1
|
Liu F, Li F, Du B. The role of brain oscillatory activity in processing the informative value of feedback during rule acquisition. Eur J Neurosci 2025; 61. [PMID: 39676282 DOI: 10.1111/ejn.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Information conveyed through feedback enables individuals to learn new routines and better adapt to their environment. However, the neural mechanisms of rule-related information of feedback have not been fully elucidated. Herein, we quantified the effect of informative value on feedback via a rule induction task (RIT), in which participants were required to find the correct sorting rule based on feedback. To disengage the effects of informative value and valence on feedback in the RIT, a control task was developed in which feedback only involved the valence aspect and no reference for subsequent selections. We measured power and intertrial phase clustering (ITPC) values via EEG to determine the neural mechanisms of rule-related feedback. The results revealed that (1) differences in oscillatory activities between positive and negative feedback were only observed during the control task, and no such effect was found in the RIT task. This finding suggests that the participants paid more attention to rule-related information than to the correctness of feedback during rule learning. (2) The task differences under positive or negative feedback were associated with the delta-theta and alpha-beta bands, and this pattern was similar within the frontal and parietal regions. These findings suggest that the processing of rule-related information of feedback relies on broad frequency bands within the frontoparietal cortex to facilitate rule information integration. In summary, these findings indicate that multiple frequency bands are involved in encoding the informative value aspect of feedback, and individuals rely on this aspect of feedback rather than valence during rule learning.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Bin Du
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| |
Collapse
|
2
|
Surrey C, Frisch S, Maack MC, Scherbaum S, Dshemuchadse M, Senftleben U. Frontal midline theta reveals temporal dynamics of target amplification and distracter inhibition during mental set-shifting. Int J Psychophysiol 2025; 207:112488. [PMID: 39675482 DOI: 10.1016/j.ijpsycho.2024.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
When humans shift between tasks, they initially show slower responses in the new task than in the previous one. Persisting attentional settings are increasingly recognized as a source for these shifting costs. However, the extent to which specific mechanisms underlying information selection and interference control contribute to this phenomenon remains less clear. Here, we use time-frequency analyses of human electroencephalogram (EEG) data to explore the aftereffects of two such mechanisms: target amplification and distracter inhibition. Participants completed a set-shifting task in which interference during switch trials could either result from the persisting amplification of previous target colors or the persisting inhibition of previous distracter colors. In a first set of analyses, we focused on frontal midline theta (FMT) as a time-continuous marker of overall interference. Compared to a control condition, we found transient peaks of FMT in both experimental conditions that matched the effects of persisting target amplification and distracter inhibition predicted by a computational model of the task. In a second set of analyses we used steady-state visually evoked potentials (SSVEPs) as a direct measure of the attentional resources allocated to target and distracter colors. However, SSVEP amplitudes did not differ reliably between stimulation frequencies during switch trials, preventing us from drawing further conclusions on the origins of the interference processes reflected in FMT dynamics. Implications for theories of selective attention and potential limitations of frequency tagging in the context of mental set-shifting research are discussed.
Collapse
Affiliation(s)
- Caroline Surrey
- Department of Psychology, Technische Universität Dresden, Germany.
| | - Simon Frisch
- Department of Psychology, Technische Universität Dresden, Germany.
| | | | - Stefan Scherbaum
- Department of Psychology, Technische Universität Dresden, Germany.
| | - Maja Dshemuchadse
- Faculty of Social Sciences, Zittau/Görlitz University of Applied Sciences, Germany.
| | | |
Collapse
|
3
|
Graf K, Jamous R, Mückschel M, Bluschke A, Beste C. Delayed modulation of alpha band activity increases response inhibition deficits in adolescents with AD(H)D. Neuroimage Clin 2024; 44:103677. [PMID: 39362044 PMCID: PMC11474224 DOI: 10.1016/j.nicl.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Deficiencies in inhibitory control are one of the hallmarks of attention-deficit-(hyperactivity) disorder (AD(H)D). Response inhibition demands can become increased through additional conflicts, namely when already integrated representations of perception-action associations have to be updated. Yet, the neural mechanisms of how such conflicts worsen response inhibition in AD(H)D are unknown, but, if identified, could help to better understand the complex nature of AD(H)D-associated impulsivity. We investigated both behavioral performance and EEG activity in the theta and alpha band of adolescents (10-18 years of age) with AD(H)D (n = 28) compared to neurotypical (NT) controls (n = 33) in a conflict-modulated Go/Nogo paradigm. We used multivariate pattern analysis (MVPA) and EEG-beamforming to examine how changes in representational content are coded by oscillatory activity and to delineate the cortical structures involved in it. The presented behavioral and neurophysiological data show that adolescents with AD(H)D are more strongly affected by increased response inhibition demands through additional conflicts than NT controls. Precisely, AD(H)D participants showed higher false alarm rates than NT controls in both, non-overlapping and overlapping Nogo trials, but performed even worse in the latter. This is likely due to an inefficient updating of representations related to delayed modulations of alpha band activity in the ventral stream and orbitofrontal regions. Theta band activity is also modulated by conflict but was not differentially affected in the two groups. By this, the present study provides novel insights into underlying neurophysiological mechanisms of the complex nature of response inhibition deficits in adolescents with AD(H)D, stressing the importance to examine the interplay of theta and alpha band activity more closely to better understand inhibitory control deficits in AD(H)D.
Collapse
Affiliation(s)
- Katharina Graf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
| |
Collapse
|
4
|
Beyraghi Z, Khanmohammadi R, Hadian MR. Reduction in preparatory brain activity preceding gait initiation in individuals with chronic ankle instability: A movement-related cortical potential study. Eur J Neurosci 2024; 60:5284-5299. [PMID: 39149917 DOI: 10.1111/ejn.16501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Evidence suggests that chronic ankle instability (CAI) is not merely a peripheral musculoskeletal injury but should be recognized as a neurophysiological dysfunction. This reflects a paradigm shift from focusing on peripheral structural changes to emphasizing the central nervous system. However, changes in cortical activity during functional activities remain poorly understood. Thus, this study aimed to compare preparatory brain activity during gait initiation (GI) through movement-related cortical potentials (MRCPs) in individuals with CAI and healthy subjects. The proactive components of MRCPs, including contingent negative variation (CNV) and event-related desynchronization (ERD), were measured using electroencephalography. The primary outcomes were late CNV amplitude, CNV peak amplitude, CNV peak time, and alpha/beta ERD. The results indicated that the late CNV amplitude was significantly lower in the CAI group compared to the healthy group at the Fz and Cz electrodes (P < 0.001). The CAI group also demonstrated lower CNV peak amplitude at the Fz, Cz, and Pz electrodes (P < 0.0025). Additionally, in the CAI group, signals peaked earlier at the Cz electrode (P = 0.002). Furthermore, alpha ERD at Pz was significantly lower in the CAI group than in the healthy group (P = 0.003), suggesting diminished preparatory brain activity during GI in CAI subjects. Recognizing CAI as a condition involving both peripheral and central dysfunctions highlights the importance of a multidisciplinary approach in treatment and rehabilitation. This approach should target brain activity in addition to peripheral structures, potentially leading to improved long-term outcomes for patients.
Collapse
Affiliation(s)
- Zivar Beyraghi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hadian
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wüllhorst R, Wüllhorst V, Endrass T. Risk-Taking Is Associated with Decreased Subjective Value Signals and Increased Prediction Error Signals in the Hot Columbia Card Task. J Neurosci 2024; 44:e1337232024. [PMID: 38561225 PMCID: PMC11112641 DOI: 10.1523/jneurosci.1337-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
It remains a pressing concern to understand how neural computations relate to risky decisions. However, most observations of brain-behavior relationships in the risk-taking domain lack a rigorous computational basis or fail to emulate of the dynamic, sequential nature of real-life risky decision-making. Recent advances emphasize the role of neural prediction error (PE) signals. We modeled, according to prospect theory, the choices of n = 43 human participants (33 females, 10 males) performing an EEG version of the hot Columbia Card Task, featuring rounds of sequential decisions between stopping (safe option) and continuing with increasing odds of a high loss (risky option). Single-trial regression EEG analyses yielded a subjective value signal at centroparietal (300-700 ms) and frontocentral (>800 ms) electrodes and in the delta band, as well as PE signals tied to the feedback-related negativity, P3a, and P3b, and in the theta band. Higher risk preference (total number of risky choices) was linked to attenuated subjective value signals but increased PE signals. Higher P3-like activity associated with the most positive PE in each round predicted stopping in the present round but not risk-taking in the subsequent round. Our findings indicate that decreased representation of decision values and increased sensitivity to winning despite low odds (positive PE) facilitate risky choices at the subject level. Strong neural responses when gains are least expected (the most positive PE on each round) adaptively contribute to safer choices at the trial-by-trial level but do not affect risky choice at the round-by-round level.
Collapse
Affiliation(s)
- Raoul Wüllhorst
- Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
| | - Verena Wüllhorst
- Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
| | - Tanja Endrass
- Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
| |
Collapse
|
6
|
Baror S, Baumgarten TJ, He BJ. Neural Mechanisms Determining the Duration of Task-free, Self-paced Visual Perception. J Cogn Neurosci 2024; 36:756-775. [PMID: 38357932 DOI: 10.1162/jocn_a_02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Humans spend hours each day spontaneously engaging with visual content, free from specific tasks and at their own pace. Currently, the brain mechanisms determining the duration of self-paced perceptual behavior remain largely unknown. Here, participants viewed naturalistic images under task-free settings and self-paced each image's viewing duration while undergoing EEG and pupillometry recordings. Across two independent data sets, we observed large inter- and intra-individual variability in viewing duration. However, beyond an image's presentation order and category, specific image content had no consistent effects on spontaneous viewing duration across participants. Overall, longer viewing durations were associated with sustained enhanced posterior positivity and anterior negativity in the ERPs. Individual-specific variations in the spontaneous viewing duration were consistently correlated with evoked EEG activity amplitudes and pupil size changes. By contrast, presentation order was selectively correlated with baseline alpha power and baseline pupil size. Critically, spontaneous viewing duration was strongly predicted by the temporal stability in neural activity patterns starting as early as 350 msec after image onset, suggesting that early neural stability is a key predictor for sustained perceptual engagement. Interestingly, neither bottom-up nor top-down predictions about image category influenced spontaneous viewing duration. Overall, these results suggest that individual-specific factors can influence perceptual processing at a surprisingly early time point and influence the multifaceted ebb and flow of spontaneous human perceptual behavior in naturalistic settings.
Collapse
Affiliation(s)
- Shira Baror
- New York University Grossman School of Medicine
- Hebrew University of Jerusalem
| | - Thomas J Baumgarten
- New York University Grossman School of Medicine
- Heinrich Heine University, Düsseldorf
| | - Biyu J He
- New York University Grossman School of Medicine
| |
Collapse
|
7
|
Pronina MV, Ponomarev VA, Poliakov YI, Martins-Mourao A, Plotnikova IV, Müller A, Kropotov YD. Event-related EEG synchronization and desynchronization in patients with obsessive-compulsive disorder. Psychophysiology 2023; 60:e14403. [PMID: 37578353 DOI: 10.1111/psyp.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/09/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
Symptoms in patients with obsessive-compulsive disorder (OCD) are associated with impairment in cognitive control, attention, and action inhibition. We investigated OCD group differences relative to healthy subjects in terms of event-related alpha and beta range synchronization (ERS) and desynchronization (ERD) during a visually cued Go/NoGo task. Subjects were 62 OCD patients and 296 healthy controls (HC). The OCD group in comparison with HC, showed a changed value of alpha/beta oscillatory power over the central cortex, in particular, an increase in the alpha/beta ERD over the central-parietal cortex during the interstimulus interval (Cue condition) as well as changes in the postmovement beta synchronization topography and frequency. Over the frontal cortex, the OCD group showed an increase in magnitude of the beta ERS in NoGo condition. Within the parietal-occipital ERS/ERD modulations, the OCD group showed an increase in the alpha/beta ERD over the parietal cortex after the presentation of the visual stimuli as well as a decrease in the beta ERD over the occipital cortex after the presentation of the Cue and Go stimuli. The specific properties in the ERS/ERD patterns observed in the OCD group may reflect high involvement of the frontal and central cortex in action preparation and action inhibition processes and, possibly, in maintaining the motor program, which might be a result of the dysfunction of the cortico-striato-thalamo-cortical circuits involving prefrontal cortex. The data about enhanced involvement of the parietal cortex in the evaluation of the visual stimuli are in line with the assumption about overfocused attention in OCD.
Collapse
Affiliation(s)
- Marina V Pronina
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Valery A Ponomarev
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Yury I Poliakov
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Antonio Martins-Mourao
- QEEG & Brain Research Lab, Life, Health and Chemical Sciences, Open University, Milton Keynes, UK
| | - Irina V Plotnikova
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, Saint-Petersburg, Russia
| | | | - Yury D Kropotov
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
8
|
Chen CC, Wu EHK, Chen YQ, Tsai HJ, Chung CR, Yeh SC. Neuronal Correlates of Task Irrelevant Distractions Enhance the Detection of Attention Deficit/Hyperactivity Disorder. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1302-1310. [PMID: 37022368 DOI: 10.1109/tnsre.2023.3241649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early diagnosis and treatment can reduce the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD) in children, but medical diagnosis is usually delayed. Hence, it is important to increase the efficiency of early diagnosis. Previous studies used behavioral and neuronal data during GO/NOGO task to help detect ADHD and the accuracy differed considerably from 53% to 92%, depending on the employed methods and the number of electroencephalogram (EEG) channels. It remains unclear whether data from a few EEG channels can still lead to a good accuracy of detecting ADHD. Here, we hypothesize that introducing distractions into a VR-based GO/NOGO task can augment the detection of ADHD using 6-channel EEG because children with ADHD are easily distracted. Forty-nine ADHD children and 32 typically developing children were recruited. We use a clinically applicable system with EEG to record data. Statistical analysis and machine learning methods were employed to analyze the data. The behavioral results revealed significant differences in task performance when there are distractions. The presence of distractions leads to EEG changes in both groups, indicating immaturity in inhibitory control. Importantly, the distractions additionally enhanced the between-group differences in NOGO $\alpha $ and $\gamma $ power, reflecting insufficient inhibition in different neural networks for distraction suppression in the ADHD group. Machine learning methods further confirmed that distractions enhance the detection of ADHD with an accuracy of 85.45%. In conclusion, this system can assist in fast screenings for ADHD and the findings of neuronal correlates of distractions can help design therapeutic strategies.
Collapse
|
9
|
Olyaei G, Khanmohammadi R, Talebian S, Hadian MR, Bagheri H, Najafi M. The effect of exergaming on cognition and brain activity in older adults: A motor- related cortical potential study. Physiol Behav 2022; 255:113941. [PMID: 35963295 DOI: 10.1016/j.physbeh.2022.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Exergames have positive effects on various cognitive domains. However, to the best of our knowledge, not only have few studies investigated the exergame-induced brain changes, but also in most of them, preparatory brain activity has not been considered. Preparatory brain activity is a particularly relevant aspect for investigating the interaction between cognitive and sensorimotor functions in the brain. Accordingly, the aim of this study was to investigate the effects of an exergame protocol versus traditional motor-cognitive dual-task training on the cognition and proactive components of movement-related cortical potential. A total of 52 older adults were randomly assigned to the intervention (exergame training) and the control group (motor-cognitive dual-task training). The outcome measurements were neurophysiological data (i.e., the amplitude of the late contingent negative variation [CNV], and alpha/beta event-related desynchronization [ERD]), and neuropsychological data (rate-correct score [RCS] in go/no go task and trail-making test [TMT]). The results revealed that both groups had a decreased late CNV, and alpha/ beta ERD in post-training compared to pre-training in Cz and C3 channels. Moreover, both groups had an increased RCS and a decreased TMT-A in post-training compared to pre-training. However, for TMT-B, the results indicated a significant interaction in favor of the exergame group. These findings indicate that in older adults, both interventions may result in increasing inhibitory control, information processing speed, and preparatory brain activity. However, for cognitive flexibility, exergame has an additional effect relative to the control group.
Collapse
Affiliation(s)
- Gholamreza Olyaei
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saeed Talebian
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hadian
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Bagheri
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieyh Najafi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Studenova AA, Villringer A, Nikulin VV. Non-zero mean alpha oscillations revealed with computational model and empirical data. PLoS Comput Biol 2022; 18:e1010272. [PMID: 35802619 PMCID: PMC9269450 DOI: 10.1371/journal.pcbi.1010272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Ongoing oscillations and evoked responses are two main types of neuronal activity obtained with diverse electrophysiological recordings (EEG/MEG/iEEG/LFP). Although typically studied separately, they might in fact be closely related. One possibility to unite them is to demonstrate that neuronal oscillations have non-zero mean which predicts that stimulus- or task-triggered amplitude modulation of oscillations can contribute to the generation of evoked responses. We validated this mechanism using computational modelling and analysis of a large EEG data set. With a biophysical model, we indeed demonstrated that intracellular currents in the neuron are asymmetric and, consequently, the mean of alpha oscillations is non-zero. To understand the effect that neuronal currents exert on oscillatory mean, we varied several biophysical and morphological properties of neurons in the network, such as voltage-gated channel densities, length of dendrites, and intensity of incoming stimuli. For a very large range of model parameters, we observed evidence for non-zero mean of oscillations. Complimentary, we analysed empirical rest EEG recordings of 90 participants (50 young, 40 elderly) and, with spatio-spectral decomposition, detected at least one spatially-filtred oscillatory component of non-zero mean alpha oscillations in 93% of participants. In order to explain a complex relationship between the dynamics of amplitude-envelope and corresponding baseline shifts, we performed additional simulations with simple oscillators coupled with different time delays. We demonstrated that the extent of spatial synchronisation may obscure macroscopic estimation of alpha rhythm modulation while leaving baseline shifts unchanged. Overall, our results predict that amplitude modulation of neural oscillations should at least partially explain the generation of evoked responses. Therefore, inference about changes in evoked responses with respect to cognitive conditions, age or neuropathologies should be constructed while taking into account oscillatory neuronal dynamics.
Collapse
Affiliation(s)
- Alina A. Studenova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- * E-mail:
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
11
|
Kuo CH, Casimo K, Wu J, Collins K, Rice P, Chen BW, Yang SH, Lo YC, Novotny EJ, Weaver KE, Chen YY, Ojemann JG. Electrocorticography to Investigate Age-Related Brain Lateralization on Pediatric Motor Inhibition. Front Neurol 2022; 13:747053. [PMID: 35330804 PMCID: PMC8940229 DOI: 10.3389/fneur.2022.747053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Response inhibition refers to the ability to suppress inappropriate actions that interfere with goal-driven behavior. The inferior frontal gyrus (IFG) is known to be associated with inhibition of a motor response by assuming executive control over motor cortex outputs. This study aimed to evaluate the pediatric development of response inhibition through subdural electrocorticography (ECoG) recording. Subdural ECoG recorded neural activities simultaneously during a Go/No-Go task, which was optimized for children. Different frequency power [theta: 4–8 Hz; beta: 12–40 Hz; high-gamma (HG): 70–200 Hz] was estimated within the IFG and motor cortex. Age-related analysis was computed by each bandpass power ratio between Go and No-Go conditions, and phase-amplitude coupling (PAC) over IFG by using the modulating index metric in two conditions. For all the eight pediatric patients, HG power was more activated in No-Go trials than in Go trials, in either right- or left-side IFG when available. In the IFG region, the power over theta and HG in No-Go conditions was higher than those in Go conditions, with significance over the right side (p < 0.05). The age-related lateralization from both sides to the right side was observed from the ratio of HG power and PAC value between the No-Go and Go trials. In the pediatric population, the role of motor inhibition was observed in both IFG, with age-related lateralization to the right side, which was proved in the previous functional magnetic resonance imaging studies. In this study, the evidence correlation of age and response inhibition was observed directly by the evidence of cortical recordings.
Collapse
Affiliation(s)
- Chao-Hung Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Kaitlyn Casimo
- Graduate Program in Neuroscience, Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - Jing Wu
- Department of Bioengineering, Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - Kelly Collins
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Patrick Rice
- Department of Psychology, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Edward J Novotny
- Departments of Neurology and Pediatrics, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kurt E Weaver
- Department of Radiology, Integrated Brain Imaging Center, University of Washington, Seattle, WA, United States.,Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Center for Neurotechnology, University of Washington, Seattle, WA, United States.,Departments of Surgery, Seattle Children's Hospital, Seattle, WA, United States
| |
Collapse
|
12
|
Wiwatowska E, Czajeczny D, Michałowski JM. Decreased preparatory activation and inattention to cues suggest lower activation of proactive cognitive control among high procrastinating students. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:171-186. [PMID: 34498229 PMCID: PMC8791900 DOI: 10.3758/s13415-021-00945-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Procrastination is a voluntary delay in completing an important task while being aware that this behavior may lead to negative outcomes. It has been shown that an increased tendency to procrastinate is associated with deficits in some aspects of cognitive control. However, none of the previous studies investigated these dysfunctions through the lenses of the Dual Mechanisms Framework, which differentiates proactive and reactive modes of control. The present study was designed to fill this gap, using behavioral and neurophysiological assessment during the completion of the AX-Continuous Performance Task (AX-CPT) by high (HP) and low (LP) procrastinating students (N = 139). Behavioral results indicated that HP (vs. LP) were characterized by increased attentional fluctuations (higher reaction time variability) and reduction in some indices of proactive cognitive control (lower d'-context and A-cue bias, but similar PBIs). Furthermore, the neurophysiological data showed that HP, compared with LP, allocated less attentional resources (lower P3b) to cues that help to predict the correct responses to upcoming probes. They also responded with reduced preparatory activity (smaller CNV) after cues presentation. The two groups did not differ in neural responses linked to conflict detection and inhibition (similar N2 and P3a). Obtained findings indicate that HP might present deficits in some cognitive functions that are essential for effective proactive control engagement, along with preserved levels of reactive cognitive control. In the present paper, we discuss the potential neural and cognitive mechanisms responsible for the observed effects.
Collapse
Affiliation(s)
- Ewa Wiwatowska
- Department of Psychology and Law, SWPS University of Social Sciences and Humanities, Kutrzeby 10 St, 61-719, Poznań, Poland.
| | - Dominik Czajeczny
- Department of Psychology and Law, SWPS University of Social Sciences and Humanities, Kutrzeby 10 St, 61-719, Poznań, Poland
- Department of Clinical Psychology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jarosław M Michałowski
- Department of Psychology and Law, SWPS University of Social Sciences and Humanities, Kutrzeby 10 St, 61-719, Poznań, Poland
| |
Collapse
|
13
|
Ahumada-Méndez F, Lucero B, Avenanti A, Saracini C, Muñoz-Quezada MT, Cortés-Rivera C, Canales-Johnson A. Affective modulation of cognitive control: A systematic review of EEG studies. Physiol Behav 2022; 249:113743. [DOI: 10.1016/j.physbeh.2022.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
14
|
Lydon EA, Nguyen LT, Shende SA, Chiang HS, Spence JS, Mudar RA. EEG theta and alpha oscillations in early versus late mild cognitive impairment during a semantic Go/NoGo task. Behav Brain Res 2022; 416:113539. [PMID: 34416304 DOI: 10.1016/j.bbr.2021.113539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/02/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) is marked by episodic memory deficits, which can be used to classify individuals into early MCI (EMCI) and late MCI (LMCI). Although mounting evidence suggests that individuals with aMCI have additional cognitive alterations including deficits in cognitive control, few have examined if EMCI and LMCI differ on processes other than episodic memory. Using a semantic Go/NoGo task, we examined differences in cognitive control between EMCI and LMCI on behavioral (accuracy and reaction time) and neural (scalp-recorded event-related oscillations in theta and alpha band) measures. Although no behavioral differences were observed between the EMCI and LMCI groups, differences in neural oscillations were observed. The LMCI group had higher theta synchronization on Go trials at central electrodes compared to the EMCI group. In addition, the EMCI group showed differences in theta power at central electrodes and alpha power at central and centro-parietal electrodes between Go and NoGo trials, while the LMCI group did not exhibit such differences. These findings suggest that while behavioral differences may not be observable, neural changes underlying cognitive control processes may differentiate EMCI and LMCI stages and may be useful to understand the trajectory of aMCI in future studies.
Collapse
Affiliation(s)
- Elizabeth A Lydon
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 South 6th Street, Champaign, IL, 61820, United States
| | - Lydia T Nguyen
- Neuroscience Program, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, United States
| | - Shraddha A Shende
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 South 6th Street, Champaign, IL, 61820, United States
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, United States; School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, United States
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, 2200 West Mockingbird Ln, Dallas, TX, United States
| | - Raksha A Mudar
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 South 6th Street, Champaign, IL, 61820, United States; Neuroscience Program, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
15
|
Lin YP, Liang HY, Chen YS, Lu CH, Wu YR, Chang YY, Lin WC. Objective assessment of impulse control disorder in patients with Parkinson's disease using a low-cost LEGO-like EEG headset: a feasibility study. J Neuroeng Rehabil 2021; 18:109. [PMID: 34215283 PMCID: PMC8252252 DOI: 10.1186/s12984-021-00897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Patients with Parkinson’s disease (PD) can develop impulse control disorders (ICDs) while undergoing a pharmacological treatment for motor control dysfunctions with a dopamine agonist (DA). Conventional clinical interviews or questionnaires can be biased and may not accurately diagnose at the early stage. A wearable electroencephalogram (EEG)-sensing headset paired with an examination procedure can be a potential user-friendly method to explore ICD-related signatures that can detect its early signs and progression by reflecting brain activity. Methods A stereotypical Go/NoGo test that targets impulse inhibition was performed on 59 individuals, including healthy controls, patients with PD, and patients with PD diagnosed by ICDs. We conducted two Go/NoGo sessions before and after the DA-pharmacological treatment for the PD and ICD groups. A low-cost LEGO-like EEG headset was used to record concurrent EEG signals. Then, we used the event-related potential (ERP) analytical framework to explore ICD-related EEG abnormalities after DA treatment. Results After the DA treatment, only the ICD-diagnosed PD patients made more behavioral errors and tended to exhibit the deterioration for the NoGo N2 and P3 peak amplitudes at fronto-central electrodes in contrast to the HC and PD groups. Particularly, the extent of the diminished NoGo-N2 amplitude was prone to be modulated by the ICD scores at Fz with marginal statistical significance (r = − 0.34, p = 0.07). Conclusions The low-cost LEGO-like EEG headset successfully captured ERP waveforms and objectively assessed ICD in patients with PD undergoing DA treatment. This objective neuro-evidence could provide complementary information to conventional clinical scales used to diagnose ICD adverse effects.
Collapse
Affiliation(s)
- Yuan-Pin Lin
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsing-Yi Liang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yueh-Sheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City, 833, Taiwan.
| |
Collapse
|
16
|
McMackin R, Dukic S, Costello E, Pinto-Grau M, Keenan O, Fasano A, Buxo T, Heverin M, Reilly RB, Pender N, Hardiman O, Nasseroleslami B. Sustained attention to response task-related beta oscillations relate to performance and provide a functional biomarker in ALS. J Neural Eng 2021; 18. [PMID: 33395671 DOI: 10.1088/1741-2552/abd829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To characterize the cortical oscillations associated with performance of the sustained attention to response task (SART) and their disruptions in the neurodegenerative condition amyotrophic lateral sclerosis (ALS). APPROACH A randomised SART was undertaken by 24 ALS patients and 33 healthy controls during 128-channel electroencephalography. Complex Morlet wavelet transform was used to quantify non-phase-locked oscillatory activity in event-related spectral perturbations associated with performing the SART. We investigated the relationships between these perturbations and task performance, and associated motor and cognitive changes in ALS Main results: SART induced theta-band event-related synchronization (ERS) and alpha- and beta-band event-related desynchronization (ERD), followed by rebound beta ERS, in both Go and NoGo trials across the frontoparietal axis, with NoGo trials eliciting greater theta ERS and lesser beta ERS. Controls with greater Go trial beta ERS performed with greater speed and less accuracy. ALS patients exhibited increased anticipation compared to controls but similar reaction times and accuracy. Prefrontal (AUROC=0.8, Cohen's d=0.97) and parietal (AUROC=0.82, Cohen's d=1.12) beta-band ERD was significantly reduced in ALS but did not relate to performance, while patients with higher ECAS ALS-specific scores demonstrated greater ERS in beta (rho=0.72) upon successful withholding. SIGNIFICANCE EEG measurement of task-related oscillation changes reveals variation in cortical network engagement in relation to speed versus accuracy strategies. Such measures can also capture cognitive and motor network pathophysiology in the absence of task performance decline, which may facilitate development of more sensitive early neurodegenerative disease biomarkers.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, Room 5.40, Trinity Biomedical Sciences Institute,, 152-160 Pearse St.,, Dublin, Dublin, 2, IRELAND
| | - Stefan Dukic
- Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Emmet Costello
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Orla Keenan
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Antonio Fasano
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Teresa Buxo
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Mark Heverin
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Richard B Reilly
- Trinity Centre for Biomedical Engineering, University of Dublin Trinity College, Dublin 2, Dublin, 2, IRELAND
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| |
Collapse
|
17
|
Towards a Pragmatic Approach to a Psychophysiological Unit of Analysis for Mental and Brain Disorders: An EEG-Copeia for Neurofeedback. Appl Psychophysiol Biofeedback 2020; 44:151-172. [PMID: 31098793 DOI: 10.1007/s10484-019-09440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article proposes what we call an "EEG-Copeia" for neurofeedback, like the "Pharmacopeia" for psychopharmacology. This paper proposes to define an "EEG-Copeia" as an organized list of scientifically validated EEG markers, characterized by a specific association with an identified cognitive process, that define a psychophysiological unit of analysis useful for mental or brain disorder evaluation and treatment. A characteristic of EEG neurofeedback for mental and brain disorders is that it targets a EEG markers related to a supposed cognitive process, whereas conventional treatments target clinical manifestations. This could explain why EEG neurofeedback studies encounter difficulty in achieving reproducibility and validation. The present paper suggests that a first step to optimize EEG neurofeedback protocols and future research is to target a valid EEG marker. The specificity of the cognitive skills trained and learned during real time feedback of the EEG marker could be enhanced and both the reliability of neurofeedback training and the therapeutic impact optimized. However, several of the most well-known EEG markers have seldom been applied for neurofeedback. Moreover, we lack a reliable and valid EEG targets library for further RCT to evaluate the efficacy of neurofeedback in mental and brain disorders. With the present manuscript, our aim is to foster dialogues between cognitive neuroscience and EEG neurofeedback according to a psychophysiological perspective. The primary objective of this review was to identify the most robust EEG target. EEG markers linked with one or several clearly identified cognitive-related processes will be identified. The secondary objective was to organize these EEG markers and related cognitive process in a psychophysiological unit of analysis matrix inspired by the Research Domain Criteria (RDoC) project.
Collapse
|
18
|
Hong X, Sun J, Wang J, Li C, Tong S. Attention-related modulation of frontal midline theta oscillations in cingulate cortex during a spatial cueing Go/NoGo task. Int J Psychophysiol 2020; 148:1-12. [DOI: 10.1016/j.ijpsycho.2019.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022]
|
19
|
Karamacoska D, Barry RJ, De Blasio FM, Steiner GZ. EEG-ERP dynamics in a visual Continuous Performance Test. Int J Psychophysiol 2019; 146:249-260. [DOI: 10.1016/j.ijpsycho.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 11/26/2022]
|
20
|
Zappa A, Bolger D, Pergandi JM, Mallet P, Dubarry AS, Mestre D, Frenck-Mestre C. Motor resonance during linguistic processing as shown by EEG in a naturalistic VR environment. Brain Cogn 2019; 134:44-57. [PMID: 31128414 DOI: 10.1016/j.bandc.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Embodied cognition studies have shown motor resonance during action language processing, indicating that linguistic representations are at least partially multimodal. However, constraints of this activation linked to linguistic and extra-linguistic context, function and timing have not yet been fully explored. Importantly, embodied cognition binds social and physical contexts to cognition, suggesting that more ecologically valid contexts will yield more valid measures of cognitive processing. Herein, we measured cortical motor activation during language processing in a fully immersive Cave automatic virtual environment (CAVE). EEG was recorded while participants engaged in a Go/No-Go task. They heard action verbs and, for Go trials, performed a corresponding action on a virtual object. ERSP (event-related spectral perturbation) was calculated during verb processing, corresponding to the pattern of power suppression (event-related desynchronization - ERD) and enhancement (event-related synchronization - ERS) relative to the reference interval. Significant ERD emerged during verb processing in both the µ (8-13 Hz) and beta band (20-30 Hz) for both Go and No-Go trials. µ ERD emerged in the 400-500 msec time window, associated with lexical-semantic processing. Greater µ ERD emerged for Go compared to No-Go trials. The present results provide compelling evidence in a naturalistic setting of how motor and linguistic processes interact.
Collapse
Affiliation(s)
- Ana Zappa
- Aix-Marseille Univ, France; Laboratoire Parole et Langage, France; Centre National de Recherche Scientifique, France; Institute of Language, Communication and the Brain, France.
| | - Deirdre Bolger
- Aix-Marseille Univ, France; Laboratoire Parole et Langage, France; Institute of Language, Communication and the Brain, France; Centre National de Recherche Scientifique, France
| | - Jean-Marie Pergandi
- Aix-Marseille Univ, France; Institute of Movement Sciences, France; Mediterranean Virtual Reality Center, France
| | - Pierre Mallet
- Aix-Marseille Univ, France; Institute of Movement Sciences, France; Mediterranean Virtual Reality Center, France
| | - Anne-Sophie Dubarry
- Aix-Marseille Univ, France; Centre National de Recherche Scientifique, France; Laboratoire Parole et Langage, France
| | - Daniel Mestre
- Aix-Marseille Univ, France; Institute of Movement Sciences, France; Mediterranean Virtual Reality Center, France; Centre National de Recherche Scientifique, France; Institute of Language, Communication and the Brain, France
| | - Cheryl Frenck-Mestre
- Aix-Marseille Univ, France; Centre National de Recherche Scientifique, France; Laboratoire Parole et Langage, France; Institute of Language, Communication and the Brain, France
| |
Collapse
|
21
|
Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:313-330. [PMID: 29392645 DOI: 10.3758/s13415-018-0571-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18-28 years) and healthy older adults (66-89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives.
Collapse
|
22
|
Buch VP, Richardson AG, Brandon C, Stiso J, Khattak MN, Bassett DS, Lucas TH. Network Brain-Computer Interface (nBCI): An Alternative Approach for Cognitive Prosthetics. Front Neurosci 2018; 12:790. [PMID: 30443203 PMCID: PMC6221897 DOI: 10.3389/fnins.2018.00790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Brain computer interfaces (BCIs) have been applied to sensorimotor systems for many years. However, BCI technology has broad potential beyond sensorimotor systems. The emerging field of cognitive prosthetics, for example, promises to improve learning and memory for patients with cognitive impairment. Unfortunately, our understanding of the neural mechanisms underlying these cognitive processes remains limited in part due to the extensive individual variability in neural coding and circuit function. As a consequence, the development of methods to ascertain optimal control signals for cognitive decoding and restoration remains an active area of inquiry. To advance the field, robust tools are required to quantify time-varying and task-dependent brain states predictive of cognitive performance. Here, we suggest that network science is a natural language in which to formulate and apply such tools. In support of our argument, we offer a simple demonstration of the feasibility of a network approach to BCI control signals, which we refer to as network BCI (nBCI). Finally, in a single subject example, we show that nBCI can reliably predict online cognitive performance and is superior to certain common spectral approaches currently used in BCIs. Our review of the literature and preliminary findings support the notion that nBCI could provide a powerful approach for future applications in cognitive prosthetics.
Collapse
Affiliation(s)
- Vivek P Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew G Richardson
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Cameron Brandon
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Stiso
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| | - Monica N Khattak
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Saumur TM, Mochizuki G. Single pulse TMS during preparation for lower limb movement: Effect of task predictability on corticospinal excitability. Brain Res 2018; 1697:105-112. [DOI: 10.1016/j.brainres.2018.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/29/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
|
24
|
Stimulating the Healthy Brain to Investigate Neural Correlates of Motor Preparation: A Systematic Review. Neural Plast 2018; 2018:5846096. [PMID: 29670648 PMCID: PMC5835236 DOI: 10.1155/2018/5846096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Noninvasive brain stimulation techniques can be used to selectively increase or decrease the excitability of a cortical region, providing a unique opportunity to assess the causal contribution of that region to the process being assessed. The objective of this paper is to systematically examine studies investigating changes in reaction time induced by noninvasive brain stimulation in healthy participants during movement preparation. Methods A systematic review of the literature was performed in the PubMed, MEDLINE, EMBASE, PsycINFO, and Web of science databases. A combination of keywords related to motor preparation, associated behavioral outcomes, and noninvasive brain stimulation methods was used. Results Twenty-seven studies were included, and systematic data extraction and quality assessment were performed. Reaction time results were transformed in standardised mean difference and graphically pooled in forest plots depending on the targeted cortical area and the type of stimulation. Conclusions Despite methodological heterogeneity among studies, results support a functional implication of five cortical regions (dorsolateral prefrontal cortex, posterior parietal cortex, supplementary motor area, dorsal premotor cortex, and primary motor cortex), integrated into a frontoparietal network, in various components of motor preparation ranging from attentional to motor aspects.
Collapse
|
25
|
Allen C, Singh KD, Verbruggen F, Chambers CD. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: a combined MEG and TMS study. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171369. [PMID: 29515852 PMCID: PMC5830741 DOI: 10.1098/rsos.171369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/11/2018] [Indexed: 07/20/2023]
Abstract
This pre-registered experiment sought to uncover the temporal relationship between the inferior frontal cortex (IFC) and the pre-supplementary motor area (pre-SMA) during stopping of an ongoing action. Both regions have previously been highlighted as being central to cognitive control of actions, particularly response inhibition. Here we tested which area is activated first during the stopping process using magnetoencephalography, before assessing the relative chronometry of each region using functionally localized transcranial magnetic stimulation. Both lines of evidence pointed towards simultaneous activity across both regions, suggesting that parallel, mutually interdependent processing may form the cortical basis of stopping. Additional exploratory analysis, however, provided weak evidence in support of previous suggestions that the pre-SMA may provide an ongoing drive of activity to the IFC.
Collapse
Affiliation(s)
- Christopher Allen
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Frederick Verbruggen
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
- Psychology, University of Exeter, Washington Singer Building, Perry Road, Exeter EX4 4QG, UK
| | - Christopher D. Chambers
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
26
|
Gratton G, Cooper P, Fabiani M, Carter CS, Karayanidis F. Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Gabriele Gratton
- Department of Psychology and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| | - Patrick Cooper
- School of PsychologyUniversity of NewcastleNewcastle New South Wales Australia
| | - Monica Fabiani
- Department of Psychology and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| | - Cameron S. Carter
- Departments of Psychiatry and PsychologyUniversity of California–DavisDavis California USA
| | - Frini Karayanidis
- School of PsychologyUniversity of NewcastleNewcastle New South Wales Australia
| |
Collapse
|
27
|
Schevernels H, Bombeke K, Krebs RM, Boehler CN. Preparing for (valenced) action: The role of differential effort in the orthogonalized go/no-go task. Psychophysiology 2015; 53:186-97. [DOI: 10.1111/psyp.12558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/24/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Hanne Schevernels
- Department of Experimental Psychology; Ghent University; Ghent Belgium
| | - Klaas Bombeke
- Department of Experimental Psychology; Ghent University; Ghent Belgium
| | - Ruth M. Krebs
- Department of Experimental Psychology; Ghent University; Ghent Belgium
| | - C. Nico Boehler
- Department of Experimental Psychology; Ghent University; Ghent Belgium
| |
Collapse
|
28
|
Life after Adolescent and Adult Moderate and Severe Traumatic Brain Injury: Self-Reported Executive, Emotional, and Behavioural Function 2-5 Years after Injury. Behav Neurol 2015; 2015:329241. [PMID: 26549936 PMCID: PMC4621342 DOI: 10.1155/2015/329241] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022] Open
Abstract
Survivors of moderate-severe Traumatic Brain Injury (TBI) are at risk for long-term cognitive, emotional, and behavioural problems. This prospective cohort study investigated self-reported executive, emotional, and behavioural problems in the late chronic phase of moderate and severe TBI, if demographic characteristics (i.e., age, years of education), injury characteristics (Glasgow Coma Scale score, MRI findings such as traumatic axonal injury (TAI), or duration of posttraumatic amnesia), symptoms of depression, or neuropsychological variables in the first year after injury predicted long-term self-reported function. Self-reported executive, emotional, and behavioural functioning were assessed among individuals with moderate and severe TBI (N = 67, age range 15–65 years at time of injury) 2–5 years after TBI, compared to a healthy matched control group (N = 72). Results revealed significantly more attentional, emotional regulation, and psychological difficulties in the TBI group than controls. Demographic and early clinical variables were associated with poorer cognitive and emotional outcome. Fewer years of education and depressive symptoms predicted greater executive dysfunction. Younger age at injury predicted more aggressive and rule-breaking behaviour. TAI and depressive symptoms predicted Internalizing problems and greater executive dysfunction. In conclusion, age, education, TAI, and depression appear to elevate risk for poor long-term outcome, emphasising the need for long-term follow-up of patients presenting with risk factors.
Collapse
|
29
|
Soltész F, Szűcs D, Leong V, White S, Goswami U. Differential entrainment of neuroelectric delta oscillations in developmental dyslexia. PLoS One 2013; 8:e76608. [PMID: 24204644 PMCID: PMC3799758 DOI: 10.1371/journal.pone.0076608] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/25/2013] [Indexed: 11/19/2022] Open
Abstract
Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language), has been associated with behavioural entrainment deficits. It has been proposed that the phonological ‘deficit’ that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, ‘temporal sampling theory’). Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV) to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz), relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, ‘phase locking’) and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time) for control participants only.
Collapse
Affiliation(s)
- Fruzsina Soltész
- Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| | - Denes Szűcs
- Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Leong
- Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| | - Sonia White
- Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| | - Usha Goswami
- Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Funderud I, Løvstad M, Lindgren M, Endestad T, Due-Tønnessen P, Meling TR, Knight RT, Solbakk AK. Preparatory attention after lesions to the lateral or orbital prefrontal cortex--an event-related potentials study. Brain Res 2013; 1527:174-88. [PMID: 23831520 DOI: 10.1016/j.brainres.2013.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/07/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
Abstract
The prefrontal cortex (PFC) plays a central role in preparatory and anticipatory attentional processes. To investigate whether subregions of the PFC play differential roles in these processes we investigated the effect of focal lesions to either lateral prefrontal (lateral PFC; n=11) or orbitofrontal cortex (OFC; n=13) on the contingent negative variation (CNV), an electrophysiological index of preparatory brain processes. The CNV was studied using a Go/NoGo delayed response task where an auditory S1 signaled whether or not an upcoming visual S2 was a Go or a NoGo stimulus. Neither early (500-1000 ms) nor late (3200-3700 ms) phase Go trial CNV amplitude was reduced for any of the patient groups in comparison to controls. However, the lateral PFC group showed enhanced Go trial early CNV and reduced late CNV Go/NoGo differentiation. These data suggests that normal orienting and evaluation as reflected by the CNV is intact after OFC lesions. The enhanced early CNV after lateral PFC damage may be due to failure in inhibition and the reduced late CNV difference wave confirms a deficit in preparatory attention after damage to this frontal subregion.
Collapse
Affiliation(s)
- Ingrid Funderud
- Department of Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cordones I, Gómez CM, Escudero M. Cortical dynamics during the preparation of antisaccadic and prosaccadic eye movements in humans in a gap paradigm. PLoS One 2013; 8:e63751. [PMID: 23671699 PMCID: PMC3650078 DOI: 10.1371/journal.pone.0063751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
To compare the cortical dynamics of different oculomotor tasks, EEG and eye movements were recorded in 21 volunteers. Using a comprehensive approach, subjects were asked to perform saccadic tasks, which included a saccadic eye movement to a peripheral target (prosaccadic), a movement to the opposite side (antisaccadic), or maintain the gaze fixed (no-go). In mixed trials, prosaccadic, antisaccadic and no-go tasks were indicated by a color square (S1) present for 1900-2500 ms (instructive period). S1 disappeared for 370 ms (gap) and a black dot at 8 deg at right or left indicated the beginning of the task. Reaction times, amplitude of eye movements and number of errors were greatest in antisaccadic tasks, suggesting a greater difficulty. The EEG showed a contingent negativity variation (CNV) that increased progressively along the instructive period and suddenly during the gap: higher in antisaccadic, followed by prosaccadic and no-go tasks. Principal component analysis (PCA) disentangled fronto-central and occipital CNV-related and fronto-central gap-related components. The instructive period was characterized by fronto-central and occipital beta desynchronization (ERD) higher in antisaccadic than in no-go and parieto-occipital alpha synchronization higher in no-go than in antisaccadic tasks. During the gap, parieto-occipital beta and alpha ERD were higher in antisaccadic compared to no-go. The gap was further characterized by a fronto-central increase of inter-trial coherence in theta: highest during antisaccadic, followed by prosaccadic and no-go tasks. This phase locking in theta was also accompanied by theta ERS, which was significantly higher in antisaccadic than in the other two tasks. In PCA of spectral power two main components had dynamics similar to those extracted from voltage data, suggesting cross-frequency coupling. These results suggest that the more difficult saccadic tasks are associated with top-down control mediated by frontal cortex, while simpler tasks rely more on bottom-up control mediated by posterior cortices.
Collapse
Affiliation(s)
- Isabel Cordones
- Neuroscience and Behavior Group, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Carlos M. Gómez
- Human Psychobiology Lab, Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| | - Miguel Escudero
- Neuroscience and Behavior Group, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|