey Hall, 27 Colchester Ave, Burlington, VT, 05405, USA
| | - Timothy J S Whitfeld
- Brown University Herbarium, Department of Ecology and Evolutionary Biology, Brown University, 34 Olive Street, Box G-B225, Providence, RI, 02912, USA
| | - Tristram G Seidler
- Biology Department, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - David R Foster
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA, 01366, USA
| | - Aaron M Ellison
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA, 01366, USA
- Tropical Forests & People Research Centre, University of the Sunshine Coast, Maroochydore, Qld, 4558, Australia
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
10
|
Mankga LT, Yessoufou K. Factors driving the global decline of cycad diversity. AOB PLANTS 2017; 9:plx022. [PMID: 28721186 PMCID: PMC5506724 DOI: 10.1093/aobpla/plx022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 06/01/2023]
Abstract
Mounting evidence indicates that we are witnessing the sixth mass extinction period. Given the important goods and services biodiversity delivers to humans, there is a need for a continued commitment to investigate what pre-disposes some taxa to greater risk of extinction. Here, we investigate this question using a phylogenetic comparative method and fitting a cumulative link mixed effect model on biological, ecological and evolutionary data of cycads, the most threatened lineage in the plant kingdom. We identified nine groups of threats to cycads, with habitat loss, over-collection, fire and reproduction failure being the most prominent, but only four of these threats (habitat loss, over-collection, medicinal uses and reproduction failure) clustered on the cycad tree of life. This clustering suggests that closely related species may be exposed to similar threats, perhaps because of geographic regionalization of cycad genera. Nonetheless, the diversity of threats and several variables linked to the biology and ecology of cycads correlate with extinction risk (e.g. altitude, height, diameter, geographic range), and different variables seem to be linked to different IUCN status of cycads. Although their predictive power is generally < 50 %, geographic range and maximum diameter stood out as the best predictors particularly for the Vulnerable (VU) category, with a predictive power of 87 % and 69 %, respectively. Using our best model for VU, we predicted all five Data Deficient (DD) species of cycads to be in the VU category. Collectively, our results elucidate the pattern of extinction risk in cycads and, since most threats that we identified as drivers of extinction risk of cycads are anthropogenically mediated, we recommend stronger legislation to regulate human-cycad interactions and the commitment of all governments globally to implement this regulation.
Collapse
Affiliation(s)
- Ledile T. Mankga
- Department of Life and Consumer Sciences, University of South Africa, Florida campus, Florida 1710, South Africa
| | - Kowiyou Yessoufou
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, APK Campus, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
11
|
Weirauch C, Forthman M, Grebennikov V, Baňař P. From Eastern Arc Mountains to extreme sexual dimorphism: systematics of the enigmatic assassin bug genus Xenocaucus (Hemiptera: Reduviidae: Tribelocephalinae). ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Schachat SR, Mulcahy DG, Mendelson JR. Conservation threats and the phylogenetic utility of IUCN Red List rankings in Incilius toads. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:72-81. [PMID: 26243724 DOI: 10.1111/cobi.12567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat-risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis' D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context.
Collapse
Affiliation(s)
- Sandra R Schachat
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, U.S.A
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, D.C., 20013, U.S.A
| | - Daniel G Mulcahy
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 183, Washington, D.C., 20013, U.S.A
| | - Joseph R Mendelson
- Zoo Atlanta, 800 Cherokee Ave SE, Atlanta, GA, 30315, U.S.A
- School of Biology, Georgia Institute of Technology, 301 Ferst Drive, Atlanta, GA, 30332, U.S.A
| |
Collapse
|
13
|
Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life? BIODIVERSITY CONSERVATION AND PHYLOGENETIC SYSTEMATICS 2016. [DOI: 10.1007/978-3-319-22461-9_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Moir ML, Hughes L, Vesk PA, Leng MC. Which host-dependent insects are most prone to coextinction under changed climates? Ecol Evol 2014; 4:1295-312. [PMID: 24834327 PMCID: PMC4020690 DOI: 10.1002/ece3.1021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 11/09/2022] Open
Abstract
Coextinction (loss of dependent species with their host or partner species) presents a threat to untold numbers of organisms. Climate change may act synergistically to accelerate rates of coextinction. In this review, we present the first synthesis of the available literature and propose a novel schematic diagram that can be used when assessing the potential risk climate change represents for dependent species. We highlight traits that may increase the susceptibility of insect species to coextinction induced by climate change, suggest the most influential host characteristics, and identify regions where climate change may have the greatest impact on dependent species. The aim of this review was to provide a platform for future research, directing efforts toward taxa and habitats at greatest risk of species loss through coextinction accelerated by climate change.
Collapse
Affiliation(s)
- Melinda L Moir
- School of Plant Biology, University of Western Australia Crawley, Western Australia, 6009, Australia ; School of Botany, University of Melbourne Parkville, Victoria, 3010, Australia
| | - Lesley Hughes
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, 2109, Australia
| | - Peter A Vesk
- School of Botany, University of Melbourne Parkville, Victoria, 3010, Australia
| | - Mei Chen Leng
- School of Plant Biology, University of Western Australia Crawley, Western Australia, 6009, Australia
| |
Collapse
|
15
|
Modeling extinction risk of endemic birds of mainland china. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2013:639635. [PMID: 24455407 PMCID: PMC3878274 DOI: 10.1155/2013/639635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/20/2013] [Accepted: 11/04/2013] [Indexed: 12/03/2022]
Abstract
The extinction risk of endemic birds of mainland China was modeled over evolutionary time. Results showed that extinction risk of endemic birds in mainland China always tended to be similar within subclades over the evolutionary time of species divergence, and the overall evolution of extinction risk of species presented a conservatism pattern, as evidenced by the disparity-through-time plot. A constant-rate evolutionary model was the best one to quantify the evolution of extinction risk of endemic birds of mainland China. Thus, there was no rate shifting pattern for the evolution of extinction risk of Chinese endemic birds over time. In a summary, extinction risk of endemic birds of mainland China is systematically quantified under the evolutionary framework in the present work.
Collapse
|
16
|
Daru BH, Yessoufou K, Mankga LT, Davies TJ. A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems. PLoS One 2013; 8:e66686. [PMID: 23805263 PMCID: PMC3689665 DOI: 10.1371/journal.pone.0066686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022] Open
Abstract
The mangrove biome stands out as a distinct forest type at the interface between terrestrial, estuarine, and near-shore marine ecosystems. However, mangrove species are increasingly threatened and experiencing range contraction across the globe that requires urgent conservation action. Here, we assess the spatial distribution of mangrove species richness and evolutionary diversity, and evaluate potential predictors of global declines and risk of extinction. We found that human pressure, measured as the number of different uses associated with mangroves, correlated strongly, but negatively, with extinction probability, whereas species ages were the best predictor of global decline, explaining 15% of variation in extinction risk. Although the majority of mangrove species are categorised by the IUCN as Least Concern, our finding that the more threatened species also tend to be those that are more evolutionarily unique is of concern because their extinction would result in a greater loss of phylogenetic diversity. Finally, we identified biogeographic regions that are relatively species-poor but rich in evolutionary history, and suggest these regions deserve greater conservation priority. Our study provides phylogenetic information that is important for developing a unified management plan for mangrove ecosystems worldwide.
Collapse
Affiliation(s)
- Barnabas H. Daru
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, South Africa
- * E-mail:
| | - Kowiyou Yessoufou
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, South Africa
| | - Ledile T. Mankga
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
17
|
Davies TJ, Yessoufou K. Revisiting the impacts of non-random extinction on the tree-of-life. Biol Lett 2013; 9:20130343. [PMID: 23760169 DOI: 10.1098/rsbl.2013.0343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tree-of-life represents the diversity of living organisms. Species extinction and the concomitant loss of branches from the tree-of-life is therefore a major conservation concern. There is increasing evidence indicating that extinction is phylogenetically non-random, such that if one species is vulnerable to extinction so too are its close relatives. However, the impact of non-random extinctions on the tree-of-life has been a matter of recent debate. Here, we combine simulations with empirical data on extinction risk in mammals. We demonstrate that phylogenetically clustered extinction leads to a disproportionate loss of branches from the tree-of-life, but that the loss of their summed lengths is indistinguishable from random extinction. We argue that under a speciational model of evolution, the number of branches lost might be of equal or greater consequences than the loss of summed branch lengths. We therefore suggest that the impact of non-random extinction on the tree-of-life may have been underestimated.
Collapse
|