1
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Liu Y, Chen YC, Yan B, Liu F. Suppressing Kaposi's Sarcoma-Associated Herpesvirus Lytic Gene Expression and Replication by RNase P Ribozyme. Molecules 2023; 28:molecules28083619. [PMID: 37110852 PMCID: PMC10142857 DOI: 10.3390/molecules28083619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Kaposi's sarcoma, an AIDS-defining illness, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus. In this study, we engineered ribozymes derived from ribonuclease P (RNase P) catalytic RNA with targeting against the mRNA encoding KSHV immediate early replication and transcription activator (RTA), which is vital for KSHV gene expression. The functional ribozyme F-RTA efficiently sliced the RTA mRNA sequence in vitro. In cells, KSHV production was suppressed with ribozyme F-RTA expression by 250-fold, and RTA expression was suppressed by 92-94%. In contrast, expression of control ribozymes hardly affected RTA expression or viral production. Further studies revealed both overall KSHV early and late gene expression and viral growth decreased because of F-RTA-facilitated suppression of RTA expression. Our results indicate the first instance of RNase P ribozymes having potential for use in anti-KSHV therapy.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Yan B, Liu Y, Chen YC, Liu F. A RNase P Ribozyme Inhibits Gene Expression and Replication of Hepatitis B Virus in Cultured Cells. Microorganisms 2023; 11:microorganisms11030654. [PMID: 36985227 PMCID: PMC10058342 DOI: 10.3390/microorganisms11030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hepatitis B virus (HBV), an international public health concern, is a leading viral cause of liver disease, such as hepatocellular carcinoma. Sequence-specific ribozymes derived from ribonuclease P (RNase P) catalytic RNA are being explored for gene targeting applications. In this study, we engineered an active RNase P ribozyme, M1-S-A, targeting the overlapping region of HBV S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA), all deemed essential for viral infection. Ribozyme M1-S-A cleaved the S mRNA sequence efficiently in vitro. We studied the effect of RNase P ribozyme on HBV gene expression and replication using the human hepatocyte HepG2.2.15 culture model that harbors an HBV genome and supports HBV replication. In these cultured cells, the expression of M1-S-A resulted in a reduction of more than 80% in both HBV RNA and protein levels and an inhibition of about 300-fold in the capsid-associated HBV DNA levels when compared to the cells that did not express any ribozymes. In control experiments, cells expressing an inactive control ribozyme displayed little impact on HBV RNA and protein levels, and on capsid-associated viral DNA levels. Our study signifies that RNase P ribozyme can suppress HBV gene expression and replication, implying the promise of RNase P ribozymes for anti-HBV therapy.
Collapse
Affiliation(s)
- Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- Correspondence: ; Tel.: +1-(510)-643-2436; Fax: +1-(510)-643-9955
| |
Collapse
|
4
|
Small RNAs to treat human immunodeficiency virus type 1 infection by gene therapy. Curr Opin Virol 2019; 38:10-20. [PMID: 31112858 DOI: 10.1016/j.coviro.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Current drug therapies for human immunodeficiency virus type 1 (HIV) infection are effective in preventing progression to acquired immune deficiency syndrome but do not eliminate the infection and are associated with unwanted side effects. A potential alternative is to modify the genome of patient cells via gene therapy to confer HIV resistance to these cells. Small RNAs are the largest and most diverse group of anti-HIV genes that have been developed for engineering HIV resistant cells. In this review, we summarize progress on the three major classes of anti-HIV RNAs including short hairpin RNAs that use the RNA interference pathway, RNA decoys and aptamers that bind specifically to a protein or RNA as well as ribozymes that mediate cleavage of specific targets. We also review methods used for the delivery of these genes into the genome of patient cells and provide some perspectives on the future of small RNAs in HIV therapy.
Collapse
|
5
|
Sun X, Chen W, He L, Sheng J, Liu Y, Vu GP, Yang Z, Li W, Trang P, Wang Y, Hai R, Zhu H, Lu S, Liu F. Inhibition of human cytomegalovirus immediate early gene expression and growth by a novel RNase P ribozyme variant. PLoS One 2017; 12:e0186791. [PMID: 29059242 PMCID: PMC5653336 DOI: 10.1371/journal.pone.0186791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA. Compared to F-M1-IE that is the ribozyme derived from the wild type RNase P catalytic RNA sequence, the functional variant F-R228-IE cleaved the target mRNA sequence in vitro at least 100 times more efficiently. In cultured cells, expression of F-R228-IE resulted in IE1/IE2 expression reduction by 98–99% and in HCMV production reduction by 50,000 folds. In contrast, expression of F-M1-IE resulted in IE1/IE2 expression reduction by less than 80% and in viral production reduction by 200 folds. Studies of the ribozyme-mediated antiviral effects in cultured cells suggest that overall viral early and late gene expression and viral growth were inhibited due to the ribozyme-mediated reduction of HCMV IE1 and IE2 expression. Our results provide direct evidence that engineered RNase P ribozymes, such as F-R228-IE, can serve as a novel class of inhibitors for the treatment and prevention of HCMV infection. Moreover, these results suggest that F-R228-IE, with novel and unique mutations at the catalytic domain to enhance ribozyme activity, can be a candidate for the construction of effective agents for anti-HCMV therapy.
Collapse
Affiliation(s)
- Xu Sun
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weijie Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lingling He
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Yujun Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Zhu Yang
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yu Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Rong Hai
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| | - Fenyong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
6
|
Mori T, Nakamura K, Masaoka K, Fujita Y, Morisada R, Mori K, Tobimatsu T, Sera T. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein-staphylococcal nuclease hybrid. Biochem Biophys Res Commun 2016; 479:736-740. [PMID: 27693585 DOI: 10.1016/j.bbrc.2016.09.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022]
Abstract
Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to construct an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms.
Collapse
Affiliation(s)
- Tomoaki Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kento Nakamura
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Masaoka
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Fujita
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Ryosuke Morisada
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Sera
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
7
|
RNase P-Mediated Sequence-Specific Cleavage of RNA by Engineered External Guide Sequences. Biomolecules 2015; 5:3029-50. [PMID: 26569326 PMCID: PMC4693268 DOI: 10.3390/biom5043029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
The RNA cleavage activity of RNase P can be employed to decrease the levels of specific RNAs and to study their function or even to eradicate pathogens. Two different technologies have been developed to use RNase P as a tool for RNA knockdown. In one of these, an external guide sequence, which mimics a tRNA precursor, a well-known natural RNase P substrate, is used to target an RNA molecule for cleavage by endogenous RNase P. Alternatively, a guide sequence can be attached to M1 RNA, the (catalytic) RNase P RNA subunit of Escherichia coli. The guide sequence is specific for an RNA target, which is subsequently cleaved by the bacterial M1 RNA moiety. These approaches are applicable in both bacteria and eukaryotes. In this review, we will discuss the two technologies in which RNase P is used to reduce RNA expression levels.
Collapse
|
8
|
RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins. Viruses 2015; 7:3345-60. [PMID: 26114473 PMCID: PMC4517104 DOI: 10.3390/v7072775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022] Open
Abstract
An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.
Collapse
|
9
|
Abstract
Ribozymes are structured RNA molecules that act as catalysts in different biological reactions. From simple genome cleaving activities in satellite RNAs to more complex functions in cellular protein synthesis and gene regulation, ribozymes play important roles in all forms of life. Several naturally existing ribozymes have been modified for use as therapeutics in different conditions, with HIV-1 infection being one of the most studied. This chapter summarizes data from different preclinical and clinical studies conducted to evaluate the potential of ribozymes to be used in HIV-1 therapies. The different ribozyme motifs that have been modified, as well as their target sites and expression strategies, are described. RNA conjugations used to enhance the antiviral effect of ribozymes are also presented and the results from clinical trials conducted to date are summarized. Studies on anti-HIV-1 ribozymes have provided valuable information on the optimal expression strategies and clinical protocols for RNA gene therapy and remain competitive candidates for future therapy.
Collapse
|
10
|
Scarborough RJ, Lévesque MV, Boudrias-Dalle E, Chute IC, Daniels SM, Ouellette RJ, Perreault JP, Gatignol A. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e178. [PMID: 25072692 PMCID: PMC4121520 DOI: 10.1038/mtna.2014.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/03/2014] [Indexed: 12/18/2022]
Abstract
Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.
Collapse
Affiliation(s)
- Robert J Scarborough
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Michel V Lévesque
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Etienne Boudrias-Dalle
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Ian C Chute
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sylvanne M Daniels
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | | | - Jean-Pierre Perreault
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anne Gatignol
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada [3] Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Yang Z, Vu GP, Qian H, Chen YC, Wang Y, Reeves M, Zen K, Liu F. Engineered RNase P ribozymes effectively inhibit human cytomegalovirus gene expression and replication. Viruses 2014; 6:2376-91. [PMID: 24932966 PMCID: PMC4074932 DOI: 10.3390/v6062376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
RNase P ribozyme can be engineered to be a sequence-specific gene-targeting agent with promising application in both basic research and clinical settings. By using an in vitro selection system, we have previously generated RNase P ribozyme variants that have better catalytic activity in cleaving an mRNA sequence than the wild type ribozyme. In this study, one of the variants was used to target the mRNA encoding human cytomegalovirus (HCMV) essential transcription factor immediate-early protein 2 (IE2). The variant was able to cleave IE2 mRNA in vitro 50-fold better than the wild type ribozyme. A reduction of about 98% in IE2 expression and a reduction of 3500-fold in viral production was observed in HCMV-infected cells expressing the variant compared to a 75% reduction in IE2 expression and a 100-fold reduction in viral production in cells expressing the ribozyme derived from the wild type sequence. These results suggest that ribozyme variants that are selected to be highly active in vitro are also more effective in inhibiting the expression of their targets in cultured cells. Our study demonstrates that RNase P ribozyme variants are efficient in reducing HCMV gene expression and growth and are potentially useful for anti-viral therapeutic application.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| | - Hua Qian
- Department of Gynecology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, China.
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China.
| | - Michael Reeves
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Ke Zen
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Mao X, Li X, Mao X, Huang Z, Zhang C, Zhang W, Wu J, Li G. Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P. Virol J 2014; 11:86. [PMID: 24885776 PMCID: PMC4038377 DOI: 10.1186/1743-422x-11-86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. RESULTS By analyzing the sequence and structure of the 5' untranslated region of HCV RNA, a putative cleavage site (C67-G68) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C67) was constructed by linking a custom guide sequence (GS) to the 3' termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a "disabled" ribozyme (i.e. M1GS-HCV/C67*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C67) showed almost the same bioactivities with M1GS-HCV/C67, demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. CONCLUSION Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjun Zhang
- Vaccine Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | | | | |
Collapse
|