1
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
2
|
Roobol A, Roobol J, Smith ME, Carden MJ, Hershey JWB, Willis AE, Smales CM. Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293 cells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis. Metab Eng 2020; 59:98-105. [PMID: 32061967 PMCID: PMC7118365 DOI: 10.1016/j.ymben.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 01/23/2023]
Abstract
There is a desire to engineer mammalian host cell lines to improve cell growth/biomass accumulation and recombinant biopharmaceutical protein production in industrially relevant cell lines such as the CHOK1 and HEK293 cell lines. The over-expression of individual subunits of the eukaryotic translation factor eIF3 in mammalian cells has previously been shown to result in oncogenic properties being imparted on cells, including increased cell proliferation and growth and enhanced global protein synthesis rates. Here we report on the engineering of CHOK1 and HEK cells to over-express the eIF3i and eIF3c subunits of the eIF3 complex and the resultant impact on cell growth and a reporter of exogenous recombinant protein production. Transient over-expression of eIF3i in HEK293 and CHOK1 cells resulted in a modest increase in total eIF3i amounts (maximum 40% increase above control) and an approximate 10% increase in global protein synthesis rates in CHOK1 cells. Stable over-expression of eIF3i in CHOK1 cells was not achievable, most likely due to the already high levels of eIF3i in CHO cells compared to HEK293 cells, but was achieved in HEK293 cells. HEK293 cells engineered to over-express eIF3i had faster growth that was associated with increased c-Myc expression, achieved higher cell biomass and gave enhanced yields of a reporter of recombinant protein production. Whilst CHOK1 cells could not be engineered to over-express eIF3i directly, they could be engineered to over-express eIF3c, which resulted in a subsequent increase in eIF3i amounts and c-Myc expression. The CHOK1 eIF3c engineered cells grew to higher cell numbers and had enhanced cap- and IRES-dependent recombinant protein synthesis. Collectively these data show that engineering of subunits of the eIF3 complex can enhance cell growth and recombinant protein synthesis in mammalian cells in a cell specific manner that has implications for the engineering or selection of fast growing or high producing cells for production of recombinant proteins. We have engineered the overexpression of eIF3i and eIF3c in CHOK1 and HEK293 cells. HEK293 cells overexpressing eIF3i had faster growth and increased c-Myc expression. Direct stable overexpression of eIF3i in CHOK1 cells was not achievable. Overexpression of eIF3c in CHOK1 cells resulted in an increase in eIF3i. eIF3c overexpressing CHOK1 cells had enhanced recombinant protein synthesis.
Collapse
Affiliation(s)
- Anne Roobol
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Joanne Roobol
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Matthew E Smith
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Martin J Carden
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - John W B Hershey
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Lancaster Rd, Leicester, LE1 9HN, UK.
| | - C Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK.
| |
Collapse
|
3
|
Vito D, Smales CM. Engineering of the cellular translational machinery and non-coding RNAs to enhance CHO cell growth, recombinant product yields and quality. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Martínez-Monge I, Albiol J, Lecina M, Liste-Calleja L, Miret J, Solà C, Cairó JJ. Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnol Bioeng 2018; 116:388-404. [PMID: 30411322 DOI: 10.1002/bit.26858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/29/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Abstract
At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase. Extracellular lactate concentration and pH appear to be the key factors triggering the metabolic shift from glucose consumption and lactate production to lactate and glucose concomitant consumption. The hypothesis proposed for triggering this metabolic shift to lactate and glucose concomitant consumption is that HEK293 cells metabolize extracellular lactate as a response to both extracellular protons and lactate accumulation, by means of cotransporting them (extracellular protons and lactate) into the cytosol. At this point, there exists a considerable controversy about how lactate reaches the mitochondrial matrix: the first hypothesis proposes that lactate is converted into pyruvate in the cytosol, and afterward, pyruvate enters into the mitochondria; the second alternative considers that lactate enters first into the mitochondria, and then, is converted into pyruvate. In this study, lactate transport and metabolization into mitochondria is shown to be feasible, as evidenced by means of respirometry tests with isolated active mitochondria, including the depletion of lactate concentration of the respirometry assay. Although the capability of lactate metabolization by isolated mitochondria is demonstrated, the possibility of lactate being converted into pyruvate in the cytosol cannot be excluded from the discussion. For this reason, the calculation of the metabolic fluxes for an HEK293 cell line was performed for the different metabolic phases observed in batch cultures under pH controlled and noncontrolled conditions, considering both hypotheses. The main objective of this study is to evaluate the redistribution of cellular metabolism and compare the differences or similarities between the phases before and after the metabolic shift of HEK293 cells (shift observed when pH is not controlled). That is from a glucose consumption/lactate production phase to a glucose-lactate coconsumption phase. Interestingly, switching to a glucose and lactate cometabolization results in a better-balanced cell metabolism, with decreased glucose and amino acids uptake rates, affecting minimally cell growth. This behavior could be applied to further develop new approaches in terms of cell engineering and to develop improved cell culture strategies in the field of animal cell technology.
Collapse
Affiliation(s)
- Iván Martínez-Monge
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Albiol
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Martí Lecina
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain.,Bioengineering Department, IQS-Universitat Ramon Llull, Barcelona, Spain
| | - Leticia Liste-Calleja
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Miret
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Carles Solà
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi J Cairó
- Departament of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Vito D, Smales CM. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions. Biotechnol J 2018; 13:e1800122. [PMID: 29781203 DOI: 10.1002/biot.201800122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The role of non-coding RNAs in determining growth, productivity, and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). The authors have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. The authors report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. The authors demonstrate that the mouse microarray is suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. The authors then further analyzed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. The authors discuss the implications for the publication of this rich dataset and how this may be used by the community.
Collapse
Affiliation(s)
- Davide Vito
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
6
|
Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
|
7
|
Hogwood CE, Ahmad SS, Tarrant RD, Bracewell DG, Smales CM. An ultra scale-down approach identifies host cell protein differences across a panel of mAb producing CHO cell line variants. Biotechnol J 2015; 11:415-24. [DOI: 10.1002/biot.201500010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Catherine E.M. Hogwood
- Centre for Molecular Processing and School of Biosciences; University of Kent; Canterbury Kent UK
| | - Shahina S. Ahmad
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering; University College London; London UK
| | - Richard D. Tarrant
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering; University College London; London UK
| | - Daniel G. Bracewell
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering; University College London; London UK
| | - C. Mark Smales
- Centre for Molecular Processing and School of Biosciences; University of Kent; Canterbury Kent UK
| |
Collapse
|
8
|
Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity. Biochem J 2015; 472:261-73. [DOI: 10.1042/bj20150928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
Abstract
We show for translation initiation factors involved in formation of the closed loop mRNA, their expression is associated with recombinant antibody productivity in Chinese hamster ovary cells and maintaining these is important in determining the cells capacity for antibody productivity.
Collapse
|
9
|
Povey JF, O'Malley CJ, Root T, Martin EB, Montague GA, Feary M, Trim C, Lang DA, Alldread R, Racher AJ, Smales CM. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling. J Biotechnol 2014; 184:84-93. [PMID: 24858576 DOI: 10.1016/j.jbiotec.2014.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 01/25/2023]
Abstract
Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements.
Collapse
Affiliation(s)
- Jane F Povey
- Centre for Molecular Processing and School of Bioscience, University of Kent, Canterbury CT2 7NJ, UK
| | - Christopher J O'Malley
- School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tracy Root
- Lonza Biologics plc, 228 Bath Road, Slough SL1 4DX, UK
| | - Elaine B Martin
- School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Gary A Montague
- School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marc Feary
- Lonza Biologics plc, 228 Bath Road, Slough SL1 4DX, UK
| | - Carol Trim
- Centre for Molecular Processing and School of Bioscience, University of Kent, Canterbury CT2 7NJ, UK
| | | | | | | | - C Mark Smales
- Centre for Molecular Processing and School of Bioscience, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
10
|
The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation. Biomaterials 2014; 35:792-802. [DOI: 10.1016/j.biomaterials.2013.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
¹H NMR spectroscopy profiling of metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture. PLoS One 2013; 8:e77195. [PMID: 24130854 PMCID: PMC3795012 DOI: 10.1371/journal.pone.0077195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
We report an NMR based approach to determine the metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture by investigating the extracellular cell culture media and intracellular metabolome of CHOK1 and CHO-S cells during culture and in response to cold-shock and subsequent recovery from hypothermic culturing. A total of 24 components were identified for CHOK1 and 29 components identified for CHO-S cell systems including the observation that CHO-S media contains 5.6 times the level of glucose of CHOK1 media at time zero. We confirm that an NMR metabolic approach provides quantitative analysis of components such as glucose and alanine with both cell lines responding in a similar manner and comparable to previously reported data. However, analysis of lactate confirms a differentiation between CHOK1 and CHO-S and that reprogramming of metabolism in response to temperature was cell line specific. The significance of our results is presented using principal component analysis (PCA) that confirms changes in metabolite profile in response to temperature and recovery. Ultimately, our approach demonstrates the capability of NMR providing real-time analysis to detect reprogramming of metabolism upon cellular perception of cold-shock/sub-physiological temperatures. This has the potential to allow manipulation of metabolites in culture supernatant to improve growth or productivity.
Collapse
|