1
|
Brown BJ, Manescu P, Przybylski AA, Caccioli F, Oyinloye G, Elmi M, Shaw MJ, Pawar V, Claveau R, Shawe-Taylor J, Srinivasan MA, Afolabi NK, Rees G, Orimadegun AE, Ajetunmobi WA, Akinkunmi F, Kowobari O, Osinusi K, Akinbami FO, Omokhodion S, Shokunbi WA, Lagunju I, Sodeinde O, Fernandez-Reyes D. Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa. Sci Rep 2020; 10:15918. [PMID: 32985514 PMCID: PMC7522256 DOI: 10.1038/s41598-020-72575-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Over 200 million malaria cases globally lead to half-million deaths annually. The development of malaria prevalence prediction systems to support malaria care pathways has been hindered by lack of data, a tendency towards universal "monolithic" models (one-size-fits-all-regions) and a focus on long lead time predictions. Current systems do not provide short-term local predictions at an accuracy suitable for deployment in clinical practice. Here we show a data-driven approach that reliably produces one-month-ahead prevalence prediction within a densely populated all-year-round malaria metropolis of over 3.5 million inhabitants situated in Nigeria which has one of the largest global burdens of P. falciparum malaria. We estimate one-month-ahead prevalence in a unique 22-years prospective regional dataset of > 9 × 104 participants attending our healthcare services. Our system agrees with both magnitude and direction of the prediction on validation data achieving MAE ≤ 6 × 10-2, MSE ≤ 7 × 10-3, PCC (median 0.63, IQR 0.3) and with more than 80% of estimates within a (+ 0.1 to - 0.05) error-tolerance range which is clinically relevant for decision-support in our holoendemic setting. Our data-driven approach could facilitate healthcare systems to harness their own data to support local malaria care pathways.
Collapse
Affiliation(s)
- Biobele J Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,African Computational Sciences Centre for Health and Development, University of Ibadan, Ibadan, Nigeria
| | - Petru Manescu
- African Computational Sciences Centre for Health and Development, University of Ibadan, Ibadan, Nigeria.,Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alexander A Przybylski
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Fabio Caccioli
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Gbeminiyi Oyinloye
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Muna Elmi
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Michael J Shaw
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Vijay Pawar
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Remy Claveau
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - John Shawe-Taylor
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mandayam A Srinivasan
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nathaniel K Afolabi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Geraint Rees
- Faculty of Life Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adebola E Orimadegun
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wasiu A Ajetunmobi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Francis Akinkunmi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olayinka Kowobari
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Kikelomo Osinusi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Felix O Akinbami
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Samuel Omokhodion
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A Shokunbi
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,African Computational Sciences Centre for Health and Development, University of Ibadan, Ibadan, Nigeria
| | - Olugbemiro Sodeinde
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.,African Computational Sciences Centre for Health and Development, University of Ibadan, Ibadan, Nigeria.,Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Delmiro Fernandez-Reyes
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria. .,Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria. .,African Computational Sciences Centre for Health and Development, University of Ibadan, Ibadan, Nigeria. .,Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Manescu P, Shaw MJ, Elmi M, Neary‐Zajiczek L, Claveau R, Pawar V, Kokkinos I, Oyinloye G, Bendkowski C, Oladejo OA, Oladejo BF, Clark T, Timm D, Shawe‐Taylor J, Srinivasan MA, Lagunju I, Sodeinde O, Brown BJ, Fernandez‐Reyes D. Expert-level automated malaria diagnosis on routine blood films with deep neural networks. Am J Hematol 2020; 95:883-891. [PMID: 32282969 DOI: 10.1002/ajh.25827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/09/2022]
Abstract
Over 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub-Saharan region. Although several approaches have been attempted to identify malaria parasites in TBF, none have achieved negative and positive predictive performance suitable for clinical use in the west sub-Saharan region. While malaria parasite object detection remains an intermediary step in achieving automatic patient diagnosis, training state-of-the-art deep-learning object detectors requires the human-expert labor-intensive process of labeling a large dataset of digitized TBF. To overcome these challenges and to achieve a clinically usable system, we show a novel approach. It leverages routine clinical-microscopy labels from our quality-controlled malaria clinics, to train a Deep Malaria Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagnosis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC) counts allowing parasitemia estimation in MP/μL, as recommended by the WHO. Prospective validation of the DeepMCNN achieves sensitivity/specificity of 0.92/0.90 against expert-level malaria diagnosis. Our approach PPV/NPV performance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the densely populated metropolis of Ibadan. It is located within the most populous African country (Nigeria) and with one of the largest burdens of Plasmodium falciparum malaria. Our openly available method is of importance for strategies aimed to scale malaria diagnosis in urban regions where daily assessment of thousands of specimens is required.
Collapse
Affiliation(s)
- Petru Manescu
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Michael J. Shaw
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Muna Elmi
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Lydia Neary‐Zajiczek
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Remy Claveau
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Vijay Pawar
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Iasonas Kokkinos
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Gbeminiyi Oyinloye
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
| | - Christopher Bendkowski
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Olajide A. Oladejo
- Department of Computer ScienceUniversity of Ibadan Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Bolanle F. Oladejo
- Department of Computer ScienceUniversity of Ibadan Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Tristan Clark
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Denis Timm
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - John Shawe‐Taylor
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Mandayam A. Srinivasan
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Olugbemiro Sodeinde
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
| | - Biobele J. Brown
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Delmiro Fernandez‐Reyes
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| |
Collapse
|
3
|
Abah SE, Burté F, Howell SA, Lagunju I, Shokunbi WA, Wahlgren M, Sodeinde O, Brown BJ, Holder AA, Fernandez-Reyes D. Depleted circulatory complement-lysis inhibitor (CLI) in childhood cerebral malaria returns to normal with convalescence. Malar J 2020; 19:167. [PMID: 32336276 PMCID: PMC7184698 DOI: 10.1186/s12936-020-03241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/17/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM), is a life-threatening childhood malaria syndrome with high mortality. CM is associated with impaired consciousness and neurological damage. It is not fully understood, as yet, why some children develop CM. Presented here is an observation from longitudinal studies on CM in a paediatric cohort of children from a large, densely-populated and malaria holoendemic, sub-Saharan, West African metropolis. METHODS Plasma samples were collected from a cohort of children with CM, severe malarial anaemia (SMA), uncomplicated malaria (UM), non-malaria positive healthy community controls (CC), and coma and anemic patients without malaria, as disease controls (DC). Proteomic two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry were used in a discovery cohort to identify plasma proteins that might be discriminatory among these clinical groups. The circulatory levels of identified proteins of interest were quantified by ELISA in a prospective validation cohort. RESULTS The proteome analysis revealed differential abundance of circulatory complement-lysis inhibitor (CLI), also known as Clusterin (CLU). CLI circulatory level was low at hospital admission in all children presenting with CM and recovered to normal level during convalescence (p < 0.0001). At acute onset, circulatory level of CLI in the CM group significantly discriminates CM from the UM, SMA, DC and CC groups. CONCLUSIONS The CLI circulatory level is low in all patients in the CM group at admission, but recovers through convalescence. The level of CLI at acute onset may be a specific discriminatory marker of CM. This work suggests that CLI may play a role in the pathophysiology of CM and may be useful in the diagnosis and follow-up of children presenting with CM.
Collapse
Affiliation(s)
| | - Florence Burté
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steven A Howell
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A Shokunbi
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olugbemiro Sodeinde
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Biobele J Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | | | - Delmiro Fernandez-Reyes
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Abstract
INTRODUCTION Plasma proteomics has been extensively utilized for studies that investigate various disease settings (e.g. cardiovascular disease), as well as to monitor the effect of pharmaceuticals on the plasma proteome (e.g. chemotherapy). However, plasma proteomic studies focusing on children represent a very small proportion of the plasma proteomic studies completed to date. Early disease detection and prevention is critical in pediatrics, as children must live with the disease outcomes for many years and often carry negative outcomes into adulthood. Pediatrics represents an area of plasma proteomics that is about to undergo a significant expansion. Areas covered: This review is based on a PubMed search focusing on five keywords that are plasma, biomarkers, pediatric, proteomics, and children. It is a comprehensive summary of plasma proteomic studies specific to the pediatric patient and discusses aspects such as the clinical setting, sample size, methodological approaches and outlines the significance of the findings. Expert commentary: Plasma proteomics is expanding significantly as a result of major advancements in proteomic technology. This is in synergy with the growing focus on true early disease detection and prevention in early life. We are about to see a new era of advanced medical science built from pediatric proteomics.
Collapse
Affiliation(s)
- Conor McCafferty
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia
| | - Jessica Chaaban
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia
| | - Vera Ignjatovic
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia.,b Department of Paediatrics , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
5
|
Abah SE, Burté F, Marquet S, Brown BJ, Akinkunmi F, Oyinloye G, Afolabi NK, Omokhodion S, Lagunju I, Shokunbi WA, Wahlgren M, Dessein H, Argiro L, Dessein AJ, Noyvert B, Hunt L, Elgar G, Sodeinde O, Holder AA, Fernandez-Reyes D. Low plasma haptoglobin is a risk factor for life-threatening childhood severe malarial anemia and not an exclusive consequence of hemolysis. Sci Rep 2018; 8:17527. [PMID: 30510258 PMCID: PMC6277387 DOI: 10.1038/s41598-018-35944-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Severe Malarial Anemia (SMA), a life-threatening childhood Plasmodium falciparum malaria syndrome requiring urgent blood transfusion, exhibits inflammatory and hemolytic pathology. Differentiating between hypo-haptoglobinemia due to hemolysis or that of genetic origin is key to understand SMA pathogenesis. We hypothesized that while malaria-induced hypo-haptoglobinemia should reverse at recovery, that of genetic etiology should not. We carried-out a case-control study of children living under hyper-endemic holoendemic malaria burden in the sub-Saharan metropolis of Ibadan, Nigeria. We show that hypo-haptoglobinemia is a risk factor for childhood SMA and not solely due to intravascular hemolysis from underlying schizogony. In children presenting with SMA, hypo-haptoglobinemia remains through convalescence to recovery suggesting a genetic cause. We identified a haptoglobin gene variant, rs12162087 (g.-1203G > A, frequency = 0.67), to be associated with plasma haptoglobin levels (p = 8.5 × 10-6). The Homo-Var:(AA) is associated with high plasma haptoglobin while the reference Homo-Ref:(GG) is associated with hypo-haptoglobinemia (p = 2.3 × 10-6). The variant is associated with SMA, with the most support for a risk effect for Homo-Ref genotype. Our insights on regulatory haptoglobin genotypes and hypo-haptoglobinemia suggest that haptoglobin screening could be part of risk-assessment algorithms to prevent rapid disease progression towards SMA in regions with no-access to urgent blood transfusion where SMA accounts for high childhood mortality rates.
Collapse
Affiliation(s)
- Samuel Eneọjọ Abah
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Florence Burté
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Sandrine Marquet
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
- Aix-Marseille University, Inserm Laboratoire TAGC/U1090, Marseille, 13288, France
| | - Biobele J Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Francis Akinkunmi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Gbeminiyi Oyinloye
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Nathaniel K Afolabi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Samuel Omokhodion
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A Shokunbi
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hélia Dessein
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
| | - Laurent Argiro
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
| | - Alain J Dessein
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
| | - Boris Noyvert
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Lilian Hunt
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Greg Elgar
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Olugbemiro Sodeinde
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Anthony A Holder
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Delmiro Fernandez-Reyes
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Ray S, Patel SK, Venkatesh A, Chatterjee G, Ansari NN, Gogtay NJ, Thatte UM, Gandhe P, Varma SG, Patankar S, Srivastava S. Quantitative Proteomics Analysis of Plasmodium vivax Induced Alterations in Human Serum during the Acute and Convalescent Phases of Infection. Sci Rep 2017; 7:4400. [PMID: 28667326 PMCID: PMC5493610 DOI: 10.1038/s41598-017-04447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/15/2017] [Indexed: 12/23/2022] Open
Abstract
The radial distribution of Plasmodium vivax malaria burden has evoked enormous concern among the global research community. In this study, we have investigated the serum proteome alterations in non-severe vivax malaria patients before and during patient recuperation starting from the early febrile to the defervescence and convalescent stages of the infection. We have also performed an extensive quantitative proteomics analysis to compare the serum proteome profiles of vivax malaria patients with low (LPVM) and moderately-high (MPVM) parasitemia with healthy community controls. Interestingly, some of the serum proteins such as Serum amyloid A, Apolipoprotein A1, C-reactive protein, Titin and Haptoglobin, were found to be sequentially altered with respect to increased parasite counts. Analysis of a longitudinal cohort of malaria patients indicated reversible alterations in serum levels of some proteins such as Haptoglobin, Apolipoprotein E, Apolipoprotein A1, Carbonic anhydrase 1, and Hemoglobin subunit alpha upon treatment; however, the levels of a few other proteins did not return to the baseline even during the convalescent phase of the infection. Here we present the first comprehensive serum proteomics analysis of vivax malaria patients with different levels of parasitemia and during the acute and convalescent phases of the infection.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.,Department of Clinical Biochemistry, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Sandip K Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gangadhar Chatterjee
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Naziya N Ansari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nithya J Gogtay
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Urmila M Thatte
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Prajakta Gandhe
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Santosh G Varma
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
7
|
Marquet S, Conte I, Poudiougou B, Argiro L, Dessein H, Couturier C, Burté F, Oumar AA, Brown BJ, Traore A, Afolabi NK, Barry A, Omokhodion S, Shokunbi WA, Sodeinde O, Doumbo O, Fernandez-Reyes D, Dessein AJ. A Functional IL22 Polymorphism (rs2227473) Is Associated with Predisposition to Childhood Cerebral Malaria. Sci Rep 2017; 7:41636. [PMID: 28139719 PMCID: PMC5282577 DOI: 10.1038/srep41636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection. This encephalopathy is characterized by coma and is thought to result from mechanical microvessel obstruction and an excessive activation of immune cells leading to pathological inflammation and blood-brain barrier alterations. IL-22 contributes to both chronic inflammatory and infectious diseases, and may have protective or pathogenic effects, depending on the tissue and disease state. We evaluated whether polymorphisms (n = 46) of IL22 and IL22RA2 were associated with CM in children from Nigeria and Mali. Two SNPs of IL22, rs1012356 (P = 0.016, OR = 2.12) and rs2227476 (P = 0.007, OR = 2.08) were independently associated with CM in a sample of 115 Nigerian children with CM and 160 controls. The association with rs2227476 (P = 0.01) was replicated in 240 nuclear families with one affected child from Mali. SNP rs2227473, in linkage disequilibrium with rs2227476, was also associated with CM in the combined cohort for these two populations, (P = 0.004, OR = 1.55). SNP rs2227473 is located within a putative binding site for the aryl hydrocarbon receptor, a master regulator of IL-22 production. Individuals carrying the aggravating T allele of rs2227473 produced significantly more IL-22 than those without this allele. Overall, these findings suggest that IL-22 is involved in the pathogenesis of CM.
Collapse
Affiliation(s)
- Sandrine Marquet
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Ianina Conte
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
| | - Belco Poudiougou
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Disease, Faculty of Medicine, USTTB, BP 1805, Bamako, Mali
| | - Laurent Argiro
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Hélia Dessein
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Charlène Couturier
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Florence Burté
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
| | - Aboubacar A. Oumar
- Centre des Oeuvres Universitaires, University of Bamako, BP 1805, Bamako, Mali
| | - Biobele J. Brown
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Abdoualye Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Disease, Faculty of Medicine, USTTB, BP 1805, Bamako, Mali
| | - Nathaniel K. Afolabi
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | | | - Samuel Omokhodion
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A. Shokunbi
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olugbemiro Sodeinde
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Ogobara Doumbo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Disease, Faculty of Medicine, USTTB, BP 1805, Bamako, Mali
| | - Delmiro Fernandez-Reyes
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Alain J. Dessein
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| |
Collapse
|
8
|
Venkatesh A, Patel SK, Ray S, Shastri J, Chatterjee G, Kochar SK, Patankar S, Srivastava S. Proteomics ofPlasmodium vivaxmalaria: new insights, progress and potential. Expert Rev Proteomics 2016; 13:771-82. [DOI: 10.1080/14789450.2016.1210515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
The IL17F and IL17RA Genetic Variants Increase Risk of Cerebral Malaria in Two African Populations. Infect Immun 2015; 84:590-7. [PMID: 26667835 DOI: 10.1128/iai.00671-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Cerebral malaria (CM) is a neurological complication of infection with Plasmodium falciparum that is partly caused by cytokine-mediated inflammation. It is not known whether interleukin-17 (IL-17) cytokines, which regulate inflammation, control the development of CM. To evaluate the involvement of IL-17 cytokines in CM, we analyzed 46 common polymorphisms in IL17A, IL17F, and IL17RA (which encodes the common receptor chain of the members of the IL-17 family) in two independent African populations. A case-control study involving 115 Nigerian children with CM and 160 controls from the community (CC) showed that IL17F reference single nucleotide polymorphism (SNP) 6913472 (rs6913472) (P = 0.004; odds ratio [OR] = 3.12), IL17F rs4715291 (P = 0.004; OR = 2.82), IL17RA rs12159217 (P = 0.01; OR = 2.27), and IL17RA rs41396547 (P = 0.026; OR = 3.15) were independently associated with CM. A replication study was performed in 240 nuclear Malian family trios (two parents with one CM child). We replicated the association for 3 SNPs, IL17F rs6913472 (P = 0.03; OR = 1.39), IL17RA rs12159217 (P = 0.01; OR = 1.52), and IL17RA rs41396547 (P = 0.04; OR = 3.50). We also found that one additional SNP, IL17RA rs41433045, in linkage disequilibrium (LD) with rs41396547, was associated with CM in both Nigeria and Mali (P = 0.002; OR = 4.12 in the combined sample). We excluded the possibility that SNPs outside IL17F and IL17RA, in strong LD with the associated SNPs, could account for the observed associations. Furthermore, the results of a functional study indicated that the aggravating GA genotype of IL17F rs6913472 was associated with lower IL-17F concentrations. Our findings show for the first time that IL17F and IL17RA polymorphisms modulate susceptibility to CM and provide evidence that IL-17F protects against CM.
Collapse
|
10
|
do Sambo MR, Penha-Gonçalves C, Trovoada MJ, Costa J, Lardoeyt R, Coutinho A. Quantitative trait locus analysis of parasite density reveals that HbS gene carriage protects severe malaria patients against Plasmodium falciparum hyperparasitaemia. Malar J 2015; 14:393. [PMID: 26445879 PMCID: PMC4596417 DOI: 10.1186/s12936-015-0920-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/26/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Haemoglobin S (HbS) is the gene known to confer the strongest advantage against malaria morbidity and mortality. Multiple HbS effects have been described resulting in protection against parasitaemia and reduction of severe malaria risk. This study aimed to explore HbS protection against severe malaria and Plasmodium falciparum parasitaemia in Angolan children exhibiting different severe malaria syndromes. METHODS A case-control study was designed with 430 malaria cases (n = 288 severe malaria and n = 142 uncomplicated malaria) and 319 uninfected controls, attending a central paediatric hospital in Luanda. Severe malaria syndromes were cerebral malaria (n = 130), severe malaria anaemia (n = 30) and hyperparasitaemia (n = 128). Quantitative trait locus analysis was carried out to study HbS association to parasite densities. RESULTS Previously reported HbS protection against severe malaria was confirmed in case-control analysis (P = 2 × 10(-13)) and corroborated by transmission disequilibrium test (P = 4 × 10(-3)). High parasite density protection conferred by HbS was detectable within severe malaria patients (P = 0.04). Stratifying severe malaria patients according parasite densities, it was found that HbS was highly associated to hyperparasitaemia protection (P = 1.9 × 10(-9)) but did not protect non-hyperparasitaemic children against severe malaria complications, namely cerebral malaria and severe malaria anaemia. Many studies have shown that HbS protects from severe malaria and controls parasite densities but the analysis further suggests that HbS protection against severe malaria syndromes was at a large extent correlated with control of parasitaemia levels. CONCLUSIONS This study supports the hypothesis that HbS confers resistance to hyperparasitaemia in patients exhibiting severe malaria syndromes and highlights that parasitaemia should be taken into account when evaluating HbS protection in severe malaria.
Collapse
Affiliation(s)
- Maria Rosário do Sambo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,Hospital Pediátrico David Bernardino, Luanda, Angola. .,Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola.
| | | | - Maria Jesus Trovoada
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,Centro Nacional de Endemias, São Tomé, São Tomé and Príncipe.
| | - João Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | - Roberto Lardoeyt
- Faculdade de Medicina, Universidade Katyavala Bwila, Benguela, Angola.
| | | |
Collapse
|
11
|
Ray S, Kumar V, Bhave A, Singh V, Gogtay NJ, Thatte UM, Talukdar A, Kochar SK, Patankar S, Srivastava S. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity. J Proteomics 2015; 127:103-13. [PMID: 25982387 DOI: 10.1016/j.jprot.2015.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 11/17/2022]
Abstract
India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amruta Bhave
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaidhvi Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nithya J Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400012, India
| | - Urmila M Thatte
- Department of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400012, India
| | - Arunansu Talukdar
- Department of Medicine, Medical College and Hospital Kolkata, 88, College Street, Kolkata 700073, India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Center, S.P. Medical College, Bikaner 334003, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
12
|
Storm J, Craig AG. Pathogenesis of cerebral malaria--inflammation and cytoadherence. Front Cell Infect Microbiol 2014; 4:100. [PMID: 25120958 PMCID: PMC4114466 DOI: 10.3389/fcimb.2014.00100] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Despite decades of research on cerebral malaria (CM) there is still a paucity of knowledge about what actual causes CM and why certain people develop it. Although sequestration of P. falciparum infected red blood cells has been linked to pathology, it is still not clear if this is directly or solely responsible for this clinical syndrome. Recent data have suggested that a combination of parasite variant types, mainly defined by the variant surface antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1), its receptors, coagulation and host endothelial cell activation (or inflammation) are equally important. This makes CM a multi-factorial disease and a challenge to unravel its causes to decrease its detrimental impact.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK ; Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW), University of Malawi College of Medicine Blantyre, Malawi
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK
| |
Collapse
|
13
|
Association of heme oxygenase 1 with the restoration of liver function after damage in murine malaria by Plasmodium yoelii. Infect Immun 2014; 82:3113-26. [PMID: 24818663 DOI: 10.1128/iai.01598-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The liver efficiently restores function after damage induced during malarial infection once the parasites are cleared from the blood. However, the molecular events leading to the restoration of liver function after malaria are still obscure. To study this, we developed a suitable model wherein mice infected with Plasmodium yoelii (45% parasitemia) were treated with the antimalarial α/β-arteether to clear parasites from the blood and, subsequently, restoration of liver function was monitored. Liver function tests clearly indicated that complete recovery of liver function occurred after 25 days of parasite clearance. Analyses of proinflammatory gene expression and neutrophil infiltration further indicated that hepatic inflammation, which was induced immediately after parasite clearance from the blood, was gradually reduced. Moreover, the inflammation in the liver after parasite clearance was found to be correlated positively with oxidative stress and hepatocyte apoptosis. We investigated the role of heme oxygenase 1 (HO-1) in the restoration of liver function after malaria because HO-1 normally renders protection against inflammation, oxidative stress, and apoptosis under various pathological conditions. The expression and activity of HO-1 were found to be increased significantly after parasite clearance. We even found that chemical silencing of HO-1 by use of zinc protoporphyrin enhanced inflammation, oxidative stress, hepatocyte apoptosis, and liver injury. In contrast, stimulation of HO-1 by cobalt protoporphyrin alleviated liver inflammation and reduced oxidative stress, hepatocyte apoptosis, and associated tissue injury. Therefore, we propose that selective induction of HO-1 in the liver would be beneficial for the restoration of liver function after parasite clearance.
Collapse
|
14
|
Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, Orimadegun AE, Ajetunmobi WA, Afolabi NK, Akinkunmi F, Omokhodion S, Akinbami FO, Shokunbi WA, Kampf C, Pawitan Y, Uhlén M, Sodeinde O, Schwenk JM, Wahlgren M, Fernandez-Reyes D, Nilsson P. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog 2014; 10:e1004038. [PMID: 24743550 PMCID: PMC3990714 DOI: 10.1371/journal.ppat.1004038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/06/2014] [Indexed: 01/21/2023] Open
Abstract
Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria. Why do some malaria-infected children develop severe and lethal forms of the disease, while others only have mild forms? In order to try to find potential answers or clues to this question, we have here analyzed more than 1,000 different human proteins in the blood of more than 500 malaria-infected children from Ibadan in Nigeria, a holoendemic malaria region. We identified several proteins that were present at higher levels in the blood from the children that developed severe malaria in comparison to those that did not. Some of the most interesting identified proteins were muscle specific proteins, which indicate that damaged muscles could be a discriminatory pathologic event in cerebral malaria compared to other malaria cases. These findings will hopefully lead to an increased understanding of the disease and may contribute to the development of clinical algorithms that could predict which children are more at risks to severe malaria. This in turn will be of high value in the management of these children in already overloaded tertiary-care health facilities in urban large densely-populated sub-Saharan cities with holoendemic malaria such as in the case of Ibadan and Lagos.
Collapse
Affiliation(s)
- Julie Bachmann
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Florence Burté
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Setia Pramana
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ianina Conte
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Biobele J. Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Adebola E. Orimadegun
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wasiu A. Ajetunmobi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Nathaniel K. Afolabi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Francis Akinkunmi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Samuel Omokhodion
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Felix O. Akinbami
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Wuraola A. Shokunbi
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Caroline Kampf
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Olugbemiro Sodeinde
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Jochen M. Schwenk
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MW); (DFR); (PN)
| | - Delmiro Fernandez-Reyes
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
- Brighton & Sussex Medical School, Sussex University, Brighton, United Kingdom
- * E-mail: (MW); (DFR); (PN)
| | - Peter Nilsson
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
- * E-mail: (MW); (DFR); (PN)
| |
Collapse
|
15
|
Malaria proteomics: insights into the parasite-host interactions in the pathogenic space. J Proteomics 2013; 97:107-25. [PMID: 24140976 DOI: 10.1016/j.jprot.2013.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/23/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022]
Abstract
Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
|
16
|
Manning L, Davis TME. The mechanistic, diagnostic and prognostic utility of biomarkers in severe malaria. Biomark Med 2013; 7:363-80. [DOI: 10.2217/bmm.13.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Malaria remains an important global cause of severe illness and mortality. This literature review summarizes available data on how biomarkers might be applied to diagnose, prognosticate and provide mechanistic insights in patients with severe malaria. Of the large number of candidate biomarkers, only PfHRP2 has consistently demonstrated clinical utility and, when incorporated into rapid antigen detection tests, has shown diagnostic sensitivity above 95%, which is at least as good as light microscopy. As a quantitative test, PfHRP2 also shows some promise in differentiating severe malarial from non-malarial disease in areas where asymptomatic carriage of malaria parasites is common, and possibly as a tool to estimate sequestered parasite burden and subsequent mortality. Biomarkers such as pLDH and panmalarial antigen have lower sensitivity for non-falciparum malaria in rapid antigen detection tests. There is an urgent need to discover and validate better biomarkers for incorporation into rapid antigen detection tests in countries where Plasmodium vivax is a common cause of severe disease. A large number of host-derived acute-phase reactants, markers of endothelial dysfunction and immune mediators have been proposed as biomarkers. Although they have provided mechanistic insights into the immunopathology of severe malaria, their roles as clinical tools remain uncertain.
Collapse
Affiliation(s)
- Laurens Manning
- School of Medicine & Pharmacology, Fremantle Hospital & Health Service, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy Mark Earls Davis
- School of Medicine & Pharmacology, Fremantle Hospital & Health Service, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood 2013; 121:3016-22. [PMID: 23380741 DOI: 10.1182/blood-2012-10-461418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore, it is important to understand the pathology underlying the development of CM and SMA as opposed to uncomplicated malaria (UM). Increased levels of hepcidin have been associated with UM, but its level and role in severe malarial disease remains to be investigated. Plasma and clinical data were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, Nigeria. Here, we report that hepcidin levels are lower in children with SMA or CM than in those with milder outcome (UM). While different profiles of pro- and anti-inflammatory cytokines were observed between the malaria syndromes, circulatory hepcidin levels remained associated with the levels of its regulatory cytokine interleukin-6 and of the anti-inflammatory cytokine inerleukin-10, irrespective of iron status, anemic status, and general acute-phase response. We propose a role for hepcidin in anti-inflammatory processes in childhood malaria.
Collapse
|