1
|
Scott H, Segrè D. Metabolic Flux Modeling in Marine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:593-620. [PMID: 39259978 DOI: 10.1146/annurev-marine-032123-033718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ocean metabolism constitutes a complex, multiscale ensemble of biochemical reaction networks harbored within and between the boundaries of a myriad of organisms. Gaining a quantitative understanding of how these networks operate requires mathematical tools capable of solving in silico the resource allocation problem each cell faces in real life. Toward this goal, stoichiometric modeling of metabolism, such as flux balance analysis, has emerged as a powerful computational tool for unraveling the intricacies of metabolic processes in microbes, microbial communities, and multicellular organisms. Here, we provide an overview of this approach and its applications, future prospects, and practical considerations in the context of marine sciences. We explore how flux balance analysis has been employed to study marine organisms, help elucidate nutrient cycling, and predict metabolic capabilities within diverse marine environments, and highlight future prospects for this field in advancing our knowledge of marine ecosystems and their sustainability.
Collapse
Affiliation(s)
- Helen Scott
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA; ,
| | - Daniel Segrè
- Department of Biology, Department of Physics, and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA; ,
| |
Collapse
|
2
|
Ravindran S, Hajinajaf N, Kundu P, Comes J, Nielsen DR, Varman AM, Ghosh A. Genome-Scale Metabolic Model Reconstruction and Investigation into the Fluxome of the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901. ACS Synth Biol 2024; 13:3281-3294. [PMID: 39295585 DOI: 10.1021/acssynbio.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The ability to convert atmospheric CO2 and light into biomass and value-added chemicals makes cyanobacteria a promising resource microbial host for biotechnological applications. A newly discovered fastest-growing cyanobacterial strain, Synechococcus sp. PCC 11901, has been reported to have the highest biomass accumulation rate, making it a preferred target host for producing renewable fuels, value-added biochemicals, and natural products. System-level knowledge of an organism is imperative to understand the metabolic potential of the strain, which can be attained by developing genome-scale metabolic models (GEMs). We present the first genome-scale metabolic model of Synechococcus sp. PCC 11901 (iRS840), which contains 840 genes, 1001 reactions, and 944 metabolites. The model has been optimized and validated under different trophic modes, i.e., autotrophic and mixotrophic, by conducting an in vivo growth experiment. The robustness of the metabolic network was evaluated by changing the biomass coefficient of the model, which showed a higher sensitivity toward pigments under the photoautotrophic condition, whereas under the heterotrophic condition, amino acids were found to be more influential. Furthermore, it was discovered that PCC 11901 synthesizes succinyl-CoA via succinic semialdehyde due to its imperfect TCA cycle. Subsequent flux balance analysis (FBA) revealed a quantum yield of 0.16 in silico, which is higher compared to that of PCC 6803. Under mixotrophic conditions (with glycerol and carbon dioxide), the flux through the Calvin cycle increased compared to autotrophic conditions. This model will be useful for gaining insights into the metabolic potential of PCC 11901 and developing effective metabolic engineering strategies for product development.
Collapse
Affiliation(s)
- Somdutt Ravindran
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Nima Hajinajaf
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jackson Comes
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Höper R, Komkova D, Zavřel T, Steuer R. A quantitative description of light-limited cyanobacterial growth using flux balance analysis. PLoS Comput Biol 2024; 20:e1012280. [PMID: 39102434 PMCID: PMC11326710 DOI: 10.1371/journal.pcbi.1012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/15/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.
Collapse
Affiliation(s)
- Rune Höper
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
| | - Daria Komkova
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Ralf Steuer
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Systems biology's role in leveraging microalgal biomass potential: Current status and future perspectives. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Nirati Y, Purushotham N, Alagesan S. Quantitative insight into the metabolism of isoprene-producing Synechocystis sp. PCC 6803 using steady state 13C-MFA. PHOTOSYNTHESIS RESEARCH 2022; 154:195-206. [PMID: 36070060 DOI: 10.1007/s11120-022-00957-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are photosynthetic bacteria, widely studied for the conversion of atmospheric carbon dioxide to useful platform chemicals. Isoprene is one such industrially important chemical, primarily used for production of synthetic rubber and biofuels. Synechocystis sp. PCC 6803, a genetically amenable cyanobacterium, produces isoprene on heterologous expression of isoprene synthase gene, albeit in very low quantities. Rationalized metabolic engineering to re-route the carbon flux for enhanced isoprene production requires in-dept knowledge of the metabolic flux distribution in the cell. Hence, in the present study, we undertook steady state 13C-metabolic flux analysis of glucose-tolerant wild-type (GTN) and isoprene-producing recombinant (ISP) Synechocystis sp. to understand and compare the carbon flux distribution in the two strains. The R-values for amino acids, flux analysis predictions and gene expression profiles emphasized predominance of Calvin cycle and glycogen metabolism in GTN. Alternatively, flux analysis predicted higher activity of the anaplerotic pathway through phosphoenolpyruvate carboxylase and malic enzyme in ISP. The striking difference in the Calvin cycle, glycogen metabolism and anaplerotic pathway activity in GTN and ISP suggested a possible role of energy molecules (ATP and NADPH) in regulating the carbon flux distribution in GTN and ISP. This claim was further supported by the transcript level of selected genes of the electron transport chain. This study provides the first quantitative insight into the carbon flux distribution of isoprene-producing cyanobacterium, information critical for developing Synechocystis sp. as a single cell factory for isoprenoid/terpenoid production.
Collapse
Affiliation(s)
- Yasha Nirati
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560100, India
| | - Nidhish Purushotham
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560100, India
- Dayananda Sagar University, Bengaluru, India
| | - Swathi Alagesan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560100, India.
| |
Collapse
|
6
|
Japhalekar K, Srinivasan S, Viswanathan G, Venkatesh K. Flux balance analysis for overproduction of organic acids by Synechocystis sp. PCC 6803 under dark anoxic condition. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Sengupta S, Sahasrabuddhe D, Wangikar PP. Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnol Adv 2021; 54:107816. [PMID: 34411662 DOI: 10.1016/j.biotechadv.2021.107816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are attractive candidates for photoautotrophic production of platform chemicals due to their inherent ability to utilize carbon dioxide as the sole carbon source. Metabolic pathways can be engineered more readily in cyanobacteria compared to higher photosynthetic organisms. Although significant progress has been made in pathway engineering, intracellular accumulation of the product is a potential bottleneck in large-scale production. Likewise, substrate uptake is known to limit growth and product formation. These limitations can potentially be addressed by targeted and controlled expression of transporter proteins in the metabolically engineered strains. This review focuses on the transporters that have been explored in cyanobacteria. To highlight the progress on characterization and application of cyanobacterial transporters, we applied text analytics to extract relevant information from over 1000 publications. We have categorized the transporters based on their source, their function and the solute they transport. Further, the review provides insights into the potential of transporters in the metabolic engineering of cyanobacteria for improved product titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
8
|
Norena-Caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Elucidation of trophic interactions in an unusual single-cell nitrogen-fixing symbiosis using metabolic modeling. PLoS Comput Biol 2021; 17:e1008983. [PMID: 33961619 PMCID: PMC8143392 DOI: 10.1371/journal.pcbi.1008983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/24/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Marine nitrogen-fixing microorganisms are an important source of fixed nitrogen in oceanic ecosystems. The colonial cyanobacterium Trichodesmium and diatom symbionts were thought to be the primary contributors to oceanic N2 fixation until the discovery of the unusual uncultivated symbiotic cyanobacterium UCYN-A (Candidatus Atelocyanobacterium thalassa). UCYN-A has atypical metabolic characteristics lacking the oxygen-evolving photosystem II, the tricarboxylic acid cycle, the carbon-fixation enzyme RuBisCo and de novo biosynthetic pathways for a number of amino acids and nucleotides. Therefore, it is obligately symbiotic with its single-celled haptophyte algal host. UCYN-A receives fixed carbon from its host and returns fixed nitrogen, but further insights into this symbiosis are precluded by both UCYN-A and its host being uncultured. In order to investigate how this syntrophy is coordinated, we reconstructed bottom-up genome-scale metabolic models of UCYN-A and its algal partner to explore possible trophic scenarios, focusing on nitrogen fixation and biomass synthesis. Since both partners are uncultivated and only the genome sequence of UCYN-A is available, we used the phylogenetically related Chrysochromulina tobin as a proxy for the host. Through the use of flux balance analysis (FBA), we determined the minimal set of metabolites and biochemical functions that must be shared between the two organisms to ensure viability and growth. We quantitatively investigated the metabolic characteristics that facilitate daytime N2 fixation in UCYN-A and possible oxygen-scavenging mechanisms needed to create an anaerobic environment to allow nitrogenase to function. This is the first application of an FBA framework to examine the tight metabolic coupling between uncultivated microbes in marine symbiotic communities and provides a roadmap for future efforts focusing on such specialized systems. Reduction of dinitrogen gas to biologically useful forms via nitrogen fixation is a key component of the biogeochemical cycle. In the marine environment, the cyanobacteria UCYN-A (Candidatus Atelocyanobacterium thalassa) has been found to be a primary contributor to biological nitrogen fixation at a global scale. UCYN-A exhibits a highly streamlined genome which lacks genes coding for essential cyanobacterial processes such as the energy-generating TCA cycle, oxygen-producing photosystem II, the carbon-fixing RuBisCo and de novo production pathways for numerous amino acids and nucleotides. Thus, it exists in a symbiosis with unicellular planktonic algae where it exchanges fixed nitrogen for fixed carbon with its host. However, both UCYN-A and its symbiotic partner remain uncultured under laboratory conditions. This necessitates implementing a computational approach to glean insights into UCYN-A’s unique physiology and metabolic processes governing the symbiotic association. To this end, we develop a constraints-based framework that infers all possible trophic scenarios consistent with the observed data. Possible mechanisms employed by UCYN-A to accommodate diazotrophy with daytime carbon fixation by the host (i.e., two mutually incompatible processes) are also elucidated. We envision that the developed framework using UCYN-A and its algal host will be used as a roadmap and motivate the study of similarly unique microbial systems in the future.
Collapse
|
10
|
Metabolic flux analysis reaching genome wide coverage: lessons learned and future perspectives. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
An integrated computational and experimental study to investigate Staphylococcus aureus metabolism. NPJ Syst Biol Appl 2020; 6:3. [PMID: 32001720 PMCID: PMC6992624 DOI: 10.1038/s41540-019-0122-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide. Integration of in vivo experiment with a newly developed model of Staphylococcus aureus metabolism helps explore its metabolic versatility. A multidisciplinary team led by Rajib Saha at the University of Nebraska developed a new genome-scale metabolic model of the multi-drug resistant pathogen S. aureus by combining genome annotation data, reaction stoichiometry, and condition- and mutant-specific regulations from biochemical databases and previous strain-specific models. Extensive manual curation and incorporation of newly generated experimental data on growth and metabolite production improved the accuracy and predictability of the model and increased its ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data and, therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide.
Collapse
|
12
|
Malek Shahkouhi A, Motamedian E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 2020; 15:e0227977. [PMID: 31978122 PMCID: PMC6980584 DOI: 10.1371/journal.pone.0227977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to heterocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two differentiated cells provides a better understanding of its metabolism especially for improving hydrogen production. To this end, a genome-scale metabolic model for Anabaena variabilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the model and transcriptomic data of the vegetative and heterocyst cells were applied to construct a regulated two-cell metabolic model. The regulated model improved prediction for biomass in high radiation levels. The regulated model predicts that heterocysts provide an oxygen-free environment and then, this model was used to find strategies for improving hydrogen production in heterocysts. The predictions indicate that the removal of uptake hydrogenase improves hydrogen production which is consistent with previous empirical research. Furthermore, the regulated model proposed activation of some reactions to provide redox cofactors which are required for improving hydrogen production up to 60% by bidirectional hydrogenase.
Collapse
Affiliation(s)
- Ali Malek Shahkouhi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Schroeder WL, Saha R. OptFill: A Tool for Infeasible Cycle-Free Gapfilling of Stoichiometric Metabolic Models. iScience 2019; 23:100783. [PMID: 31954977 PMCID: PMC6970165 DOI: 10.1016/j.isci.2019.100783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Stoichiometric metabolic modeling, particularly genome-scale models (GSMs), is now an indispensable tool for systems biology. The model reconstruction process typically involves collecting information from public databases; however, incomplete systems knowledge leaves gaps in any reconstruction. Current tools for addressing gaps use databases of biochemical functionalities to address gaps on a per-metabolite basis and can provide multiple solutions but cannot avoid thermodynamically infeasible cycles (TICs), invariably requiring lengthy manual curation. To address these limitations, this work introduces an optimization-based multi-step method named OptFill, which performs TIC-avoiding whole-model gapfilling. We applied OptFill to three fictional prokaryotic models of increasing sizes and to a published GSM of Escherichia coli, iJR904. This application resulted in holistic and infeasible cycle-free gapfilling solutions. In addition, OptFill can be adapted to automate inherent TICs identification in any GSM. Overall, OptFill can address critical issues in automated development of high-quality GSMs. This work presents an alternative to state-of-the-art methods for gapfilling Unlike current methods, this method is holistic and infeasible cycle free This method is applied to three tests and one published model This method might also be used to address infeasible cycling
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
14
|
Metabolic model guided strain design of cyanobacteria. Curr Opin Biotechnol 2019; 64:17-23. [PMID: 31585306 DOI: 10.1016/j.copbio.2019.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022]
Abstract
Cyanobacteria are oxygenic photoautotrophs that serve as potential platforms for the production of biochemicals from cheap and renewable raw materials - sunlight, water, and carbon dioxide. Systems level analysis of the metabolic network of these organisms could enable the successful engineering of these organisms for the enhanced production of target chemicals. Metabolic modeling techniques including both stoichiometric and kinetic modeling with a genome-wide coverage enable a global assessment of metabolic capabilities. Recent studies guided by such modeling techniques have engineered strains for the enhanced production of valuable chemicals such as ethanol, n-butanol, 1,3-propanediol, glycerol, limonene, and isoprene from CO2.
Collapse
|
15
|
Modeling the Interplay between Photosynthesis, CO 2 Fixation, and the Quinone Pool in a Purple Non-Sulfur Bacterium. Sci Rep 2019; 9:12638. [PMID: 31477760 PMCID: PMC6718658 DOI: 10.1038/s41598-019-49079-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris CGA009 is a purple non-sulfur bacterium that can fix carbon dioxide (CO2) and nitrogen or break down organic compounds for its carbon and nitrogen requirements. Light, inorganic, and organic compounds can all be used for its source of energy. Excess electrons produced during its metabolic processes can be exploited to produce hydrogen gas or biodegradable polyesters. A genome-scale metabolic model of the bacterium was reconstructed to study the interactions between photosynthesis, CO2 fixation, and the redox state of the quinone pool. A comparison of model-predicted flux values with available Metabolic Flux Analysis (MFA) fluxes yielded predicted errors of 5–19% across four different growth substrates. The model predicted the presence of an unidentified sink responsible for the oxidation of excess quinols generated by the TCA cycle. Furthermore, light-dependent energy production was found to be highly dependent on the quinol oxidation rate. Finally, the extent of CO2 fixation was predicted to be dependent on the amount of ATP generated through the electron transport chain, with excess ATP going toward the energy-demanding Calvin-Benson-Bassham (CBB) pathway. Based on this analysis, it is hypothesized that the quinone redox state acts as a feed-forward controller of the CBB pathway, signaling the amount of ATP available.
Collapse
|
16
|
iMet: A graphical user interface software tool to merge metabolic networks. Heliyon 2019; 5:e01766. [PMID: 31286073 PMCID: PMC6587100 DOI: 10.1016/j.heliyon.2019.e01766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 11/23/2022] Open
Abstract
Nowadays, studying microorganisms has become faster and deeper than the last decades, thanks to the modeling of genome-scale metabolic networks. Completed genome sequencing projects of microorganisms and annotating these sequences have provided a worthwhile platform for reconstructing and modeling genome-scale metabolic networks. The genome-scale metabolic network reconstruction is a laborious and time-consuming task which needs an extensive study and search in different types of databases. Furthermore, it also requires an iterative process of creating and curating the obtained network, particularly with experimental methods. Hence, different types of reconstructions and models of a targeted microorganism can be found with different qualities, as the goal and need of researchers differ. Due to these circumstances, scientists have to continue with only one of the reconstructed metabolic networks of each microorganism and ignore the rest in their in silico works. It is clear that having a tool which merges different metabolic networks of a single organism can be a useful and effective way to study them with minimal cost and time. To meet this need, we have developed iMet, the standalone graphical user interface (GUI) software tool to merge multiple reconstructed metabolic networks of microorganisms. As a case study, we merged three reconstructed metabolic networks of a cyanobacterium using iMet, and then all of them (including the new merged one) became modeled. The results of our evaluations including Flux Balance Analysis (FBA), revealed enhancing metabolic network coverage as well as increasing yield of desired products in the new obtained model.
Collapse
|
17
|
Farrokh P, Sheikhpour M, Kasaeian A, Asadi H, Bavandi R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Biotechnol Prog 2019; 35:e2835. [PMID: 31063628 DOI: 10.1002/btpr.2835] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms which can be found in various environmental habitats. These photosynthetic bacteria are considered as promising feedstock for the production of the third- and the fourth-generation biofuels. The main subject of this review is highlighting the significant aspects of the biofuel production from cyanobacteria. The most recent investigations about the extraction or separation of the bio-oil from cyanobacteria are also adduced in the present review. Moreover, the genetic engineering of cyanobacteria for improving biofuel production and the impact of bioinformatics studies on the designing better-engineered strains are mentioned. The large-scale biofuel production is challenging, so the economic considerations to provide inexpensive biofuels are also cited. It seems that the future of biofuels is strongly dependent to the following items; understanding the metabolic pathways of the cyanobacterial species, progression in the construction of the engineered cyanobacteria, and inexpensive large-scale cultivation of them.
Collapse
Affiliation(s)
- Parisa Farrokh
- Department of cell and molecular biology, School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Asadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Bavandi
- Branch-Marine Science and Technology Faculty, Islamic Azad University North Tehran, Tehran, Iran
| |
Collapse
|
18
|
Lasry Testa R, Delpino C, Estrada V, Diaz SM. In silico strategies to couple production of bioethanol with growth in cyanobacteria. Biotechnol Bioeng 2019; 116:2061-2073. [DOI: 10.1002/bit.26998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Romina Lasry Testa
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| | - Claudio Delpino
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| | - Vanina Estrada
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| | - Soledad M. Diaz
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| |
Collapse
|
19
|
Santos-Merino M, Singh AK, Ducat DC. New Applications of Synthetic Biology Tools for Cyanobacterial Metabolic Engineering. Front Bioeng Biotechnol 2019; 7:33. [PMID: 30873404 PMCID: PMC6400836 DOI: 10.3389/fbioe.2019.00033] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
Cyanobacteria are promising microorganisms for sustainable biotechnologies, yet unlocking their potential requires radical re-engineering and application of cutting-edge synthetic biology techniques. In recent years, the available devices and strategies for modifying cyanobacteria have been increasing, including advances in the design of genetic promoters, ribosome binding sites, riboswitches, reporter proteins, modular vector systems, and markerless selection systems. Because of these new toolkits, cyanobacteria have been successfully engineered to express heterologous pathways for the production of a wide variety of valuable compounds. Cyanobacterial strains with the potential to be used in real-world applications will require the refinement of genetic circuits used to express the heterologous pathways and development of accurate models that predict how these pathways can be best integrated into the larger cellular metabolic network. Herein, we review advances that have been made to translate synthetic biology tools into cyanobacterial model organisms and summarize experimental and in silico strategies that have been employed to increase their bioproduction potential. Despite the advances in synthetic biology and metabolic engineering during the last years, it is clear that still further improvements are required if cyanobacteria are to be competitive with heterotrophic microorganisms for the bioproduction of added-value compounds.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Amit K. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol 2019; 15:e1006692. [PMID: 30677028 PMCID: PMC6364703 DOI: 10.1371/journal.pcbi.1006692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/05/2019] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Phototrophic organisms such as cyanobacteria utilize the sun's energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell's metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.
Collapse
Affiliation(s)
- Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Thomas J. Mueller
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| |
Collapse
|
21
|
Noreña-Caro D, Benton MG. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Synthetic Gene Regulation in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:317-355. [DOI: 10.1007/978-981-13-0854-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Elucidation of photoautotrophic carbon flux topology in Synechocystis PCC 6803 using genome-scale carbon mapping models. Metab Eng 2018. [DOI: 10.1016/j.ymben.2018.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, Mendoza SN, Carrier G, Dameron O, Guillaudeux N, Latorre M, Loira N, Markov GV, Maass A, Siegel A. Traceability, reproducibility and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models. PLoS Comput Biol 2018; 14:e1006146. [PMID: 29791443 PMCID: PMC5988327 DOI: 10.1371/journal.pcbi.1006146] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/05/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022] Open
Abstract
Genome-scale metabolic models have become the tool of choice for the global analysis of microorganism metabolism, and their reconstruction has attained high standards of quality and reliability. Improvements in this area have been accompanied by the development of some major platforms and databases, and an explosion of individual bioinformatics methods. Consequently, many recent models result from "à la carte" pipelines, combining the use of platforms, individual tools and biological expertise to enhance the quality of the reconstruction. Although very useful, introducing heterogeneous tools, that hardly interact with each other, causes loss of traceability and reproducibility in the reconstruction process. This represents a real obstacle, especially when considering less studied species whose metabolic reconstruction can greatly benefit from the comparison to good quality models of related organisms. This work proposes an adaptable workspace, AuReMe, for sustainable reconstructions or improvements of genome-scale metabolic models involving personalized pipelines. At each step, relevant information related to the modifications brought to the model by a method is stored. This ensures that the process is reproducible and documented regardless of the combination of tools used. Additionally, the workspace establishes a way to browse metabolic models and their metadata through the automatic generation of ad-hoc local wikis dedicated to monitoring and facilitating the process of reconstruction. AuReMe supports exploration and semantic query based on RDF databases. We illustrate how this workspace allowed handling, in an integrated way, the metabolic reconstructions of non-model organisms such as an extremophile bacterium or eukaryote algae. Among relevant applications, the latter reconstruction led to putative evolutionary insights of a metabolic pathway.
Collapse
Affiliation(s)
| | - Marie Chevallier
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
- ECOBIO, Univ Rennes, CNRS, Rennes, France
| | | | - Camille Trottier
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
- UMR 6004 ComBi, Université de Nantes, CNRS, Nantes, France
| | - Jeanne Got
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
| | - María Paz Cortés
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Sebastián N. Mendoza
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Grégory Carrier
- Laboratoire de Physiologie et de Biotechnologie des Algues, IFREMER, Nantes, France
| | | | | | - Mauricio Latorre
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
- Instituto de ciencias de la ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Nicolás Loira
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Gabriel V. Markov
- UMR 8227, Integrative Biology of Marine Models, Station biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Alejandro Maass
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
| |
Collapse
|
25
|
Wang L, Maranas CD. MinGenome: An In Silico Top-Down Approach for the Synthesis of Minimized Genomes. ACS Synth Biol 2018; 7:462-473. [PMID: 29254336 DOI: 10.1021/acssynbio.7b00296] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Genome minimized strains offer advantages as production chassis by reducing transcriptional cost, eliminating competing functions and limiting unwanted regulatory interactions. Existing approaches for identifying stretches of DNA to remove are largely ad hoc based on information on presumably dispensable regions through experimentally determined nonessential genes and comparative genomics. Here we introduce a versatile genome reduction algorithm MinGenome that implements a mixed-integer linear programming (MILP) algorithm to identify in size descending order all dispensable contiguous sequences without affecting the organism's growth or other desirable traits. Known essential genes or genes that cause significant fitness or performance loss can be flagged and their deletion can be prohibited. MinGenome also preserves needed transcription factors and promoter regions ensuring that retained genes will be properly transcribed while also avoiding the simultaneous deletion of synthetic lethal pairs. The potential benefit of removing even larger contiguous stretches of DNA if only one or two essential genes (to be reinserted elsewhere) are within the deleted sequence is explored. We applied the algorithm to design a minimized E. coli strain and found that we were able to recapitulate the long deletions identified in previous experimental studies and discover alternative combinations of deletions that have not yet been explored in vivo.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical
Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Costas D. Maranas
- Department of Chemical
Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
27
|
Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803. Sci Rep 2017; 7:17503. [PMID: 29235513 PMCID: PMC5727528 DOI: 10.1038/s41598-017-17831-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022] Open
Abstract
Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.
Collapse
|
28
|
Joshi CJ, Peebles CA, Prasad A. Modeling and analysis of flux distribution and bioproduct formation in Synechocystis sp. PCC 6803 using a new genome-scale metabolic reconstruction. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Abstract
Constraint-based metabolic modelling (CBMM) consists in the use of computational methods and tools to perform genome-scale simulations and predict metabolic features at the whole cellular level. This approach is rapidly expanding in microbiology, as it combines reliable predictive abilities with conceptually and technically simple frameworks. Among the possible outcomes of CBMM, the capability to i) guide a focused planning of metabolic engineering experiments and ii) provide a system-level understanding of (single or community-level) microbial metabolic circuits also represent primary aims in present-day marine microbiology. In this work we briefly introduce the theoretical formulation behind CBMM and then review the most recent and effective case studies of CBMM of marine microbes and communities. Also, the emerging challenges and possibilities in the use of such methodologies in the context of marine microbiology/biotechnology are discussed. As the potential applications of CBMM have a very broad range, the topics presented in this review span over a large plethora of fields such as ecology, biotechnology and evolution.
Collapse
Affiliation(s)
- Marco Fondi
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Renato Fani
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
30
|
Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Sci Rep 2017; 7:41569. [PMID: 28139686 PMCID: PMC5282492 DOI: 10.1038/srep41569] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic capabilities of cyanobacteria make them interesting candidates for industrial bioproduction. One obstacle to large-scale implementation of cyanobacteria is their limited growth rates as compared to industrial mainstays. Synechococcus UTEX 2973, a strain closely related to Synechococcus PCC 7942, was recently identified as having the fastest measured growth rate among cyanobacteria. To facilitate the development of 2973 as a model organism we developed in this study the genome-scale metabolic model iSyu683. Experimental data were used to define CO2 uptake rates as well as the biomass compositions for each strain. The inclusion of constraints based on experimental measurements of CO2 uptake resulted in a ratio of the growth rates of Synechococcus 2973 to Synechococcus 7942 of 2.03, which nearly recapitulates the in vivo growth rate ratio of 2.13. This identified the difference in carbon uptake rate as the main factor contributing to the divergent growth rates. Additionally four SNPs were identified as possible contributors to modified kinetic parameters of metabolic enzymes and candidates for further study. Comparisons against more established cyanobacterial strains identified a number of differences between the strains along with a correlation between the number of cytochrome c oxidase operons and heterotrophic or diazotrophic capabilities.
Collapse
|
31
|
Malatinszky D, Steuer R, Jones PR. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 7120. PLANT PHYSIOLOGY 2017; 173:509-523. [PMID: 27899536 PMCID: PMC5210747 DOI: 10.1104/pp.16.01487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/24/2016] [Indexed: 05/30/2023]
Abstract
Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism.
Collapse
Affiliation(s)
- David Malatinszky
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (D.M., P.R.J.); and
- Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany (R.S.)
| | - Ralf Steuer
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (D.M., P.R.J.); and
- Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany (R.S.)
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (D.M., P.R.J.); and
- Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany (R.S.)
| |
Collapse
|
32
|
Westermark S, Steuer R. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach. Front Bioeng Biotechnol 2016; 4:95. [PMID: 28083530 PMCID: PMC5183639 DOI: 10.3389/fbioe.2016.00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022] Open
Abstract
Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes.
Collapse
Affiliation(s)
- Stefanie Westermark
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Ralf Steuer
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
33
|
Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life (Basel) 2016; 6:life6040042. [PMID: 27916886 PMCID: PMC5198077 DOI: 10.3390/life6040042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future.
Collapse
Affiliation(s)
- Lamya Al-Haj
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Yuen Tin Lui
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Mohamed A Gomaa
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP. Metabolic model of Synechococcus sp. PCC 7002: Prediction of flux distribution and network modification for enhanced biofuel production. BIORESOURCE TECHNOLOGY 2016; 213:190-197. [PMID: 27036328 DOI: 10.1016/j.biortech.2016.02.128] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 05/18/2023]
Abstract
Flux Balance Analysis was performed with the Genome Scale Metabolic Model of a fast growing cyanobacterium Synechococcus sp. PCC 7002 to gain insights that would help in engineering the organism as a production host. Gene essentiality and synthetic lethality analysis revealed a reduced metabolic robustness under genetic perturbation compared to the heterotrophic bacteria Escherichia coli. Under glycerol heterotrophy the reducing equivalents were generated from tricarboxylic acid cycle rather than the oxidative pentose phosphate pathway. During mixotrophic growth in glycerol the photosynthetic electron transport chain was predominantly used for ATP synthesis with a photosystem I/photosystem II flux ratio higher than that observed under autotrophy. An exhaustive analysis of all possible double reaction knock outs was performed to reroute fixed carbon towards ethanol and butanol production. It was predicted that only ∼10% of fixed carbon could be diverted for ethanol and butanol production.
Collapse
Affiliation(s)
- John I Hendry
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Charulata B Prasannan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Aditi Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Santanu Dasgupta
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai 400701, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
35
|
Wang X, Xiong X, Sa N, Roje S, Chen S. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 2016; 100:6091-101. [PMID: 27154348 DOI: 10.1007/s00253-016-7521-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
Abstract
With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
36
|
Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses. mBio 2016; 7:mBio.00464-16. [PMID: 27143387 PMCID: PMC4959675 DOI: 10.1128/mbio.00464-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP(+) showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. IMPORTANCE Cyanobacteria are photosynthetic microbes that use energy from sunlight and CO2 as feedstock. Certain cyanobacterial strains are amenable to facile genetic manipulation, thus enabling synthetic biology and metabolic engineering applications. Such strains are being developed as a chassis for the sustainable production of food, feed, and fuel. To this end, a holistic knowledge of cyanobacterial physiology and its correlation with gene expression patterns under the diurnal cycle is warranted. In this report, a genomewide transcriptional analysis of Synechocystis PCC 6803, the most widely studied model cyanobacterium, sheds light on the global coordination of cellular processes during diurnal periods. Furthermore, we found that, in addition to light, the redox level of NADP(H) is an important endogenous regulator of diurnal entrainment of Synechocystis PCC 6803.
Collapse
|
37
|
Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD. Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 2016; 5:250-8. [PMID: 26692191 DOI: 10.1021/acssynbio.5b00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incorporation of biological nitrogen fixation into a nondiazotrophic photosynthetic organism provides a promising solution to the increasing fixed nitrogen demand, but is accompanied by a number of challenges for accommodating two incompatible processes within the same organism. Here we present regulatory influence networks for two cyanobacteria, Synechocystis PCC 6803 and Cyanothece ATCC 51142, and evaluate them to co-opt native transcription factors that may be used to control the nif gene cluster once it is transferred to Synechocystis. These networks were further examined to identify candidate transcription factors for other metabolic processes necessary for temporal separation of photosynthesis and nitrogen fixation, glycogen catabolism and cyanophycin synthesis. Two transcription factors native to Synechocystis, LexA and Rcp1, were identified as promising candidates for the control of the nif gene cluster and other pertinent metabolic processes, respectively. Lessons learned in the incorporation of nitrogen fixation into a nondiazotrophic prokaryote may be leveraged to further progress the incorporation of nitrogen fixation in plants.
Collapse
Affiliation(s)
- Thomas J. Mueller
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A. Welsh
- Cancer
Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Himadri B. Pakrasi
- Department
of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Costas D. Maranas
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
38
|
PSAMM: A Portable System for the Analysis of Metabolic Models. PLoS Comput Biol 2016; 12:e1004732. [PMID: 26828591 PMCID: PMC4734835 DOI: 10.1371/journal.pcbi.1004732] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. The broad application of genome-scale metabolic modeling has made it a useful technique for tackling fundamental questions in biological research and engineering. Today over 100 models have been constructed for organisms that carry out a diverse array of metabolic activities spanning all three kingdoms of life. These models, however, have been curated independently following different conventions. The maintenance of model consistency has been challenging due to the lack of consensus in model representation and the absence of integrated modeling software for associating mathematical simulations with the annotation and biological interpretation of metabolic models. To solve this problem, we developed a new software package, PSAMM, and a new model format that incorporates heterogeneous, model-specific annotation information into modular representations of model definitions and simulation settings. PSAMM provides significant advances in standardizing the workflow of model annotation and consistency checking. Compared to existing tools, PSAMM supports more flexible configurations and is more efficient in running constraint-based simulations. All functions of PSAMM are freely available for academic users and can be downloaded from a public Git repository (https://zhanglab.github.io/psamm/) under the GNU General Public License.
Collapse
|
39
|
Klanchui A, Raethong N, Prommeenate P, Vongsangnak W, Meechai A. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 160:75-102. [PMID: 27783135 DOI: 10.1007/10_2016_42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.
Collapse
Affiliation(s)
- Amornpan Klanchui
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Pilot Plant Research and Development (BEC) Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Asawin Meechai
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
40
|
Mohammadi R, Fallah-Mehrabadi J, Bidkhori G, Zahiri J, Javad Niroomand M, Masoudi-Nejad A. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production. MOLECULAR BIOSYSTEMS 2016; 12:2552-61. [DOI: 10.1039/c6mb00119j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic network models can be optimized for the production of desired materials like biofuels.
Collapse
Affiliation(s)
- Reza Mohammadi
- Laboratory of Systems Biology and Bioinformatics (LBB)
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | | | | | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL)
- Department of Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
| | - Mohammad Javad Niroomand
- Learning Intelligent Systems Lab
- School of Electrical and Computer Engineering
- University of Tehran
- Tehran
- Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB)
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
41
|
Rügen M, Bockmayr A, Steuer R. Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep 2015; 5:15247. [PMID: 26496972 PMCID: PMC4620596 DOI: 10.1038/srep15247] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/15/2015] [Indexed: 11/09/2022] Open
Abstract
The computational analysis of phototrophic growth using constraint-based optimization requires to go beyond current time-invariant implementations of flux-balance analysis (FBA). Phototrophic organisms, such as cyanobacteria, rely on harvesting the sun’s energy for the conversion of atmospheric CO2 into organic carbon, hence their metabolism follows a strongly diurnal lifestyle. We describe the growth of cyanobacteria in a periodic environment using a new method called conditional FBA. Our approach enables us to incorporate the temporal organization and conditional dependencies into a constraint-based description of phototrophic metabolism. Specifically, we take into account that cellular processes require resources that are themselves products of metabolism. Phototrophic growth can therefore be formulated as a time-dependent linear optimization problem, such that optimal growth requires a differential allocation of resources during different times of the day. Conditional FBA then allows us to simulate phototrophic growth of an average cell in an environment with varying light intensity, resulting in dynamic time-courses for all involved reaction fluxes, as well as changes in biomass composition over a diurnal cycle. Our results are in good agreement with several known facts about the temporal organization of phototrophic growth and have implications for further analysis of resource allocation problems in phototrophic metabolism.
Collapse
Affiliation(s)
- Marco Rügen
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie (ITB), Invalidenstr. 43, D-10115 Berlin, Germany.,Freie Universität Berlin, Research Center Matheon, FB Mathematik und Informatik, Arnimallee 6, D-14195 Berlin, Germany
| | - Alexander Bockmayr
- Freie Universität Berlin, Research Center Matheon, FB Mathematik und Informatik, Arnimallee 6, D-14195 Berlin, Germany
| | - Ralf Steuer
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie (ITB), Invalidenstr. 43, D-10115 Berlin, Germany
| |
Collapse
|
42
|
Cyanobacterial Alkanes Modulate Photosynthetic Cyclic Electron Flow to Assist Growth under Cold Stress. Sci Rep 2015; 5:14894. [PMID: 26459862 PMCID: PMC4602277 DOI: 10.1038/srep14894] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
All cyanobacterial membranes contain diesel-range C15-C19 hydrocarbons at concentrations similar to chlorophyll. Recently, two universal but mutually exclusive hydrocarbon production pathways in cyanobacteria were discovered. We engineered a mutant of Synechocystis sp. PCC 6803 that produces no alkanes, which grew poorly at low temperatures. We analyzed this defect by assessing the redox kinetics of PSI. The mutant exhibited enhanced cyclic electron flow (CEF), especially at low temperature. CEF raises the ATP:NADPH ratio from photosynthesis and balances reductant requirements of biosynthesis with maintaining the redox poise of the electron transport chain. We conducted in silico flux balance analysis and showed that growth rate reaches a distinct maximum for an intermediate value of CEF equivalent to recycling 1 electron in 4 from PSI to the plastoquinone pool. Based on this analysis, we conclude that the lack of membrane alkanes causes higher CEF, perhaps for maintenance of redox poise. In turn, increased CEF reduces growth by forcing the cell to use less energy-efficient pathways, lowering the quantum efficiency of photosynthesis. This study highlights the unique and universal role of medium-chain hydrocarbons in cyanobacterial thylakoid membranes: they regulate redox balance and reductant partitioning in these oxygenic photosynthetic cells under stress.
Collapse
|
43
|
13C metabolic flux analysis at a genome-scale. Metab Eng 2015; 32:12-22. [PMID: 26358840 DOI: 10.1016/j.ymben.2015.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 11/21/2022]
Abstract
Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non-zero flux for the arginine degradation pathway was identified to meet biomass precursor demands as detailed in the iAF1260 model. Inferred ranges for 81% of the reactions in the genome-scale metabolic (GSM) model varied less than one-tenth of the basis glucose uptake rate (95% confidence test). This is because as many as 411 reactions in the GSM are growth coupled meaning that the single measurement of biomass formation rate locks the reaction flux values. This implies that accurate biomass formation rate and composition are critical for resolving metabolic fluxes away from central metabolism and suggests the importance of biomass composition (re)assessment under different genetic and environmental backgrounds. In addition, the loss of information associated with mapping fluxes from MFA on a core model to a GSM model is quantified.
Collapse
|
44
|
Baroukh C, Muñoz-Tamayo R, Bernard O, Steyer JP. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production. Curr Opin Biotechnol 2015; 33:198-205. [DOI: 10.1016/j.copbio.2015.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 11/24/2022]
|
45
|
Baroukh C, Muñoz-Tamayo R, Steyer JP, Bernard O. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production. Metab Eng 2015; 30:49-60. [PMID: 25916794 DOI: 10.1016/j.ymben.2015.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/05/2015] [Accepted: 03/26/2015] [Indexed: 11/27/2022]
Abstract
The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism.
Collapse
Affiliation(s)
- Caroline Baroukh
- INRA UR0050, Laboratoire des Biotechnologies de l׳Environnement, avenue des étangs, 11100 Narbonne, France; Inria, BIOCORE, 2004 route des lucioles, 06902 Sophia-Antipolis, France.
| | | | - Jean-Philippe Steyer
- INRA UR0050, Laboratoire des Biotechnologies de l׳Environnement, avenue des étangs, 11100 Narbonne, France
| | - Olivier Bernard
- Inria, BIOCORE, 2004 route des lucioles, 06902 Sophia-Antipolis, France; LOV, UPMC, CNRS, UMR 7093, Station Zoologique, B.P. 28, 06234 Villefranche-sur-mer, France
| |
Collapse
|
46
|
Knoop H, Steuer R. A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front Bioeng Biotechnol 2015; 3:47. [PMID: 25941672 PMCID: PMC4403605 DOI: 10.3389/fbioe.2015.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/24/2015] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are a promising biological chassis for the synthesis of renewable fuels and chemical bulk commodities. Significant efforts have been devoted to improve the yields of cyanobacterial products. However, while the introduction and heterologous expression of product-forming pathways is often feasible, the interactions and incompatibilities of product synthesis with the host metabolism are still insufficiently understood. In this work, we investigate the stoichiometric properties and trade-offs that underlie cyanobacterial product formation using a computational reconstruction of cyanobacterial metabolism. First, we evaluate the synthesis requirements of a selection of cyanobacterial products of potential biotechnological interest. Second, the large-scale metabolic reconstruction allows us to perform in silico experiments that mimic and predict the metabolic changes that must occur in the transition from a growth-only phenotype to a production-only phenotype. Applied to the synthesis of ethanol, ethylene, and propane, these in silico transition experiments point to bottlenecks and potential modification targets in cyanobacterial metabolism. Our analysis reveals incompatibilities between biotechnological product synthesis and native host metabolism, such as shifts in ATP/NADPH demand and the requirement to reintegrate metabolic by-products. Similar strategies can be employed for a large class of cyanobacterial products to identify potential stoichiometric bottlenecks.
Collapse
Affiliation(s)
- Henning Knoop
- Institut für Theoretische Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Ralf Steuer
- Institut für Theoretische Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
47
|
Gudmundsson S, Nogales J. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. MOLECULAR BIOSYSTEMS 2015; 11:60-70. [DOI: 10.1039/c4mb00335g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A review of cyanobacterial biocatalysts highlighting their metabolic features that argues for the need for systems-level metabolic engineering.
Collapse
Affiliation(s)
| | - Juan Nogales
- Department of Environmental Biology
- Centro de Investigaciones Biológicas-CSIC
- 28040 Madrid
- Spain
| |
Collapse
|
48
|
Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. J Bacteriol 2014; 197:943-50. [PMID: 25535269 DOI: 10.1128/jb.02149-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated metabolic responses in Synechocystis sp. strain PCC 6803 to photosynthetic impairment. We used 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; a photosystem II inhibitor) to block O2 evolution and ATP/NADPH generation by linear electron flow. Based on (13)C-metabolic flux analysis ((13)C-MFA) and RNA sequencing, we have found that Synechocystis sp. PCC 6803 employs a unique photoheterotrophic metabolism. First, glucose catabolism forms a cyclic route that includes the oxidative pentose phosphate (OPP) pathway and the glucose-6-phosphate isomerase (PGI) reaction. Glucose-6-phosphate is extensively degraded by the OPP pathway for NADPH production and is replenished by the reversed PGI reaction. Second, the Calvin cycle is not fully functional, but RubisCO continues to fix CO2 and synthesize 3-phosphoglycerate. Third, the relative flux through the complete tricarboxylic acid (TCA) cycle and succinate dehydrogenase is small under heterotrophic conditions, indicating that the newly discovered cyanobacterial TCA cycle (via the γ-aminobutyric acid pathway or α-ketoglutarate decarboxylase/succinic semialdehyde dehydrogenase) plays a minimal role in energy metabolism. Fourth, NAD(P)H oxidation and the cyclic electron flow (CEF) around photosystem I are the two main ATP sources, and the CEF accounts for at least 40% of total ATP generation from photoheterotrophic metabolism (without considering maintenance loss). This study not only demonstrates a new topology for carbohydrate oxidation but also provides quantitative insights into metabolic bioenergetics in cyanobacteria.
Collapse
|
49
|
Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol 2014; 29:39-45. [DOI: 10.1016/j.copbio.2014.02.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 11/22/2022]
|
50
|
Erdrich P, Knoop H, Steuer R, Klamt S. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Fact 2014; 13:128. [PMID: 25323065 PMCID: PMC4180434 DOI: 10.1186/s12934-014-0128-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/10/2014] [Indexed: 01/15/2023] Open
Abstract
Background Cyanobacteria are increasingly recognized as promising cell factories for the production of renewable biofuels and chemical feedstocks from sunlight, CO2, and water. However, most biotechnological applications of these organisms are still characterized by low yields. Increasing the production performance of cyanobacteria remains therefore a crucial step. Results In this work we use a stoichiometric network model of Synechocystis sp. PCC 6803 in combination with CASOP and minimal cut set analysis to systematically identify and characterize suitable strain design strategies for biofuel synthesis, specifically for ethanol and isobutanol. As a key result, improving upon other works, we demonstrate that higher-order knockout strategies exist in the model that lead to coupling of growth with high-yield biofuel synthesis under phototrophic conditions. Enumerating all potential knockout strategies (cut sets) reveals a unifying principle behind the identified strain designs, namely to reduce the ratio of ATP to NADPH produced by the photosynthetic electron transport chain. Accordingly, suitable knockout strategies seek to block cyclic and other alternate electron flows, such that ATP and NADPH are exclusively synthesized via the linear electron flow whose ATP/NADPH ratio is below that required for biomass synthesis. The products of interest are then utilized by the cell as sinks for reduction equivalents in excess. Importantly, the calculated intervention strategies do not rely on the assumption of optimal growth and they ensure that maintenance metabolism in the absence of light remains feasible. Our analyses furthermore suggest that a moderately increased ATP turnover, realized, for example, by ATP futile cycles or other ATP wasting mechanisms, represents a promising target to achieve increased biofuel yields. Conclusion Our study reveals key principles of rational metabolic engineering strategies in cyanobacteria towards biofuel production. The results clearly show that achieving obligatory coupling of growth and product synthesis in photosynthetic bacteria requires fundamentally different intervention strategies compared to heterotrophic organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0128-x) contains supplementary material, which is available to authorized users.
Collapse
|