1
|
Souza R, Duarte JC, Goldschmidt RR, Borges I. Predicting Fluorescence Emission Wavelengths and Quantum Yields via Machine Learning. J Chem Inf Model 2025; 65:3270-3281. [PMID: 40112343 PMCID: PMC12004507 DOI: 10.1021/acs.jcim.4c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The search for functional fluorescent organic materials can significantly benefit from the rapid and accurate predictions of photophysical properties. However, screening large numbers of potential fluorophore molecules in different solvents faces limitations of quantum mechanical calculations and experimental measurements. In this work, we develop machine learning (ML) algorithms for predicting the fluorescence of a molecule, focusing on two target properties: emission wavelengths (WLs) and quantum yields (QYs). For this purpose, we employ the Deep4Chem database which contains the optical properties of 20,236 combinations of 7,016 chromophores in 365 different solvents. Several chemical descriptors, or features, were selected as inputs for each model, and each molecule was characterized by its SMILES fingerprint. The Shapley additive explanations (SHAP) technique was used to rationalize the results, showing that the most impactful properties are chromophore-related, as expected from chemical intuition. For the best-performing model, the Random Forest, our results for the test set show a root-mean-square error (RMSE) of 28.8 nm (0.15 eV) for WLs and 0.19 for QYs. The developed ML models were used to predict, thus completing, the missing results for the WL and QY target properties in the original Deep4Chem database, resulting in two new databases: one for each property. Testing our ML models for each target property in molecules not included in the original Deep4Chem database gave good results.
Collapse
Affiliation(s)
- Rubens
C. Souza
- Departamento
de Engenharia de Defesa, Instituto Militar
de Engenharia (IME), Praça Gen. Tibúrcio 80, Rio
de Janeiro, Rio de Janeiro 22290 270, Brazil
| | - Julio C. Duarte
- Departamento
de Engenharia de Defesa, Instituto Militar
de Engenharia (IME), Praça Gen. Tibúrcio 80, Rio
de Janeiro, Rio de Janeiro 22290 270, Brazil
- Departamento
de Engenharia da Computação, Instituto Militar de Engenharia (IME), Praça Gen. Tibúrcio 80, Rio de Janeiro, Rio de Janeiro 22290 270, Brazil
| | - Ronaldo R. Goldschmidt
- Departamento
de Engenharia de Defesa, Instituto Militar
de Engenharia (IME), Praça Gen. Tibúrcio 80, Rio
de Janeiro, Rio de Janeiro 22290 270, Brazil
- Departamento
de Engenharia da Computação, Instituto Militar de Engenharia (IME), Praça Gen. Tibúrcio 80, Rio de Janeiro, Rio de Janeiro 22290 270, Brazil
| | - Itamar Borges
- Departamento
de Engenharia de Defesa, Instituto Militar
de Engenharia (IME), Praça Gen. Tibúrcio 80, Rio
de Janeiro, Rio de Janeiro 22290 270, Brazil
- Departamento
de Química, Instituto Militar de
Engenharia (IME), Praça
Gen. Tibúrcio 80, Rio de Janeiro, Rio de Janeiro 22290 270, Brazil
| |
Collapse
|
2
|
Patterson K, Romero-Reyes MA, Heemstra JM. Fluorescence Quenching of Xanthene Dyes during Amide Bond Formation Using DMTMM. ACS OMEGA 2022; 7:33046-33053. [PMID: 36157719 PMCID: PMC9494652 DOI: 10.1021/acsomega.2c03085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Fluorophore bioconjugation to proteins, nucleic acids, and other important molecules can provide a powerful approach to sensing, imaging, and quantifying chemical and biological processes. One of the most prevalent methods for fluorophore attachment is through the formation of amide bonds, which are often facilitated by coupling agents to activate carboxylic acid moieties for subsequent nucleophilic attack by amines. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) is among the most popular of these coupling agents for bioconjugation due to its ability to facilitate amide bond formation in water. After observing quenching of 5-fluoresceinamine (5-FAM)-conjugated oligonucleotides in the presence of DMTMM, we sought to evaluate the magnitude and scope of this challenge by surveying the effect of DMTMM on a range of fluorescent dyes. A higher quenching effect was consistently observed for xanthene dyes compared to that for cyanine dyes. Further analysis of the impact of DMTMM on FAM shows that quenching occurs independently of whether the dye is free in solution or attached to an oligonucleotide or antibody. Furthermore, we found that FAM-conjugated DNA was unable to recover its fluorescence after the removal of DMTMM, and UV-vis and NMR analyses suggest the formation of new products, such as an adduct formed between FAM and the dimethoxytriazine of DMTMM. As such, DMTMM at high concentrations is not recommended for coupling reactions where targets are fluorescently labeled. This research serves as a word of caution to those utilizing xanthene-containing fluorophores in bioconjugation reactions involving DMTMM.
Collapse
Affiliation(s)
- Kristen
N. Patterson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Misael A. Romero-Reyes
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Hanover College, Hanover, Indiana 47243, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Kang B, Seok C, Lee J. MOLGENGO: Finding Novel Molecules with Desired Electronic Properties by Capitalizing on Their Global Optimization. ACS OMEGA 2021; 6:27454-27465. [PMID: 34693166 PMCID: PMC8529683 DOI: 10.1021/acsomega.1c04347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The discovery of novel and favorable fluorophores is critical for understanding many chemical and biological studies. High-resolution biological imaging necessitates fluorophores with diverse colors and high quantum yields. The maximum oscillator strength and its corresponding absorption wavelength of a molecule are closely related to the quantum yields and the emission spectrum of fluorophores, respectively. Thus, the core step to design favorable fluorophore molecules is to optimize the desired electronic transition properties of molecules. Here, we present MOLGENGO, a new molecular property optimization algorithm, to discover novel and favorable fluorophores with machine learning and global optimization. This study reports novel molecules from MOLGENGO with high oscillator strength and absorption wavelength close to 200, 400, and 600 nm. The results of MOLGENGO simulations have the potential to be candidates for new fluorophore frameworks.
Collapse
Affiliation(s)
- Beomchang Kang
- Department
of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chaok Seok
- Department
of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Juyong Lee
- Department
of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, 24341 Chuncheon, Republic of
Korea
| |
Collapse
|
4
|
Kang B, Seok C, Lee J. Prediction of Molecular Electronic Transitions Using Random Forests. J Chem Inf Model 2020; 60:5984-5994. [PMID: 33090804 DOI: 10.1021/acs.jcim.0c00698] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescent molecules, fluorophores or dyes, play essential roles in bioimaging. Effective bioimaging requires fluorophores with diverse colors and high quantum yields for better resolution. An essential computational component to design novel dye molecules is an accurate model that predicts the electronic properties of molecules. Here, we present statistical machines that predict the excitation energies and associated oscillator strengths of a given molecule using the random forest algorithm. The excitation energies and oscillator strengths of a molecule are closely related to the emission spectrum and the quantum yields of fluorophores, respectively. In this study, we identified specific molecular substructures that induce high oscillator strengths of molecules. The results of our study are expected to serve as new design principles for designing novel fluorophores.
Collapse
Affiliation(s)
- Beomchang Kang
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Juyong Lee
- Division of Chemistry and Biochemistry, Department of Chemistry, Kangwon National University, 24341 Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
6
|
Chopra P, Logun MT, White EM, Lu W, Locklin J, Karumbaiah L, Boons GJ. Fully Synthetic Heparan Sulfate-Based Neural Tissue Construct That Maintains the Undifferentiated State of Neural Stem Cells. ACS Chem Biol 2019; 14:1921-1929. [PMID: 31389687 DOI: 10.1021/acschembio.9b00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparin and heparan sulfate (HS) are attractive components for constructing biomaterials due to their ability to recruit and regulate the activity of growth factors. The structural and functional heterogeneity of naturally derived heparin and HS is, however, an impediment for the preparation of biomaterials for regenerative medicine. To address this problem, we have prepared hydrogels modified by well-defined synthetic HS-derived disaccharides. Human induced pluripotent cell-derived neural stem cells (HIP-NSCs) encapsulated in a polyethylene glycol-based hydrogel modified by a pendent HS disaccharide that is a known ligand for fibroblast growth factor-2 (FGF-2) exhibited a significant increase in proliferation and self-renewal. This observation is important because evidence is emerging that undifferentiated stems cells can yield significant therapeutic benefits via their paracrine signaling mechanisms. Our data indicate that the HS disaccharide protects FGF-2, which has a very short biological half-live, from degradation. It is anticipated that, by careful selection of a synthetic HS oligosaccharide, it will be possible to control retention and release of specific growth factor, which in turn will provide control over cell fate.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Meghan T. Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 422 River Road, Athens, Georgia 30602, United States
| | - Evan M. White
- New Material Institute, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Jason Locklin
- New Material Institute, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 422 River Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
7
|
DNA aptamers for the recognition of HMGB1 from Plasmodium falciparum. PLoS One 2019; 14:e0211756. [PMID: 30964875 PMCID: PMC6456224 DOI: 10.1371/journal.pone.0211756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022] Open
Abstract
Rapid Diagnostic Tests (RDTs) for malaria are restricted to a few biomarkers and antibody-mediated detection. However, the expression of commonly used biomarkers varies geographically and the sensibility of immunodetection can be affected by batch-to-batch differences or limited thermal stability. In this study we aimed to overcome these limitations by identifying a potential biomarker and by developing molecular sensors based on aptamer technology. Using gene expression databases, ribosome profiling analysis, and structural modeling, we find that the High Mobility Group Box 1 protein (HMGB1) of Plasmodium falciparum is highly expressed, structurally stable, and present along all blood-stages of P. falciparum infection. To develop biosensors, we used in vitro evolution techniques to produce DNA aptamers for the recombinantly expressed HMG-box, the conserved domain of HMGB1. An evolutionary approach for evaluating the dynamics of aptamer populations suggested three predominant aptamer motifs. Representatives of the aptamer families were tested for binding parameters to the HMG-box domain using microscale thermophoresis and rapid kinetics. Dissociation constants of the aptamers varied over two orders of magnitude between nano- and micromolar ranges while the aptamer-HMG-box interaction occurred in a few seconds. The specificity of aptamer binding to the HMG-box of P. falciparum compared to its human homolog depended on pH conditions. Altogether, our study proposes HMGB1 as a candidate biomarker and a set of sensing aptamers that can be further developed into rapid diagnostic tests for P. falciparum detection.
Collapse
|
8
|
Schwarz DH, Elgaher WAM, Hollemeyer K, Hirsch AKH, Wenz G. Reversible immobilization of a protein to a gold surface through multiple host–guest interactions. J Mater Chem B 2019; 7:6148-6155. [DOI: 10.1039/c9tb00560a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Monolayers were formed by specific interactions between adamantylated proteins (transferrin, lysozyme) and a β-cyclodextrin (β-CD) monolayer on a gold surface.
Collapse
Affiliation(s)
- Dennis H. Schwarz
- Organic Macromolecular Chemistry
- Saarland University
- Saarbrücken
- Germany
| | - Walid A. M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)
- Department of Drug Design and Optimization
- Saarbrücken
- Germany
| | | | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)
- Department of Drug Design and Optimization
- Saarbrücken
- Germany
- Department of Pharmacy
| | - Gerhard Wenz
- Organic Macromolecular Chemistry
- Saarland University
- Saarbrücken
- Germany
| |
Collapse
|
9
|
Development and clinical evaluation of a highly accurate dengue NS1 rapid test: from the preparation of a soluble NS1 antigen to the construction of an RDT. Diagn Microbiol Infect Dis 2015; 82:128-34. [PMID: 25824725 DOI: 10.1016/j.diagmicrobio.2015.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/24/2015] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Early diagnosis of dengue virus (DENV) is important. There are numerous products on the market claiming to detect DENV NS1, but these are not always reliable. In this study, a highly sensitive and accurate rapid diagnostic test (RDT) was developed using anti-dengue NS1 monoclonal antibodies. A recombinant NS1 protein was produced with high antigenicity and purity. Monoclonal antibodies were raised against this purified NS1 antigen. The RDT was constructed using a capturing (4A6A10, Kd=7.512±0.419×10(-9)) and a conjugating antibody (3E12E6, Kd=7.032±0.322×10(-9)). The diagnostic performance was evaluated with NS1-positive clinical samples collected from various dengue endemic countries and compared to SD BioLine Dengue NS1 Ag kit. The constructed RDT exhibited higher sensitivity (92.9%) with more obvious diagnostic performance than the commercial kit (83.3%). The specificity of constructed RDT was 100%. The constructed RDT could offer a reliable point-of-care testing tool for the early detection of dengue infections in remote areas and contribute to the control of dengue-related diseases.
Collapse
|
10
|
Yeo SJ, Huong DT, Hong NN, Li CY, Choi K, Yu K, Choi DY, Chong CK, Choi HS, Mallik SK, Kim HS, Sung HW, Park H. Rapid and quantitative detection of zoonotic influenza A virus infection utilizing coumarin-derived dendrimer-based fluorescent immunochromatographic strip test (FICT). Am J Cancer Res 2014; 4:1239-49. [PMID: 25285172 PMCID: PMC4184001 DOI: 10.7150/thno.10255] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 11/23/2022] Open
Abstract
Great efforts have been made to develop robust signal-generating fluorescence materials which will help in improving the rapid diagnostic test (RDT) in terms of sensitivity and quantification. In this study, we developed coumarin-derived dendrimer-based fluorescent immunochromatographic strip test (FICT) assay with enhanced sensitivity as a quantitative diagnostic tool in typical RDT environments. The accuracy of the proposed FICT was compared with that of dot blot immunoassay techniques and conventional RDTs. Through conjugation of coumarin-derived dendrimers with latex beads, fluorescent emission covering broad output spectral ranges was obtained which provided a distinct advantage of easy discrimination of the fluorescent emission of the latex beads with a simple insertion of a long-pass optical filter away from the excitation wavelength. The newly developed FICT assay was able to detect 100 ng/10 μL of influenza A nucleoprotein (NP) antigen within 5 minutes, which corresponded to 2.5-fold higher sensitivity than that of the dot blot immunoassay or conventional RDTs. Moreover, the FICT assay was confirmed to detect at least four avian influenza A subtypes (H5N3, H7N1, H7N7, and H9N2). On applying the FICT to the clinical swab samples infected with respiratory viruses, our FICT assay was confirmed to differentiate influenza H1N1 infection from other respiratory viral diseases. These data demonstrate that the proposed FICT assay is able to detect zoonotic influenza A viruses with a high sensitivity, and it enables the quantitation of the infection intensity by providing the numerical diagnostic values; thus demonstrating enhanced detectability of influenza A viruses.
Collapse
|
11
|
Performance of coumarin-derived dendrimer-based fluorescence-linked immunosorbent assay (FLISA) to detect malaria antigen. Malar J 2014; 13:266. [PMID: 25011624 PMCID: PMC4105783 DOI: 10.1186/1475-2875-13-266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to limitation of conventional malaria diagnostics, including microscopy, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), alternative accurate diagnostics have been demanded for improvement of sensitivity and specificity. METHODS Serially diluted Plasmodium LDH antigens, Plasmodium falciparum-infected human red blood cells (RBC) derived from in vitro culture or patient's samples were used for evaluation of the performance of fluorescence-linked immunosorbent assay (FLISA). Microscopic examination was used to determine parasite density and the performance of FLISA was compared to ELISA. Finally, sensitivity and specificity of FLISA was determined by human specimens infected with P. falciparum, Plasmodium vivax, Toxoplasma gondii, and amoebae. RESULTS As a result of FLISA, the fluorescent intensity was highly correlated with antigen amount and FLISA was more sensitive than ELISA. FLISA detected at least 0.01 ng/ml of pLDH antigen, which showed 1,000-fold higher sensitivity than ELISA. In vitro-cultured P. falciparum was detected up to 20 parasite number/μL in FLISA but 5120 parasite number/μLin sandwich ELISA. In vitro P. falciparum-infected RBC number was highly correlated with fluorescent intensity (R2 = 0.979), showing that FLISA was reliable for detection of P. falciparum and available for quantification of parasite numbers. Furthermore, eighteen patient samples infected with P. falciparum (n = 9) and P. vivax (n = 9) showed 100% of sensitivity (18/18). FLISA showed 96.3% of specificity (26/27) because one sample of patient blood infected with T. gondii gave a false positive reactivity among healthy donors (n = 9), T. gondii-infected patients (n = 9), and amoeba-infected patients (n = 9). CONCLUSION FLISA has a keen and high performance to detect malaria antigen, suggesting a potential assay as malaria immunodiagnostic.
Collapse
|
12
|
|