1
|
Ho YF, Yajit NLM, Shiau JY, Malek SNA, Shyur LF, Karsani SA. Changes in the Proteome Profile of A549 Cells Following Helichrysetin-Induced Apoptosis Suggest the Involvement of DNA Damage Response and Cell Cycle Arrest-Associated Proteins. Appl Biochem Biotechnol 2023; 195:6867-6880. [PMID: 36947367 DOI: 10.1007/s12010-023-04384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Our previous findings demonstrated that Helichrysetin possessed promising anti-cancer activity. It was able to induce apoptosis in the A549 cell line. However, its mechanism of action is unknown. The present study aimed to unravel possible underlying molecular mechanisms of helichrysetin-induced apoptosis in A549 (human lung carcinoma) cells using comparative quantitative proteomics (iTRAQ labeled), followed by an exhaustive bioinformatics analysis. Our results suggested that DNA damage response (DDR) and cell cycle arrest were responsible for lung cancer cell death with helichrysetin treatment. Among proteins that changed in abundance were Nrf2 and HMOX1. They are oxidative stress-related proteins and were increased in abundance. BRAT1 was also increased in abundance, suggesting an increase in DNA damage repair, indicating the occurrence of DNA damage due to oxidative stress. However, several essential DDR downstream proteins such as p-ATM, BRCA1, FANCD2, and Rb1 that would further increase DNA damage were found to be dramatically decreased in relative abundance. Cell cycle-related proteins, p53, p21, and cyclin D1, were increased while cyclin A, cyclin E, and cdk2 were decreased. This is predicted to facilitate S-phase arrest. Furthermore, excessive DNA damage and prolonged arrest would in turn result in the induction of mitochondrial-mediated apoptosis. Based on these observations, we postulate that the effects of helichrysetin were in part via the suppression of DNA damage response which led to DNA damage and prolonged cell cycle arrest. Subsequently, this event initiated mitochondrial-mediated apoptosis in A549 lung cancer cells.
Collapse
Affiliation(s)
- Yen Fong Ho
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Liana Mat Yajit
- University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeng-Yuan Shiau
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Application of Bioinformatics Tools for the Prediction of Helper MicroRNAs for Improvement of Oncolytic Virus Efficacy. Cell Microbiol 2022. [DOI: 10.1155/2022/5756131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose. Oncolytic Reoviruses, as a self-limiting virus, can be used in cancer treatment, because they have the ability to replicate in tumor cells selectively and destroy them. Studies show that some immune response proteins may interfere with the virus life cycle. So, the main aim of this bioinformatic study is to check which microRNA is able to target some reovirus inhibitory proteins. Experimental Design. By use of online bioinformatics software, the microRNAs that could target inhibitory genes were selected. Then, other features like content ++ score and cell type were checked and finally the eligible microRNAs were determined. Results. After choosing 15 inhibitory proteins, analysis was performed and finally 37 microRNAs which could target inhibitory proteins in colorectal cell lines were selected. In the end, by investigation of web-based tools, just two microRNAs were finalized. Conclusions and Clinical Relevance. This bioinformatic study shows that microRNA-140 and microRNA-92a have the potential to target some inhibitory proteins which interfere with oncolytic Reovirus replication and it may help in the optimal use of this virus as a cancer treatment. Because selective reproduction of Reovirus in tumor cells, as a nonchemical therapy, can be a good way to overcome this disease with broad advantages.
Collapse
|
3
|
Zheng P, Liu C, Wu Y, Xu R, Chen Y, Hu F, Chen Z, Zhang T. Quantitative proteomics analysis reveals novel insights into mechanisms of action of disulfiram (DSF). Proteomics Clin Appl 2021; 16:e2100031. [PMID: 34542231 DOI: 10.1002/prca.202100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Disulfiram (DSF) has been proven safe and shows the promising antitumor effect in preclinical studies. However, the precise mechanism of DSF on tumor is rarely reported. This study aims to fully understand the mechanism of action of DSF with a systems perspective in anticancer effects. EXPERIMENTAL DESIGN SILAC-based quantitative proteomics strategy was used to systematically identify differential expression proteins (DEPs) after DSF treatment in HeLa cells. Bioinformatical analysis (PANTHER, DAVID, and STRING) were performed to characterize biological functions of DEPs. Functional studies were performed to explore underlying mechanisms of DSF in cancer cells. RESULTS In total, 201 proteins were dysregulated significantly after DSF exposure. Functional studies of hexokinase 2 (HK2), which catalyzed the first irreversible enzymatic step in glucose metabolism, revealed that various phenotypic effects observed after DSF treatment in cancer cells, at least partly, through the regulation of HK2 expression. CONCLUSIONS AND CLINICAL RELEVANCE By correlating the proteomics data with these functional studies, the current results provided novel insights into the mechanism underlying DSF function in cancer cells. Meanwhile, these provided theoretical basis for the new use of old drugs in clinical therapy.
Collapse
Affiliation(s)
- Peng Zheng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China.,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Chenglinzi Liu
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Yaoqin Wu
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Ruifeng Xu
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Fan Hu
- Third institute of Oceanography, State Administration, Xiamen, China
| | - Zhuo Chen
- College of Life Science, Shandong Provincial Key Laboratory of Plant Stress, Jinan, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China.,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Jiang RD, Li B, Liu XL, Liu MQ, Chen J, Luo DS, Hu BJ, Zhang W, Li SY, Yang XL, Shi ZL. Bat mammalian orthoreoviruses cause severe pneumonia in mice. Virology 2020; 551:84-92. [PMID: 32859395 PMCID: PMC7308043 DOI: 10.1016/j.virol.2020.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Mammalian orthoreovirus (MRV) infections are ubiquitous in mammals. Increasing evidence suggests that some MRVs can cause severe respiratory disease and encephalitis in humans and other animals. Previously, we isolated six bat MRV strains. However, the pathogenicity of these bat viruses remains unclear. In this study, we investigated the host range and pathogenicity of 3 bat MRV strains (WIV2, 3 and 7) which represent three serotypes. Our results showed that all of them can infect cell lines from different mammalian species and displayed different replication efficiency. The BALB/c mice infected by bat MRVs showed clinical symptoms with systematic infection especially in lung and intestines. Obvious tissue damage were found in all infected lungs. One of the strains, WIV7, showed higher replication efficiency in vitro and vivo and more severe pathogenesis in mice. Our results provide new evidence showing potential pathogenicity of bat MRVs in animals and probable risk in humans. Bat MRVs show wide cell tropism in vivo and in vitro and have a high replication efficiency in lung and intestines. Mice infected by bat MRVs showed clinical illness, but without death. The higher replication in brain, lung damage and weak innate immune response may be responsible for severe diseases for WIV7. The results indicate the potential pathogenicity of bat MRV to human and animals.
Collapse
Affiliation(s)
- Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiang-Ling Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Sheng Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Jie Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
5
|
Liu R, Wang Y, Li B, Wang H, Guan F, Tan Z, Li X. Screening differentially expressed proteins from co-cultured hematopoietic cells and bone marrow-derived stromal cells by quantitative proteomics (SILAC) method. Clin Proteomics 2019; 16:32. [PMID: 31360146 PMCID: PMC6637644 DOI: 10.1186/s12014-019-9249-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Bone marrow stromal cells protect hematopoietic cells and provide drug resistance by delivering bunch of variable proteins. Thus, alterations of protein expression are typically associated with cell–cell signal transduction and regulation of cellular functions. Methods Co-culture models of bone marrow stromal cells and hematopoietic cells are often used in studies of their crosstalk. Studies of altered protein expression initiated by stromal cell/hematopoietic cell interactions are an important new trend in microenvironmental research. There has been no report to date of global quantitative proteomics analysis of crosstalk between hematopoietic cells and stromal cells. In this study, we analyzed quantitative proteomes in a co-culture system of stromal HS5 cells and hematopoietic KG1a cells, and simultaneously tracked differentially expressed proteins in two types of cells before and after co-culture by stable isotope labeling by amino acids in cell culture (SILAC) method. Results We have shown that in co-cultured KG1a, 40 proteins (including CKAP4, LMNA, and SERPINB2) were upregulated and 64 proteins (including CD44, CD99, and NCAM1) were downregulated relative to KG1a alone. We utilized IPA analysis to discover that the NOD-like receptor signaling pathway was upregulated, whereas platelet activation was downregulated in co-cultured KG1a cells. Furthermore, 95 proteins (including LCP1, ARHGAP4, and UNCX) were upregulated and 209 proteins (including CAPG, FLNC, and MAP4) were downregulated in co-cultured HS5 relative to HS5 alone. The tight junction pathway was downregulated and glycolysis/gluconeogenesis pathway was dysfunctional in co-cultured HS5. Most importantly, the significantly differentially expressed proteins can also be confirmed using different co-cultured cell lines. Conclusion Altogether, we recommend such quantitative proteomics approach for the studies of the hematopoietic–stroma cross-talk, differentially expressed proteins and related signaling pathways identification. The differentially expressed proteins identified from this current SILAC method will provide a useful basis for ongoing studies of crosstalk between stromal cells and hematopoietic cells in co-culture systems. All these result suggested our ongoing studies can focus on the mechanisms underlying CKAP4 increase and CD44 decrease in co-cultured hematopoietic cells, and the increase of LCP1 and decrease of CAPG in co-cultured stromal cell. The proteomic profiles from the KG1a/stromal cell co-culture system give new molecular insights into the roles of these cells in MDS pathophysiology and related bone disease. Electronic supplementary material The online version of this article (10.1186/s12014-019-9249-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Liu
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi China
| | - Bingxin Li
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Hui Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi China
| | - Feng Guan
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Zengqi Tan
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Xiang Li
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China.,3Wuxi School of Medicine, Jiangnan University, Wu'xi, China
| |
Collapse
|
6
|
Glover KKM, Gao A, Zahedi-Amiri A, Coombs KM. Vero Cell Proteomic Changes Induced by Zika Virus Infection. Proteomics 2019; 19:e1800309. [PMID: 30578658 DOI: 10.1002/pmic.201800309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/06/2018] [Indexed: 12/12/2022]
Abstract
The re-emergence and the recent spread of the Zika virus (ZIKV) has raised significant global concerns due to lack of information in patient diagnosis and management. Thus, in addition to gaining more basic information about ZIKV biology, appropriate interventions and management strategies are being sought to control ZIKV-associated diseases and its spread. This study's objective is to identify host cell proteins that are significantly dysregulated during ZIKV infection. SOMAScan, a novel aptamer-based assay, is used to simultaneously screen >1300 host proteins to detect ZIKV-induced host protein dysregulation at multiple time points during infection. A total of 125 Vero cell host proteins, including cytokines such as CXCL11 and CCL5, interferon stimulated gene 15, and translation initiation factors EIF5A and EIF4G2, are significantly dysregulated after ZIKV infection. Bioinformatic analyses of 77 host proteins, that are significantly dysregulated ≥1.25-fold, identify several activated biological processes, including the JAK/STAT, Tec kinase, and complement cascade pathways.
Collapse
Affiliation(s)
- Kathleen K M Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E OJ9, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E OJ9, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E OJ9, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada.,Children's Hospital Research Institute of Manitoba, Buhler Research Centre, Winnipeg, Manitoba, R3E 3P4, Canada
| |
Collapse
|
7
|
Lemay G. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Viruses 2018; 10:E671. [PMID: 30486370 PMCID: PMC6315682 DOI: 10.3390/v10120671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
At the end of my doctoral studies, in 1988, I published a review article on the major steps of transcription and translation during the mammalian reovirus multiplication cycle, a topic that still fascinates me 30 years later. It is in the nature of scientific research to generate further questioning as new knowledge emerges. Our understanding of these fascinating viruses thus remains incomplete but it seemed appropriate at this moment to look back and reflect on our progress and most important questions that still puzzle us. It is also essential of being careful about concepts that seem so well established, but could still be better validated using new approaches. I hope that the few reflections presented here will stimulate discussions and maybe attract new investigators into the field of reovirus research. Many other aspects of the viral multiplication cycle would merit our attention. However, I will essentially limit my discussion to these central aspects of the viral cycle that are transcription of viral genes and their phenotypic expression through the host cell translational machinery. The objective here is not to review every aspect but to put more emphasis on important progress and challenges in the field.
Collapse
Affiliation(s)
- Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
8
|
Wu Y, Xiong Q, Li S, Yang X, Ge F. Integrated Proteomic and Transcriptomic Analysis Reveals Long Noncoding RNA HOX Transcript Antisense Intergenic RNA (HOTAIR) Promotes Hepatocellular Carcinoma Cell Proliferation by Regulating Opioid Growth Factor Receptor (OGFr). Mol Cell Proteomics 2018; 17:146-159. [PMID: 29079719 PMCID: PMC5750844 DOI: 10.1074/mcp.ra117.000277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNA HOX transcript antisense RNA (HOTAIR) is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HOTAIR functions in HCC are largely unknown. Here, we employed an integrated transcriptomic and quantitative proteomic analysis to systematically explore the regulatory role of HOTAIR in HCC. A total of 673 transcripts and 293 proteins were found to be dysregulated after HOTAIR inhibition. Bioinformatics studies indicated that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) are involved in many biological processes, especially cancer-related signaling pathways. A set of DEGs and DEPs were validated by quantitative RT-PCR, Western blot and parallel reaction monitoring (PRM) analysis, respectively. Further functional studies of the opioid growth factor receptor (OGFr), a negative biological regulator of cell proliferation in HCC, revealed that HOTAIR exerts its effects on cell proliferation, at least in part, through the regulation of OGFr expression. By correlating the omics data with functional studies, the current results provide novel insights into the functional mechanisms of HOTAIR in HCC cells.
Collapse
Affiliation(s)
- Ying Wu
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- §University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Xiong
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siting Li
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- §University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Yang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- §University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
9
|
Mohl BP, Emmott E, Roy P. Phosphoproteomic Analysis Reveals the Importance of Kinase Regulation During Orbivirus Infection. Mol Cell Proteomics 2017; 16:1990-2005. [PMID: 28851738 PMCID: PMC5672004 DOI: 10.1074/mcp.m117.067355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Indexed: 01/03/2023] Open
Abstract
Bluetongue virus (BTV) causes infections in wild and domesticated ruminants with high morbidity and mortality and is responsible for significant economic losses in both developing and developed countries. BTV serves as a model for the study of other members of the Orbivirus genus. Previously, the importance of casein kinase 2 for BTV replication was demonstrated. To identify intracellular signaling pathways and novel host-cell kinases involved during BTV infection, the phosphoproteome of BTV infected cells was analyzed. Over 1000 phosphosites were identified using mass spectrometry, which were then used to determine the corresponding kinases involved during BTV infection. This analysis yielded protein kinase A (PKA) as a novel kinase activated during BTV infection. Subsequently, the importance of PKA for BTV infection was validated using a PKA inhibitor and activator. Our data confirmed that PKA was essential for efficient viral growth. Further, we showed that PKA is also required for infection of equid cells by African horse sickness virus, another member of the Orbivirus genus. Thus, despite their preference in specific host species, orbiviruses may utilize the same host signaling pathways during their replication.
Collapse
Affiliation(s)
- Bjorn-Patrick Mohl
- From the ‡Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Edward Emmott
- §University of Cambridge, Division of Virology, Department of Pathology, Lab block level 5, Box 237, Addenbrookes Hospital, Cambridge, UK
| | - Polly Roy
- From the ‡Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK;
| |
Collapse
|
10
|
Shiau JY, Chang YQ, Nakagawa-Goto K, Lee KH, Shyur LF. Phytoagent Deoxyelephantopin and Its Derivative Inhibit Triple Negative Breast Cancer Cell Activity through ROS-Mediated Exosomal Activity and Protein Functions. Front Pharmacol 2017; 8:398. [PMID: 28706483 PMCID: PMC5490438 DOI: 10.3389/fphar.2017.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
A novel plant sesquiterpene lactone derivative, DET derivative (DETD)-35, originating from parental deoxyelephantopin (DET) was previously observed to effectively suppress human triple negative breast cancer (TNBC) MDA-MB-231 cell activity and tumor growth in mice. In this study, the mechanisms underlying the activity of DETD-35 were elucidated. DET and DETD-35 induced reactive oxygen species (ROS) which caused structural damage and dysfunction of mitochondria and increased cytosolic calcium level, subsequently evoking exosome release from the cancer cells. Intriguingly, exosomes induced by both compounds had an atypical function. Cancer cell-derived exosomes commonly show metastatic potential, but upon DET/DETD-35 treatment exosomes showed anti-proliferative activity against MDA-MB-231 cells. Quantitative proteome analysis of TNBC cell-secreted exosomes showed that DET and DETD-35 attenuated the expression of proteins related to cell migration, cell adhesion, and angiogenesis. Furthermore, several exosomal proteins participating in biological mechanisms such as oxidative stress and decrease of transmembrane potential of mitochondria were found deregulated by treatment with either compound. Pretreatment with ROS scavenger, N-acetylcysteine, blockaded DET- or DETD-35-induced oxidative stress and calcium dependent exosome release mechanisms, and also reverted DET- or DETD-35-induced reprogramming exosomal protein expression profiles resulting in attenuation of exosomal toxicity against TNBC cell proliferation. In summary, this study shows that a plant-derived sesquiterpene lactone DET and its analog DETD-35 inhibitory TNBC cell activities through oxidative stress-induced cancer cell releasing exosomes in tandem with alteration of exosomal protein composition and functions. The findings of this study suggest that DETD-35 may be suitable for further development into an anti-TNBC drug.
Collapse
Affiliation(s)
- Jeng-Yuan Shiau
- Institute of Biotechnology, National Taiwan UniversityTaipei, Taiwan.,Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Yong-Qun Chang
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan UniversityTaipei, Taiwan
| | - Kyoko Nakagawa-Goto
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawa, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Lie-Fen Shyur
- Institute of Biotechnology, National Taiwan UniversityTaipei, Taiwan.,Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan UniversityTaipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
11
|
Quantitative proteomic analysis and comparison of two bone marrow stromal cell lines using the SILAC method. Exp Hematol 2016; 44:1059-1071. [PMID: 27539861 DOI: 10.1016/j.exphem.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/11/2016] [Accepted: 08/04/2016] [Indexed: 01/10/2023]
Abstract
Two human bone marrow stromal cell lines, HS5 and HS27a, co-cultured with myeloid cells, have frequently been used in studies of cross talk between cells in the bone marrow microenvironment and hematopoietic cells. Altered expression of proteins is typically associated with cell-cell signal transduction and regulation of cellular functions. Many studies have focused on key proteins that contribute to functional differences in cell co-culture models, but global quantitative proteome analysis of HS5 and HS27a has not been performed. We employed the stable isotope labeling by amino acids in cell culture (SILAC) method using two stable isotopes each of arginine and lysine to label proteins in the two cell lines. Labeled proteins were analyzed by 2-D ultrahigh-resolution liquid chromatography- LTQ/Orbitrap mass spectrometry. Among 4,213 unique identified and annotated proteins in the cell lines, 1,462 were detected in two independent experiments. Of these, 69 exhibited significant upregulation and 48 significant downregulation (>95% confidence) in HS27a relative to HS5 cells. Gene ontology term and pathway analysis indicated that the differentially regulated proteins were involved in cellular movement, cell-to-cell signaling and interaction, and hematologic system development and function. A total of 55 items were identified in both genomic and proteomic databases. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed on 7 proteins randomly selected from 28 differentially expressed proteins that were identified in both databases and were involved in the top networks/pathways. We observed a decrease in apoptosis in co-cultured KG1a cells when integrin αV was inhibited in HS27a cells, which suggested the functional role of integrin αV in the co-culture system. The integrated genomic/proteomic approach described here, and the identified proteins, will provide a useful basis for further elucidation of molecular mechanisms in the bone marrow microenvironment and for ongoing studies of cross talk among stromal cells and myeloma cells in co-culture systems.
Collapse
|
12
|
Quantitative Analysis of Differential Proteome Expression in Epithelial-to-Mesenchymal Transition of Bladder Epithelial Cells Using SILAC Method. Molecules 2016; 21:84. [PMID: 26784156 PMCID: PMC6273313 DOI: 10.3390/molecules21010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential biological process involved in embryonic development, cancer progression, and metastatic diseases. EMT has often been used as a model for elucidating the mechanisms that underlie bladder cancer progression. However, no study to date has addressed the quantitative global variation of proteins in EMT using normal and non-malignant bladder cells. We treated normal bladder epithelial HCV29 cells and low grade nonmuscle invasive bladder cancer KK47 cells with transforming growth factor-beta (TGF-β) to establish an EMT model, and studied non-treated and treated HCV29 and KK47 cells by the stable isotope labeling amino acids in cell culture (SILAC) method. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography/LTQ Orbitrap mass spectrometry. Among a total of 2994 unique identified and annotated proteins in HCV29 and KK47 cells undergoing EMT, 48 and 56 proteins, respectively, were significantly upregulated, and 106 and 24 proteins were significantly downregulated. Gene ontology (GO) term analysis and pathways analysis indicated that the differentially regulated proteins were involved mainly in enhancement of DNA maintenance and inhibition of cell-cell adhesion. Proteomes were compared for bladder cell EMT vs. bladder cancer cells, revealing 16 proteins that displayed similar changes in the two situations. Studies are in progress to further characterize these 16 proteins and their biological functions in EMT.
Collapse
|
13
|
Justice JL, Verhalen B, Kumar R, Lefkowitz EJ, Imperiale MJ, Jiang M. Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-Infected Primary Renal Proximal Tubule Epithelial Cells. J Proteome Res 2015; 14:4413-24. [PMID: 26354146 DOI: 10.1021/acs.jproteome.5b00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here, we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with liquid chromatography-tandem mass spectrometry. We demonstrated the feasibility of SILAC labeling in these primary cells and subsequently performed reciprocal labeling-infection experiments to identify proteins that are altered by BKPyV infection. Our analyses revealed specific proteins that are significantly up- or down-regulated in the infected nuclear proteome. The genes encoding many of these proteins were not identified in a previous microarray study, suggesting that differential regulation of these proteins may be independent of transcriptional control. Western blotting experiments verified the SILAC proteomic findings. Finally, pathway and network analyses indicated that the host cell DNA damage response signaling and DNA repair pathways are among the cellular processes most affected at the protein level during polyomavirus infection. Our study provides a comprehensive view of the host nuclear proteomic changes during polyomavirus lytic infection and suggests potential novel host factors required for a productive polyomavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Imperiale
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
14
|
Differential Reovirus-Specific and Herpesvirus-Specific Activator Protein 1 Activation of Secretogranin II Leads to Altered Virus Secretion. J Virol 2015; 89:11954-64. [PMID: 26378181 DOI: 10.1128/jvi.01639-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Viruses utilize host cell machinery for propagation and manage to evade cellular host defense mechanisms in the process. Much remains unknown regarding how the host responds to viral infection. We recently performed global proteomic screens of mammalian reovirus TIL- and T3D-infected and herpesvirus (herpes simplex virus 1 [HSV-1])-infected HEK293 cells. The nonenveloped RNA reoviruses caused an upregulation, whereas the enveloped DNA HSV-1 caused a downregulation, of cellular secretogranin II (SCG2). SCG2, a member of the granin family that functions in hormonal peptide sorting into secretory vesicles, has not been linked to virus infections previously. We confirmed SCG2 upregulation and found SCG2 phosphorylation by 18 h postinfection (hpi) in reovirus-infected cells. We also found a decrease in the amount of reovirus secretion from SCG2 knockdown cells. Similar analyses of cells infected with HSV-1 showed an increase in the amount of secreted virus. Analysis of the stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) pathway indicated that each virus activates different pathways leading to activator protein 1 (AP-1) activation, which is the known SCG2 transcription activator. We conclude from these experiments that the negative correlation between SCG2 quantity and virus secretion for both viruses indicates a virus-specific role for SCG2 during infection. IMPORTANCE Mammalian reoviruses affect the gastrointestinal system or cause respiratory infections in humans. Recent work has shown that all mammalian reovirus strains (most specifically T3D) may be useful oncolytic agents. The ubiquitous herpes simplex viruses cause common sores in mucosal areas of their host and have coevolved with hosts over many years. Both of these virus species are prototypical representatives of their viral families, and investigation of these viruses can lead to further knowledge of how they and the other more pathogenic members of their respective families interact with the host. Here we show that secretogranin II (SCG2), a protein not previously studied in the context of virus infections, alters virus output in a virus-specific manner and that the quantity of SCG2 is inversely related to amounts of infectious-virus secretion. Herpesviruses may target this protein to facilitate enhanced virus release from the host.
Collapse
|
15
|
Yang G, Xu Z, Lu W, Li X, Sun C, Guo J, Xue P, Guan F. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method. PLoS One 2015; 10:e0134727. [PMID: 26230496 PMCID: PMC4521931 DOI: 10.1371/journal.pone.0134727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/13/2015] [Indexed: 12/26/2022] Open
Abstract
The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia), KK47 (low grade nonmuscle invasive bladder cancer, NMIBC), and YTS1 (metastatic bladder cancer) have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC) progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO) term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer.
Collapse
Affiliation(s)
- Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhipeng Xu
- Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wei Lu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Chengwen Sun
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jia Guo
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Peng Xue
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (PX); (FG)
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- * E-mail: (PX); (FG)
| |
Collapse
|
16
|
Chetouhi C, Panek J, Bonhomme L, ElAlaoui H, Texier C, Langin T, de Bekker C, Urbach S, Demettre E, Missé D, Holzmuller P, Hughes DP, Zanzoni A, Brun C, Biron DG. Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us? INFECTION GENETICS AND EVOLUTION 2015; 33:84-94. [DOI: 10.1016/j.meegid.2015.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
|
17
|
Berard AR, Severini A, Coombs KM. Comparative proteomic analyses of two reovirus T3D subtypes and comparison to T1L identifies multiple novel proteins in key cellular pathogenic pathways. Proteomics 2015; 15:2113-35. [DOI: 10.1002/pmic.201400602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/23/2015] [Accepted: 04/16/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Alicia R. Berard
- Department of Medical Microbiology; Faculty of Medicine; University of Manitoba; Winnipeg Canada R3E 0J9
- Manitoba Center for Proteomics and Systems Biology; Room 799 John Buhler Research Centre University of Manitoba; Winnipeg Canada R3E 3P4
| | - Alberto Severini
- Department of Medical Microbiology; Faculty of Medicine; University of Manitoba; Winnipeg Canada R3E 0J9
- National Microbiology Laboratory; Public Health Agency of Canada; 1015 Arlington St. Winnipeg Canada R3E 3R2
| | - Kevin M. Coombs
- Department of Medical Microbiology; Faculty of Medicine; University of Manitoba; Winnipeg Canada R3E 0J9
- Manitoba Center for Proteomics and Systems Biology; Room 799 John Buhler Research Centre University of Manitoba; Winnipeg Canada R3E 3P4
- Manitoba Institute of Child Health; Room 641 John Buhler Research Center; University of Manitoba; Winnipeg Canada R3E 3P4
| |
Collapse
|
18
|
Ezzati P, Komher K, Severini G, Coombs KM. Comparative proteomic analyses demonstrate enhanced interferon and STAT-1 activation in reovirus T3D-infected HeLa cells. Front Cell Infect Microbiol 2015; 5:30. [PMID: 25905045 PMCID: PMC4388007 DOI: 10.3389/fcimb.2015.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022] Open
Abstract
As obligate intracellular parasites, viruses are exclusively and intimately dependent upon their host cells for replication. During replication viruses induce profound changes within cells, including: induction of signaling pathways, morphological changes, and cell death. Many such cellular perturbations have been analyzed at the transcriptomic level by gene arrays and recent efforts have begun to analyze cellular proteomic responses. We recently described comparative stable isotopic (SILAC) analyses of reovirus, strain type 3 Dearing (T3D)-infected HeLa cells. For the present study we employed the complementary labeling strategy of iTRAQ (isobaric tags for relative and absolute quantitation) to examine HeLa cell changes induced by T3D, another reovirus strain, type 1 Lang, and UV-inactivated T3D (UV-T3D). Triplicate replicates of cytosolic and nuclear fractions identified a total of 2375 proteins, of which 50, 57, and 46 were significantly up-regulated, and 37, 26, and 44 were significantly down-regulated by T1L, T3D, and UV-T3D, respectively. Several pathways, most notably the Interferon signaling pathway and the EIF2 and ILK signaling pathways, were induced by virus infection. Western blots confirmed that cells were more strongly activated by live T3D as demonstrated by elevated levels of key proteins like STAT-1, ISG-15, IFIT-1, IFIT-3, and Mx1. This study expands our understanding of reovirus-induced host responses.
Collapse
Affiliation(s)
- Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba Winnipeg, MB, Canada
| | - Krysten Komher
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Giulia Severini
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Kevin M Coombs
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba Winnipeg, MB, Canada ; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada ; Manitoba Institute of Child Health, John Buhler Research Centre Winnipeg, MB, Canada
| |
Collapse
|
19
|
Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5:12-25. [PMID: 24600511 PMCID: PMC3942539 DOI: 10.4331/wjbc.v5.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.
Collapse
|
20
|
Komoto S, Kawagishi T, Kobayashi T, Ikizler M, Iskarpatyoti J, Dermody TS, Taniguchi K. A plasmid-based reverse genetics system for mammalian orthoreoviruses driven by a plasmid-encoded T7 RNA polymerase. J Virol Methods 2013; 196:36-9. [PMID: 24183920 DOI: 10.1016/j.jviromet.2013.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) have served as highly useful models for studies of virus replication and pathogenesis. The development of a plasmid-based reverse genetics system represented a major breakthrough in reovirus research. The current reverse genetics systems for reoviruses rely on the expression of T7 RNA polymerase within cells transfected with reovirus gene-segment cDNA plasmids. In these systems, the T7 RNA polymerase is provided by using a recombinant vaccinia virus expressing T7 RNA polymerase or a cell line constitutively expressing T7 RNA polymerase. Here, we describe an alternative plasmid-based rescue system driven by a plasmid-encoded T7 RNA polymerase, which could increase the flexibility of such reverse genetics systems. Although this approach requires transfection of an additional plasmid, virus recovery was achieved when A549, BHK-21, or L929 cells were co-transfected with a reovirus 10-plasmid set together with a plasmid encoding T7 RNA polymerase. Theoretically, this system offers the possibility to generate reoviruses in any cell line, including those amenable to propagation of viral vectors for clinical use. Thus, this approach will increase the flexibility of reverse genetics for basic studies of reovirus biology and foster development of reoviruses for clinical applications.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Takahiro Kawagishi
- Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Kobayashi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mine Ikizler
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Jason Iskarpatyoti
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Terence S Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
21
|
Coombs KM. HeLa cell response proteome alterations induced by mammalian reovirus T3D infection. Virol J 2013; 10:202. [PMID: 23799967 PMCID: PMC3847587 DOI: 10.1186/1743-422x-10-202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/14/2013] [Indexed: 01/04/2023] Open
Abstract
Background Cells are exposed to multiple stressors that induce significant alterations in signaling pathways and in the cellular state. As obligate parasites, all viruses require host cell material and machinery for replication. Virus infection is a major stressor leading to numerous induced modifications. Previous gene array studies have measured infected cellular transcriptomes. More recently, mass spectrometry-based quantitative and comparative assays have been used to complement such studies by examining virus-induced alterations in the cellular proteome. Methods We used SILAC (stable isotope labeling with amino acids in cell culture), a non-biased quantitative proteomic labeling technique, combined with 2-D HPLC/mass spectrometry and reciprocal labeling to identify and measure relative quantitative differences in HeLa cell proteins in purified cytosolic and nuclear fractions after reovirus serotype 3 Dearing infection. Protein regulation was determined by z-score analysis of each protein’s label distribution. Results A total of 2856 cellular proteins were identified in cytosolic fractions by 2 or more peptides at >99% confidence and 884 proteins were identified in nuclear fractions. Gene ontology analyses indicated up-regulated host proteins were associated with defense responses, immune responses, macromolecular binding, regulation of immune effector processes, and responses to virus, whereas down-regulated proteins were involved in cell death, macromolecular catabolic processes, and tissue development. Conclusions These analyses identified numerous host proteins significantly affected by reovirus T3D infection. These proteins map to numerous inflammatory and innate immune pathways, and provide the starting point for more detailed kinetic studies and delineation of virus-modulated host signaling pathways.
Collapse
Affiliation(s)
- Kevin M Coombs
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|