1
|
Dai X, Feng S, Li T. Cold atmospheric plasma control metabolic syndromes via targeting fat mass and obesity-associated protein. Pharmacol Res 2025; 215:107720. [PMID: 40174815 DOI: 10.1016/j.phrs.2025.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Both obesity and metabolic disorders are global medical problems. Driven by prolonged inflammation, obesity increases the risk of developing metabolic syndromes such as fatty liver, diabetes, cardiovascular diseases and cancers. The fat mass and obesity-associated protein (FTO) is an m6A demethylase, elevated activity of which is known to promote the pathogenesis of many metabolic disorders, leading to the establishment of various FTO inhibitors. By combing through intrinsic connections among obesity and the four primary metabolic problems, we attribute their shared pathological cause to prolonged inflammation. By reviewing the roles of FTO in promoting these disorders and the current status of existing FTO inhibitors in treating these syndromes, we underpinned the paramount potential of resolving these clinical issues by targeting FTO and the urgent need of establishing novel FTO inhibitors with maximized efficacy and minimized side effect. Cold atmospheric plasma (CAP) is the fourth state of matter with demonstrated efficacy in treating various diseases associated with chronic inflammation. By introducing the medical characteristics of CAP, we proposed it as a possible solution to unresolved issues of current FTO inhibitors given its anti-inflammation feature and demonstrated clinical safety. We also emphasized the need of intensive investigations in exploring the feasibility of using CAP in treating obesity and associated metabolic syndromes that might function through targeting FTO.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Tian Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| |
Collapse
|
2
|
Chen X, Wang Y, Wang JN, Zhang YC, Zhang YR, Sun RX, Qin B, Dai YX, Zhu HJ, Zhao JX, Zhang WW, Ji JD, Yuan ST, Shen QD, Liu QH. Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Mol Med 2024; 16:294-318. [PMID: 38297099 PMCID: PMC10897304 DOI: 10.1038/s44321-024-00025-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Chen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bing Qin
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yuan-Xin Dai
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jin-Xiang Zhao
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zhou J, Tan Q, Tong J, Tong Z, Wang C, Sun B, Fang M, Lv J. PIAS1 upregulation confers protection against Cerulein-induced acute pancreatitis via FTO downregulation by enhancing sumoylation of Foxa2. Genomics 2023; 115:110693. [PMID: 37532089 DOI: 10.1016/j.ygeno.2023.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE This research discussed the specific mechanism by which PIAS1 affects acute pancreatitis (AP). METHODS PIAS1, Foxa2, and FTO expression was assessed in Cerulein-induced AR42J cells and mice. Loss- and gain-of-function assays and Cerulein induction were conducted in AR42J cells and mice for analysis. The relationship among PIAS1, Foxa2, and FTO was tested. Cell experiments run in triplicate, and eight mice for each animal group. RESULTS Cerulein-induced AP cells and mice had low PIAS1 and Foxa2 and high FTO. Cerulein induced pancreatic injury in mice and inflammation and oxidative stress in pancreatic tissues, which could be reversed by PIAS1 or Foxa2 upregulation or FTO downregulation. PIAS1 elevated SUMO modification of Foxa2 to repress FTO transcription. FTO upregulation neutralized the ameliorative effects of PIAS1 or Foxa2 upregulation on Cerulein-induced AR42J cell injury, inflammation, and oxidative stress. CONCLUSION PIAS1 upregulation diminished FTO transcription by increasing Foxa2 SUMO modification, thereby ameliorating Cerulein-induced AP.
Collapse
Affiliation(s)
- Jiandang Zhou
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Qiao Tan
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Jinxue Tong
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Zhekuan Tong
- Material Supply Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Chunlu Wang
- Department of Medical Administration, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Bei Sun
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Min Fang
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Jiachen Lv
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
4
|
Asuquo EA, Nwodo OFC, Assumpta AC, Orizu UN, Oziamara ON, Solomon OA. FTO gene expression in diet-induced obesity is downregulated by Solanum fruit supplementation. Open Life Sci 2022; 17:641-658. [PMID: 35800074 PMCID: PMC9202533 DOI: 10.1515/biol-2022-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
The Fat Mass and Obesity-associated (FTO) gene has been shown to play an important role in developing obesity, manifesting in traits such as increased body mass index, increased waist-to-hip ratio, and the distribution of adipose tissues, which increases the susceptibility to various metabolic syndromes. In this study, we evaluated the impact of fruit-based diets of Solanum melongena (SMF) and Solanum aethiopicum fruits (SAF) on the FTO gene expression levels in a high-fat diet (HFD)-induced obese animals. Our results showed that the mRNA level of the FTO gene was downregulated in the hypothalamus, and white and brown adipose tissue following three and six weeks of treatment with SMF- and SAF-based diets in the HFD-induced obese animals. Additionally, the Solanum fruit supplementation exhibited a curative effect on obesity-associated abrasions on the white adipose tissue (WAT), hypothalamus, and liver. Our findings collectively suggest the anti-obesity potential of SMF and SAF via the downregulation of the FTO gene.
Collapse
Affiliation(s)
- Edeke Affiong Asuquo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | | | - Anosike Chioma Assumpta
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Uchendu Nene Orizu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Okoro Nkwachukwu Oziamara
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Odiba Arome Solomon
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| |
Collapse
|
5
|
Li X, Xie X, Gu Y, Zhang J, Song J, Cheng X, Gao Y, Ai Y. Fat mass and obesity-associated protein regulates tumorigenesis of arecoline-promoted human oral carcinoma. Cancer Med 2021; 10:6402-6415. [PMID: 34378866 PMCID: PMC8446412 DOI: 10.1002/cam4.4188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022] Open
Abstract
Arecoline, a major alkaloid within areca nut extract, is recognized as the primary active carcinogen promoting oral squamous cell carcinoma (OSCC) pathological development. Dysregulation of N6-methyladenosine (m6A) methyltransferase components (e.g., Fat mass and obesity-associated protein [FTO] and methyltransferase-like 3 [METTL3]) are closely associated with multiple cancer progression, including oral cancer. However, the biological function role of FTO in arecoline-induced oral cancer is largely unknown. We identified that FTO was significantly upregulated in OSCC tissues from patients with areca nut chewing habits and chronic arecoline-treated OSCC cell lines. Depletion of FTO attenuated the arecoline-promoted stemness, chemoresistance, and oncogenicity of OSCC cells. Finally, we revealed that FTO was negatively regulated by a transcription factor forkhead box protein A2 (FOXA2) in OSCC cells. This study, for the first time, demonstrated that FTO plays an oncogenic role in arecoline-induced OSCC progression. Thus, developing new therapeutic agents targeting FTO may serve as a promising method to treatment OSCC patients, especially those with areca nut chewing habits.
Collapse
Affiliation(s)
- Xia Li
- Department of Oral MedicineFoshan Stomatological HospitalMedical College of Foshan UniversityFoshanChina
| | - Xiaoli Xie
- Department of EndodonticsHunan Xiangya Stomatological HospitalCentral South UniversityChangshaChina
| | - Yangcong Gu
- Department of Oral Maxillofacial SurgeryFoshan Stomatological HospitalMedical College of Foshan UniversityFoshanChina
| | - Jianming Zhang
- Department of Preventive DentistryFoshan Stomatological HospitalMedical College of Foshan UniversityFoshanChina
| | - Jiang Song
- Department of Oral Maxillofacial SurgeryFoshan Stomatological HospitalMedical College of Foshan UniversityFoshanChina
| | - Xiufeng Cheng
- Department of Oral MedicineFoshan Stomatological HospitalMedical College of Foshan UniversityFoshanChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yilong Ai
- Department of Oral MedicineFoshan Stomatological HospitalMedical College of Foshan UniversityFoshanChina
| |
Collapse
|
6
|
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther 2020; 28:141-155. [PMID: 32655129 DOI: 10.1038/s41417-020-0193-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
As one of the deadliest malignancies, gastric cancer (GC) is often accompanied by a low 5-year survival following initial diagnosis, which accounts for a substantial proportion of cancer-related deaths each year worldwide. Altered epigenetic modifications of cancer oncogenes and tumor suppressor genes emerge as novel mechanisms have been implicated the pathogenesis of GC. In the current study, we aim to elucidate whether histone deacetylase 3 (HDAC3) exerts oncogenic role in GC, and investigate the possible mechanism. Initially, we collected 64 paired cancerous and noncancerous tissues surgically resected from GC patients. Positive expression of HDAC3, FTO, and MYC in the tissues was measured using Immunohistochemistry. Meanwhile, GC cell line BGC-823/AGS was selected and treated with lentivirus vectors for alteration of HDAC3, FTO, or FOXA2 expressions, followed by detection on mRNA and protein levels of HDAC3, FOXA2, FTO, and MYC using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The results demonstrated that the expressions of HDAC3, FTO and MYC were upregulated, while FOXA2 expression was downregulated in GC tissues and cells. After that, the cell viability, migration, and invasion of GC cells were assessed by CCK-8 and Transwell assays, revealing that HDAC3 accelerated GC cell viability, migration and invasion by degrading FOXA2. Subsequently, the binding relationship among HDAC3, FOXA2, FTO, and MYC was assessed by assays of immunoprecipitation, dual-luciferase reporter gene, and chromatin immunoprecipitation assay. Methylation of m6A mRNA in GC cells was detected via gene-specific m6A qPCR and dot-blot assays. The transcription factor FOXA2 was found to bind to the FTO gene promoter and decreased its expression, while FTO stabilized MYC mRNA by reducing m6A methylation of MYC in GC cells. In addition, HDAC3 was observed to maintain the FTO/m6A/MYC signaling and regulated GC progression, which was also supported by in vivo animal study data of GC cell tumorigenesis in nude mice. These key observations uncover the tumor-initiating activities of HDAC3 in GC through its regulation on FOXA2-mediated FTO/m6A/MYC axis, highlighting the potential of therapeutically targeting epigenetic modifications to combat GC.
Collapse
|
7
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
8
|
CCAAT/enhancer-binding protein α is a crucial regulator of human fat mass and obesity associated gene transcription and expression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:406909. [PMID: 24877091 PMCID: PMC4022073 DOI: 10.1155/2014/406909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/05/2014] [Indexed: 11/17/2022]
Abstract
Several susceptibility loci have been reported associated with obesity and T2DM in GWAS. Fat mass and obesity associated gene (FTO) is the first gene associated with body mass index (BMI) and risk for diabetes in diverse patient populations. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. While much is known about the epigenetic mutations contributing to obesity and T2DM, less is certain with the expression regulation of FTO gene. In this study, a highly conserved canonical C/EBPα binding site was located around position −45~−54 bp relative to the human FTO gene transcriptional start site. Site-directed mutagenesis of the putative C/EBPα binding sites decreased FTO promoter activity. Overexpression and RNAi studies also indicated that C/EBPα was required for the expression of FTO. Chromatin immunoprecipitation (ChIP) experiment was carried out and the result shows direct binding of C/EBPα to the putative binding regions in the FTO promoter. Collectively, our data suggest that C/EBPα may act as a positive regulator binding to FTO promoter and consequently, activates the gene transcription.
Collapse
|
9
|
Liu M, Li M, Wang S, Xu Y, Lan X, Li Z, Lei C, Yang D, Jia Y, Chen H. Association analysis of bovine Foxa2 gene single sequence variant and haplotype combinations with growth traits in Chinese cattle. Gene 2014; 536:385-92. [DOI: 10.1016/j.gene.2013.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 10/25/2022]
|
10
|
Sebert S, Salonurmi T, Keinänen-Kiukaanniemi S, Savolainen M, Herzig KH, Symonds ME, Järvelin MR. Programming effects of FTO in the development of obesity. Acta Physiol (Oxf) 2014; 210:58-69. [PMID: 24219661 DOI: 10.1111/apha.12196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/10/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022]
Abstract
It is becoming increasingly recognized that early-life nutritional, metabolic and environmental factors can have a long-term impact on the early onset of obesity, type 2 diabetes and cardiovascular diseases. Numerous experimental and epidemiological observations support the concept that an individual's response to their adult lifestyle and nutritional environment depends not only on their genetic susceptibility but also on their previous early-life experiences. The current research challenge is to determine the primary pathways contributing to 'non- or epi-genetic' causes of excess adult weight gain and adiposity. Evidence from the fields of genetic epidemiology, life course modelling and diet-induced foetal programming all support a role for the FTO gene in this complex biological interaction. It may provide a missing link in the developmental regulation of energy metabolism. Our review therefore considers the role of the FTO gene in the early-life determination of body weight, body composition and energy balance. We will summarize current knowledge on FTO biology combining human genetic epidemiology, molecular models and findings from animal studies. Notably, we will focus on the role of FTO in energy balance in humans, the importance of FTO polymorphisms in childhood growth and the impact of foetal nutrition. Ultimately, we propose a new hypothesis for future research designed to understand the role of FTO in setting gene expression in metabolically active tissues.
Collapse
Affiliation(s)
- S. Sebert
- Faculty of Medicine; Institute of Health Sciences; Centre For Life-Course Epidemiology; University of Oulu; Oulu Finland
- Biocenter Oulu; University of Oulu; Oulu Finland
| | - T. Salonurmi
- Biocenter Oulu; University of Oulu; Oulu Finland
- Institute of Clinical Medicine; Department of Internal Medicine, and Medical Research Centre; University of Oulu; Oulu Finland
| | - S. Keinänen-Kiukaanniemi
- Faculty of Medicine; Institute of Health Sciences; Centre For Life-Course Epidemiology; University of Oulu; Oulu Finland
| | - M. Savolainen
- Biocenter Oulu; University of Oulu; Oulu Finland
- Institute of Clinical Medicine; Department of Internal Medicine, and Medical Research Centre; University of Oulu; Oulu Finland
| | - K.-H. Herzig
- Biocenter Oulu; University of Oulu; Oulu Finland
- Institute of Biomedicine; Department of Physiology; University of Oulu; Oulu Finland
| | - M. E. Symonds
- Early Life Nutrition Research Unit; Academic Division of Child Health, Obstetrics & Gynaecology; School of Medicine; Queen's Medical Centre; University Hospital; The University of Nottingham; Nottingham UK
| | - M.-R. Järvelin
- Faculty of Medicine; Institute of Health Sciences; Centre For Life-Course Epidemiology; University of Oulu; Oulu Finland
- Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Epidemiology and Biostatistics; MRC Health Protection Agency (HPA) Centre for Environment and Health; School of Public Health; Imperial College; London UK
- Unit of Primary Care; Oulu University Hospital; Oulu Finland
- Department of Children and Young People and Families; National Institute for Health and Welfare; Oulu Finland
| |
Collapse
|
11
|
Liu Q, Li H, Wang N, Chen H, Jin Q, Zhang R, Wang J, Chen Y. Polymorphism of rs1836882 in NOX4 gene modifies associations between dietary caloric intake and ROS levels in peripheral blood mononuclear cells. PLoS One 2013; 8:e85660. [PMID: 24392026 PMCID: PMC3877383 DOI: 10.1371/journal.pone.0085660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/29/2013] [Indexed: 12/19/2022] Open
Abstract
Excessive caloric intake is a contributing risk factor for human metabolic disorders. Caloric restriction may prolong a person's life by lowering the incidence of deadly diseases. Reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMC) have been associated with the biochemical basis of the relationship between caloric intake and pathophysiologic processes. Polymorphisms associated with ROS generation genes are being increasingly implicated in inter-individual responses to daily caloric intake alterations. In the current study, a single nucleotide polymorphism, rs1836882, in the nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) gene's promoter region was found to modulate associations between dietary caloric intake and ROS levels in PBMC. Based on rs1836882, 656 Chinese Han participants were classified into CC, CT and TT genotypes. ROS levels in PBMC were significantly higher in the CC or CT genotypes compared with the TT genotype with the same increases in daily caloric intake. Using an electrophoretic mobility shift assay, NOX4 promoter region with rs1836882 (T) was observed to have a higher affinity for hepatocyte nuclear factor gamma (HNF3γ) protein than rs1836882 (C). HNF3γ protein over-expression decreased NOX4 gene transcriptional activity in the TT genotype more than in the CC genotype (5.68% vs. 2.12%, P<0.05) in a dual luciferase reporter assay. By silencing the NOX4 gene using small interfering RNA or over-expressing HNF3γ using an expression plasmid, serum from high dietary caloric intake participants decreased ROS levels in PBMC of the TT genotype more than in the CC or CT genotype via HNF3γ down-regulating the NOX4 gene expression signaling pathway. This is the first study to report on the functions of phenotypes of rs1836882 in the NOX4 gene, and it suggests rs1836882 as a candidate gene for interpreting inter-individual ROS levels differences in PBMC induced by alterations in daily caloric intake.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gerontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Cardiology, the Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Ningfu Wang
- Department of Cardiology, the Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Huaihong Chen
- Department of Gerontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qihui Jin
- Department of Gerontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoyu Zhang
- Department of Gerontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- Department of Gerontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Chen
- Department of Gerontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|