1
|
Mvubu NE, Govender D, Pillay M. Comparative Transcriptomics Reveal Differential Expression of Coding and Non-Coding RNAs in Clinical Strains of Mycobacterium tuberculosis. Int J Mol Sci 2024; 26:217. [PMID: 39796078 PMCID: PMC11720245 DOI: 10.3390/ijms26010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Coding and non-coding RNAs (ncRNAs) are potential novel markers that can be exploited for TB diagnostics in the fight against Mycobacterium tuberculosis. The current study investigated the mechanisms of transcript regulation and ncRNA signatures through Total RNA Seq and small (smRNA) RNA Seq followed by Bioinformatics analysis in Beijing and F15/LAM4/KZN (KZN) clinical strains compared to the laboratory strain. Total RNA Seq revealed differential regulation of RNA transcripts in Beijing (n = 1095) and KZN (n = 856) strains compared to the laboratory H37Rv strain. The KZN vs. H37Rv coding transcripts uniquely enriched fatty acids, steroid degradation, fructose, and mannose metabolism as well as a bacterial secretion system. In contrast, Tuberculosis and biosynthesis of siderophores KEGG pathways were enriched by the Beijing vs. H37Rv-specific transcripts. Novel sense and antisense ncRNAs, as well as the expression of these transcripts, were observed, and these targeted RNA transcripts are involved in cell wall synthesis and bacterial metabolism in a strain-specific manner. RNA transcripts identified in the current study offer insights into gene regulation of transcripts involved in the growth and metabolism of the clinically relevant KZN and Beijing strains compared to the laboratory H37Rv strain and thus can be exploited in the fight against Tuberculosis.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Divenita Govender
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manormoney Pillay
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
2
|
Cheah HL, Citartan M, Lee LP, Ahmed SA, Salleh MZ, Teh LK, Tang TH. Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis. Funct Integr Genomics 2024; 24:160. [PMID: 39264475 DOI: 10.1007/s10142-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Monash University Malaysia Genomics Platform, School of Science, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Li-Pin Lee
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Aminah Ahmed
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
3
|
Jumat MI, Chin KL. Transcriptome analysis and molecular characterization of novel small RNAs in Mycobacterium tuberculosis Lineage 1. World J Microbiol Biotechnol 2024; 40:279. [PMID: 39048776 DOI: 10.1007/s11274-024-04089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the tuberculosis-causing agent, exhibits diverse genetic lineages, with known links to virulence. While genomic and transcriptomic variations between modern and ancient Mtb lineages have been explored, the role of small non-coding RNA (sRNA) in post-translational gene regulation remains largely uncharted. In this study, Mtb Lineage 1 (L1) Sabahan strains (n = 3) underwent sRNA sequencing, revealing 351 sRNAs, including 23 known sRNAs and 328 novel ones identified using ANNOgesic. Thirteen sRNAs were selected based on the best average cut-off value of 300, with RT-qPCR revealing significant expression differences for sRNA 1 (p = 0.0132) and sRNA 29 (p = 0.0012) between Mtb L1 and other lineages (L2 and L4, n = 3) (p > 0.05). Further characterization using RACE (rapid amplification of cDNA ends), followed by target prediction with TargetRNA3 unveils that sRNA 1 (55 base pairs) targets Rv0506, Rv0697, and Rv3590c, and sRNA 29 (86 base pairs) targets Rv33859c, Rv3345c, Rv0755c, Rv0107c, Rv1817, Rv2950c, Rv1181, Rv3610c, and Rv3296. Functional characterization with Mycobrowser reveals these targets involved in regulating intermediary metabolism and respiration, cell wall and cell processes, lipid metabolism, information pathways, and PE/PPE. In summary, two novel sRNAs, sRNA 1 and sRNA 29, exhibited differential expression between L1 and other lineages, with predicted roles in essential Mtb functions. These findings offer insights into Mtb regulatory mechanisms, holding promise for the development of improved tuberculosis treatment strategies in the future.
Collapse
Affiliation(s)
- Mohd Iskandar Jumat
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| |
Collapse
|
4
|
Sinha PR, Balasubramanian R, Hegde SR. Integrated sequence and -omic features reveal novel small proteome of Mycobacterium tuberculosis. Front Microbiol 2024; 15:1335310. [PMID: 38812687 PMCID: PMC11133741 DOI: 10.3389/fmicb.2024.1335310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Bioinformatic studies on small proteins are under-represented due to difficulties in annotation posed by their small size. However, recent discoveries emphasize the functional significance of small proteins in cellular processes including cell signaling, metabolism, and adaptation to stress. In this study, we utilized a Random Forest classifier trained on sequence features, RNA-Seq, and Ribo-Seq data to uncover small proteins (smORFs) in M. tuberculosis. Independent predictions for the exponential and starvation conditions resulted in 695 potential smORFs. We examined the functional implications of these smORFs using homology searches, LC-MS/MS, and ChIP-seq data, testing their expression in diverse growth conditions, and identifying protein domains. We provide evidence that some of these smORFs could be part of operons, or exist as upstream ORFs. This expanded data resource for the proteins of M. tuberculosis would aid in fine-tuning the existing protein and gene regulatory networks, thereby improving system-wide studies. The primary goal of this study was to uncover and characterize smORFs in M. tuberculosis through bioinformatic analysis, shedding light on their functional roles and genomic organization. Further investigation of these potential smORFs would provide valuable insights into the genome organization and functional diversity of the M. tuberculosis proteome.
Collapse
Affiliation(s)
| | | | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India
| |
Collapse
|
5
|
Youngblom MA, Smith TM, Murray HJ, Pepperell CS. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. PLoS Pathog 2024; 20:e1012124. [PMID: 38635841 PMCID: PMC11060545 DOI: 10.1371/journal.ppat.1012124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/30/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments.
Collapse
Affiliation(s)
- Madison A. Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Madison-Wisconsin, Madison, Wisconsin, United States of America
| | - Tracy M. Smith
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Holly J. Murray
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Madison-Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Mvubu NE, Jacoby K. Mycobacterium tuberculosis complex molecular networks and their regulation: Implications of strain heterogeneity on epigenetic diversity and transcriptome regulation. Heliyon 2023; 9:e22611. [PMID: 38046135 PMCID: PMC10686871 DOI: 10.1016/j.heliyon.2023.e22611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Tuberculosis has been a public health crisis since the 1900, which has caused the highest mortalities due to a single bacterial infection worldwide, that was recently further complicated by the Coronavirus disease 2019 pandemic. The causative agent of Tuberculosis, Mycobacterium tuberculosis, belongs to a genetically well-characterized family of strains known as the Mycobacterium tuberculosis complex, which has complicated progress made towards eradicating Tuberculosis due to pathogen-specific phenotypic differences in the members of this complex. Mycobacterium tuberculosis complex strains are genetically diverse human- and animal-adapted pathogens belonging to 7 lineages (Indo-Oceanic, East-Asian, East-African Indian, Euro-American, M. africanum West Africa 1, M. africanum West Africa 2 and Ethopia), respectively and the recently identified Lineage 8 and M. africanum Lineage 9. Genomic studies have revealed that Mycobacterium tuberculosis complex members are ∼99 % similar, however, due to selective pressure and adaptation to human host, they are prone to mutations that have resulted in development of drug resistance and phenotypic heterogeneity that impact strain virulence. Furthermore, members of the Mycobacterium tuberculosis complex have preferred geographic locations and possess unique phenotypic characteristics that is linked to their pathogenicity. Due to the recent advances in development next generation sequencing platforms, several studies have revealed epigenetic changes in genomic regions combined with "unique" gene regulatory mechanisms through non-coding RNAs that are responsible for strain-specific behaviour on in vitro and in vivo infection models. The current review provides up to date epigenetic patterns, gene regulation through non-coding RNAs, together with implications of these mechanisms in down-stream proteome and metabolome, which may be responsible for "unique" responses to infection by members of the Mycobacterium tuberculosis complex. Understanding lineage-specific molecular mechanisms during infection may provide novel drug targets and disease control measures towards World Health organization END-TB strategy.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Kieran Jacoby
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
7
|
Youngblom MA, Smith TM, Pepperell CS. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549484. [PMID: 37503306 PMCID: PMC10370045 DOI: 10.1101/2023.07.18.549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mycobacterium tuberculosis ( M. tb ), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments. Importance Understanding mechanisms of resistance and tolerance in Mycobacterium tuberculosis ( M. tb ) can help us develop new treatments that capitalize on M. tb 's vulnerabilities. Here we used transcriptomics to study both the regulation of biofilm formation in clinical isolates as well as how those regulatory systems adapt to new environments. We find that closely related clinical populations have diverse strategies for growth under biofilm conditions, and that genetic background plays a large role in determining the trajectory of evolution. These results have implications for future treatment strategies that may be informed by our knowledge of the evolutionary constraints on strain(s) from an individual infection. This work provides new information about the mechanisms of biofilm formation in M. tb and outlines a framework for population level approaches for studying bacterial adaptation.
Collapse
|
8
|
Bar-Oz M, Martini MC, Alonso MN, Meir M, Lore NI, Miotto P, Riva C, Angala SK, Xiao J, Masiello CS, Misiakou MA, Sun H, Moy JK, Jackson M, Johansen HK, Cirillo DM, Shell SS, Barkan D. The small non-coding RNA B11 regulates multiple facets of Mycobacterium abscessus virulence. PLoS Pathog 2023; 19:e1011575. [PMID: 37603560 PMCID: PMC10470900 DOI: 10.1371/journal.ppat.1011575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/31/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Mycobacterium abscessus causes severe disease in patients with cystic fibrosis. Little is known in M. abscessus about the roles of small regulatory RNAs (sRNA) in gene regulation. We show that the sRNA B11 controls gene expression and virulence-associated phenotypes in this pathogen. B11 deletion from the smooth strain ATCC_19977 produced a rough strain, increased pro-inflammatory signaling and virulence in multiple infection models, and increased resistance to antibiotics. Examination of clinical isolate cohorts identified isolates with B11 mutations or reduced expression. We used RNAseq and proteomics to investigate the effects of B11 on gene expression and test the impact of mutations found in clinical isolates. Over 200 genes were differentially expressed in the deletion mutant. Strains with the clinical B11 mutations showed expression trends similar to the deletion mutant, suggesting partial loss of function. Among genes upregulated in the B11 mutant, there was a strong enrichment for genes with B11-complementary sequences in their predicted ribosome binding sites (RBS), consistent with B11 functioning as a negative regulator that represses translation via base-pairing to RBSs. Comparing the proteomes similarly revealed that upregulated proteins were strongly enriched for B11-complementary sequences. Intriguingly, genes upregulated in the absence of B11 included components of the ESX-4 secretion system, critical for M. abscessus virulence. Many of these genes had B11-complementary sequences at their RBSs, which we show is sufficient to mediate repression by B11 through direct binding. Altogether, our data show that B11 acts as a direct negative regulator and mediates (likely indirect) positive regulation with pleiotropic effects on gene expression and clinically important phenotypes in M. abscessus. The presence of hypomorphic B11 mutations in clinical strains is consistent with the idea that lower B11 activity may be advantageous for M. abscessus in some clinical contexts. This is the first report on an sRNA role in M. abscessus.
Collapse
Affiliation(s)
- Michal Bar-Oz
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Carla Martini
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria Natalia Alonso
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | | | | | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Riva
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shiva K Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Junpei Xiao
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Catherine S Masiello
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria-Anna Misiakou
- Center for Genomic Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Huaming Sun
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Justin K Moy
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | | | - Scarlet S Shell
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Mvubu NE, Salig A, Moopanar K, Nyide A, Govender D, Mankayi E. A quick, easy and efficient protocol for extracting high-quality RNA from Mycobacterium tuberculosis using a spin column commercial kit. BMC Res Notes 2023; 16:145. [PMID: 37443138 DOI: 10.1186/s13104-023-06424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
RNA extraction from Mycobacterium tuberculosis has been a historically challenging task for researchers due to the thick lipids associated with the cell wall of this "notorious" pathogen that is responsible for Tuberculosis (TB) outbreaks. Several studies have successfully extracted RNA from M. tuberculosis using a Trizol reagent combined with organic solvents. Recently, our laboratory has successfully extracted high quality total RNA using a commercial kit from clinical strains belonging to F15/LAM4/KZN, Beijing and F11 strain families and H37Rv laboratory strain by exploiting high speed homogenizer for cell lysis and spin columns for RNA purification. The quality and integrity of the extracted RNA was analyzed and confirmed through the Nanodrop, Bioanalyzer and RNA 3-(N-morpholino) propanesulfonic acid (MOPS) gel electrophoresis. Furthermore, to confirm the integrity of small RNA (sRNA) molecules due to their vulnerability to degradation, the RNA samples were converted to cDNA and sRNAs were amplified and confirmed through PCR. This detailed RNA extraction protocol proposes to carve a new path into TB transcriptome research without the use of organic solvent for downstream purification steps while yielding high quality RNA that can be used to understand M. tuberculosis transcriptome regulation.
Collapse
Affiliation(s)
- N E Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, Medical School, University of KwaZulu Natal, Private Bag X54001, Durban, 4000, South Africa.
| | - A Salig
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban, South Africa
| | - K Moopanar
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban, South Africa
| | - Asg Nyide
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban, South Africa
| | - D Govender
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban, South Africa
| | - E Mankayi
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
10
|
Chen Z, Jiang W, Zhang M, Yu B, Li W, Liu J, Ai F. Mycobacterium tuberculosis sRNA MTS2823 regulates the growth of the multidrug-resistant strain in macrophages. FEMS Microbiol Lett 2022; 369:6825451. [PMID: 36370448 DOI: 10.1093/femsle/fnac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a serious contagious disease. MTB-encoded small regulatory RNA (sRNA) MTS2823 was reported to be upregulated in the plasma of TB patients. Nevertheless, whether MTS2823 is implicated in MTB drug resistance is unclear. Human macrophage cell line THP-1 was infected with the drug-susceptible strain H37Rv or the multidrug-resistant (MDR) strain 8462. Colony-forming unit assay was implemented for evaluating intracellular growth of the MTB strains. Enzyme-linked immunosorbent assay was used for measurement of inflammatory cytokines. Real-time quantitative polymerase chain reaction was utilized to assess MTS2823 and recombinase A (recA) expression in strains 8462 and H37Rv. Nitric oxide (NO) production in the MDR strain-infected THP-1 cells was measured. In this study, MTS2823 was found to display a low level in the MDR strain. Overexpressing MTS2823 promoted intracellular growth of the MDR strain and inhibited inflammatory cytokine and NO production in infected THP-1 cells. RecA might be a target of MTS2823 in the MDR strain. Overall, MTB-encoded sRNA MTS2823 displays a low level and regulates the growth of the MDR strain in THP-1 cells by modulating recA.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Wei Jiang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Jijun Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| |
Collapse
|
11
|
Stiens J, Arnvig KB, Kendall SL, Nobeli I. Challenges in defining the functional, non-coding, expressed genome of members of the Mycobacterium tuberculosis complex. Mol Microbiol 2021; 117:20-31. [PMID: 34894010 DOI: 10.1111/mmi.14862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
A definitive transcriptome atlas for the non-coding expressed elements of the members of the Mycobacterium tuberculosis complex (MTBC) does not exist. Incomplete lists of non-coding transcripts can be obtained for some of the reference genomes (e.g., M. tuberculosis H37Rv) but to what extent these transcripts have homologues in closely related species or even strains is not clear. This has implications for the analysis of transcriptomic data; non-coding parts of the transcriptome are often ignored in the absence of formal, reliable annotation. Here, we review the state of our knowledge of non-coding RNAs in pathogenic mycobacteria, emphasizing the disparities in the information included in commonly used databases. We then proceed to review ways of combining computational solutions for predicting the non-coding transcriptome with experiments that can help refine and confirm these predictions.
Collapse
Affiliation(s)
- Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, UK
| | - Kristine B Arnvig
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
12
|
The Mycobacterium tuberculosis sRNA F6 Modifies Expression of Essential Chaperonins, GroEL2 and GroES. Microbiol Spectr 2021; 9:e0109521. [PMID: 34549992 PMCID: PMC8557902 DOI: 10.1128/spectrum.01095-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Almost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of posttranscriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA F6 and shown it to be dependent on SigF for expression and significantly induced in starvation conditions in vitro and in a mouse model of infection. Further exploration of F6 using an in vitro starvation model of infection indicates that F6 affects the expression of the essential chaperonins GroEL2 and GroES. Our results point toward a role for F6 during periods of low metabolic activity typically associated with long-term survival of M. tuberculosis in human granulomas. IMPORTANCE Control of gene expression via small regulatory RNAs (sRNAs) is poorly understood in one of the most successful pathogens, Mycobacterium tuberculosis. Here, we present an in-depth characterization of the sRNA F6, including its expression in different infection models and the differential gene expression observed upon deletion of the sRNA. Our results demonstrate that deletion of F6 leads to dysregulation of the two essential chaperonins GroEL2 and GroES and, moreover, indicate a role for F6 in the long-term survival and persistence of M. tuberculosis in the human host.
Collapse
|
13
|
Small RNAs Asserting Big Roles in Mycobacteria. Noncoding RNA 2021; 7:ncrna7040069. [PMID: 34842799 PMCID: PMC8628891 DOI: 10.3390/ncrna7040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with 10.4 million new cases per year reported in the human population. Recent studies on the Mtb transcriptome have revealed the abundance of noncoding RNAs expressed at various phases of mycobacteria growth, in culture, in infected mammalian cells, and in patients. Among these noncoding RNAs are both small RNAs (sRNAs) between 50 and 350 nts in length and smaller RNAs (sncRNA) < 50 nts. In this review, we provide an up-to-date synopsis of the identification, designation, and function of these Mtb-encoded sRNAs and sncRNAs. The methodological advances including RNA sequencing strategies, small RNA antagonists, and locked nucleic acid sequence-specific RNA probes advancing the studies on these small RNA are described. Initial insights into the regulation of the small RNA expression and putative processing enzymes required for their synthesis and function are discussed. There are many open questions remaining about the biological and pathogenic roles of these small non-coding RNAs, and potential research directions needed to define the role of these mycobacterial noncoding RNAs are summarized.
Collapse
|
14
|
Luo X, Esberard M, Bouloc P, Jacq A. A Small Regulatory RNA Generated from the malK 5' Untranslated Region Targets Gluconeogenesis in Vibrio Species. mSphere 2021; 6:e0013421. [PMID: 34190585 PMCID: PMC8265627 DOI: 10.1128/msphere.00134-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Vsr217 is a small RNA from Vibrio tasmaniensis LGP32, a pathogen associated with mortality events affecting juvenile oysters. The vsr217 gene is located within the 5' untranslated region (UTR) of malK, encoding the ATPase component of the maltose importer, and is conserved within the genus Vibrio. In the presence of maltose, vsr217 is regulated by MalT, the positive regulator of the maltose regulon. vsr217 is required in cis for the full expression of malK. In addition, Vsr217 acts in trans to downregulate the expression of fbp encoding fructose-1,6-bisphosphatase, an enzyme involved in gluconeogenesis. Thus, in the presence of maltose, the induction of Vsr217 is expected to promote glycolysis by negatively regulating the expression of a key enzyme of gluconeogenesis. IMPORTANCE Juvenile pacific oysters have been subject in recent years to summer mortality episodes with deep economic consequences. The pathogen Vibrio tasmaniensis has been associated with such mortality events. For bacterial pathogens, survival within the host requires profound metabolic adaptations according to available resources. All kinds of regulatory elements, including noncoding RNAs, orchestrate this response. Oysters are rich in glycogen, a precursor of maltose, and we previously reported that V. tasmaniensis maltose-regulated genes are strongly induced during oyster infection. Here, we report the dual mechanism by which a small regulatory RNA, generated from the 5' untranslated region of a gene belonging to the maltose regulon, acts both in cis and trans. In cis, it stimulates growth on maltose, and in trans, it downregulates the expression of a gene associated with gluconeogenesis, thus coordinating maltose utilization with central carbon metabolism.
Collapse
Affiliation(s)
- Xing Luo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marick Esberard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Annick Jacq
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
15
|
Ostrik AA, Azhikina TL, Salina EG. Small Noncoding RNAs and Their Role in the Pathogenesis of Mycobacterium tuberculosis Infection. BIOCHEMISTRY (MOSCOW) 2021; 86:S109-S119. [PMID: 33827403 PMCID: PMC7905965 DOI: 10.1134/s000629792114008x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host–pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.
Collapse
Affiliation(s)
- Albina A Ostrik
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
16
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
17
|
Coskun FS, Srivastava S, Raj P, Dozmorov I, Belkaya S, Mehra S, Golden NA, Bucsan AN, Chapagain ML, Wakeland EK, Kaushal D, Gumbo T, van Oers NSC. sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Front Microbiol 2020; 11:1631. [PMID: 32849337 PMCID: PMC7399025 DOI: 10.3389/fmicb.2020.01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Nearly one third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). While much work has focused on the role of different Mtb encoded proteins in pathogenesis, recent studies have revealed that Mtb also transcribes many noncoding RNAs whose functions remain poorly characterized. We performed RNA sequencing and identified a subset of Mtb H37Rv-encoded small RNAs (<30 nts in length) that were produced in infected macrophages. Designated as smaller noncoding RNAs (sncRNAs), three of these predominated the read counts. Each of the three, sncRNA-1, sncRNA-6, and sncRNA-8 had surrounding sequences with predicted stable secondary RNA stem loops. Site-directed mutagenesis of the precursor sequences suggest the existence of a hairpin loop dependent RNA processing mechanism. A functional assessment of sncRNA-1 suggested that it positively regulated two mycobacterial transcripts involved in oleic acid biosynthesis. Complementary loss- and gain- of-function approaches revealed that sncRNA-1 positively supports Mtb growth and survival in nutrient-depleted cultures as well as in infected macrophages. Overall, the findings reveal that Mtb produces sncRNAs in infected cells, with sncRNA-1 modulating mycobacterial gene expression including genes coupled to oleic acid biogenesis.
Collapse
Affiliation(s)
- Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Serkan Belkaya
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Smriti Mehra
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Nadia A Golden
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Allison N Bucsan
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Moti L Chapagain
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Deepak Kaushal
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
18
|
Girardin RC, McDonough KA. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of Mycobacterium tuberculosis. Mol Microbiol 2020; 113:504-520. [PMID: 31782837 PMCID: PMC7064933 DOI: 10.1111/mmi.14436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, must adapt to host-associated environments during infection by modulating gene expression. Small regulatory RNAs (sRNAs) are key regulators of bacterial gene expression, but their roles in Mtb are not well understood. Here, we address the expression and function of the Mtb sRNA Mcr11, which is associated with slow bacterial growth and chronic infections in mice. We found that stable expression of Mcr11 requires multiple factors specific to TB-complex bacteria, including the AbmR transcription factor. Bioinformatic analyses used to predict regulatory targets of Mcr11 identified 7-11 nucleotide regions with potential for direct base-pairing with Mcr11 immediately upstream of Rv3282, fadA3, and lipB. mcr11-dependent regulation of these genes was demonstrated using qRT-PCR and found to be responsive to the presence of fatty acids. Mutation of the putative Mcr11 base-pairing site upstream of lipB in a promoter reporter strain resulted in significant de-repression of lipB expression, similar to that observed in mcr11-deleted Mtb. These studies establish Mcr11's roles in regulating growth and central metabolism in Mtb. Our finding that multiple TB-complex-specific factors are required for production of stable Mcr11 also emphasizes the need to better understand mechanisms of sRNA expression and stability in TB.
Collapse
Affiliation(s)
- Roxie C. Girardin
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
| | - Kathleen A. McDonough
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
- Wadsworth Center, New York State Department of HealthAlbanyNY
| |
Collapse
|
19
|
Spitaleri A, Ghodousi A, Miotto P, Cirillo DM. Whole genome sequencing in Mycobacterium tuberculosis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S197. [PMID: 31656776 DOI: 10.21037/atm.2019.07.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Müller AU, Leibundgut M, Ban N, Weber-Ban E. Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat Commun 2019; 10:4653. [PMID: 31604936 PMCID: PMC6789036 DOI: 10.1038/s41467-019-12567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
In mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determine the crystal structure of Arthrobacter aurescens PafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA-binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA-binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA or other nucleic acid molecules. Using an in vivo mutational screen in Mycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.
Collapse
Affiliation(s)
- Andreas U Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Marc Leibundgut
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Nenad Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
21
|
van den Esker MH, Koets AP. Application of Transcriptomics to Enhance Early Diagnostics of Mycobacterial Infections, with an Emphasis on Mycobacterium avium ssp. paratuberculosis. Vet Sci 2019; 6:vetsci6030059. [PMID: 31247942 PMCID: PMC6789504 DOI: 10.3390/vetsci6030059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne’s disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can take place, while diagnostic tests are unable to reliably detect an infection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne’s disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
22
|
Transcriptional noise and exaptation as sources for bacterial sRNAs. Biochem Soc Trans 2019; 47:527-539. [PMID: 30837318 DOI: 10.1042/bst20180171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
Understanding how new genes originate and integrate into cellular networks is key to understanding evolution. Bacteria present unique opportunities for both the natural history and experimental study of gene origins, due to their large effective population sizes, rapid generation times, and ease of genetic manipulation. Bacterial small non-coding RNAs (sRNAs), in particular, many of which operate through a simple antisense regulatory logic, may serve as tractable models for exploring processes of gene origin and adaptation. Understanding how and on what timescales these regulatory molecules arise has important implications for understanding the evolution of bacterial regulatory networks, in particular, for the design of comparative studies of sRNA function. Here, we introduce relevant concepts from evolutionary biology and review recent work that has begun to shed light on the timescales and processes through which non-functional transcriptional noise is co-opted to provide regulatory functions. We explore possible scenarios for sRNA origin, focusing on the co-option, or exaptation, of existing genomic structures which may provide protected spaces for sRNA evolution.
Collapse
|
23
|
Eppenhof EJJ, Peña-Castillo L. Prioritizing bona fide bacterial small RNAs with machine learning classifiers. PeerJ 2019; 7:e6304. [PMID: 30697489 PMCID: PMC6348098 DOI: 10.7717/peerj.6304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/16/2018] [Indexed: 11/26/2022] Open
Abstract
Bacterial small (sRNAs) are involved in the control of several cellular processes. Hundreds of putative sRNAs have been identified in many bacterial species through RNA sequencing. The existence of putative sRNAs is usually validated by Northern blot analysis. However, the large amount of novel putative sRNAs reported in the literature makes it impractical to validate each of them in the wet lab. In this work, we applied five machine learning approaches to construct twenty models to discriminate bona fide sRNAs from random genomic sequences in five bacterial species. Sequences were represented using seven features including free energy of their predicted secondary structure, their distances to the closest predicted promoter site and Rho-independent terminator, and their distance to the closest open reading frames (ORFs). To automatically calculate these features, we developed an sRNA Characterization Pipeline (sRNACharP). All seven features used in the classification task contributed positively to the performance of the predictive models. The best performing model obtained a median precision of 100% at 10% recall and of 64% at 40% recall across all five bacterial species, and it outperformed previous published approaches on two benchmark datasets in terms of precision and recall. Our results indicate that even though there is limited sRNA sequence conservation across different bacterial species, there are intrinsic features in the genomic context of sRNAs that are conserved across taxa. We show that these features are utilized by machine learning approaches to learn a species-independent model to prioritize bona fide bacterial sRNAs.
Collapse
Affiliation(s)
- Erik J J Eppenhof
- Department of Artificial Intelligence, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada.,Department of Computer Science, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
24
|
Sinumvayo JP, Zhao C, Tuyishime P. Recent advances and future trends of riboswitches: attractive regulatory tools. World J Microbiol Biotechnol 2018; 34:171. [PMID: 30413889 DOI: 10.1007/s11274-018-2554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Philibert Tuyishime
- University of Chinese Academy of Sciences, Beijing, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
25
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
26
|
Barh D, Tiwari S, Kumavath RN, Ghosh P, Azevedo V. Linking common non-coding RNAs of human lung cancer and M. tuberculosis. Bioinformation 2018; 14:337-345. [PMID: 30237679 PMCID: PMC6137563 DOI: 10.6026/97320630014337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 02/07/2023] Open
Abstract
Lung cancer and pulmonary tuberculosis caused by Mycobacterium are two major causes of deaths worldwide. Tuberculosis linked lung cancer is known. However, the precise molecular mechanism of Mycobacterium associated increased risk of lung cancer is not understood. We report 45 common human miRNAs deregulated in both pulmonary tuberculosis and lung cancer. We show that sRNA_1096 and sRNA_1414 from M. tuberculosis have sequence homology with human mir-21. Hence, the potential role of these three small non-coding RNAs in rifampicin resistance in pulmonary tuberculosis is implied. Further, the linking of sRNA_1096 and sRNA_1414 from M. tuberculosis with the host lung tumorigenesis is inferred. Nonetheless, further analysis and validation is required to associate these three non-coding RNAs with Mycobacterium associated increased risk of lung cancer.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
- Laboratorio de Genetica Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
- Division of Bioinformatics and Computational Genomics, NITTE University Center for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Sandeep Tiwari
- Laboratorio de Genetica Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ranjith N. Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671316, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Virginia 23284, USA
| | - Vasco Azevedo
- Laboratorio de Genetica Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
27
|
Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response. Proc Natl Acad Sci U S A 2018; 115:6464-6469. [PMID: 29871950 PMCID: PMC6016810 DOI: 10.1073/pnas.1718003115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This work describes the most extensive discovery and functional characterization of small regulatory RNAs (sRNAs) in Mycobacterium tuberculosis to date. We comprehensively define the sRNAs expressed in M. tuberculosis under five host-like stress conditions. This reference dataset comprehensively defines the expression patterns and boundaries of mycobacterial sRNAs. We perform in-depth characterization of one sRNA, mycobacterial regulatory sRNA in iron (MrsI), which is induced in M. tuberculosis in multiple stress conditions. MrsI is critical for the iron-sparing response in mycobacteria by binding directly to mRNAs encoding nonessential iron-containing proteins to repress their expression. Interestingly, MrsI acts in an anticipatory manner, in which its induction by a variety of stresses primes M. tuberculosis to enter an iron-sparing state more rapidly upon iron deprivation. One key to the success of Mycobacterium tuberculosis as a pathogen is its ability to reside in the hostile environment of the human macrophage. Bacteria adapt to stress through a variety of mechanisms, including the use of small regulatory RNAs (sRNAs), which posttranscriptionally regulate bacterial gene expression. However, very little is currently known about mycobacterial sRNA-mediated riboregulation. To date, mycobacterial sRNA discovery has been performed primarily in log-phase growth, and no direct interaction between any mycobacterial sRNA and its targets has been validated. Here, we performed large-scale sRNA discovery and expression profiling in M. tuberculosis during exposure to five pathogenically relevant stresses. From these data, we identified a subset of sRNAs that are highly induced in multiple stress conditions. We focused on one of these sRNAs, ncRv11846, here renamed mycobacterial regulatory sRNA in iron (MrsI). We characterized the regulon of MrsI and showed in mycobacteria that it regulates one of its targets, bfrA, through a direct binding interaction. MrsI mediates an iron-sparing response that is required for optimal survival of M. tuberculosis under iron-limiting conditions. However, MrsI is induced by multiple host-like stressors, which appear to trigger MrsI as part of an anticipatory response to impending iron deprivation in the macrophage environment.
Collapse
|
28
|
Schwenk S, Arnvig KB. Regulatory RNA in Mycobacterium tuberculosis, back to basics. Pathog Dis 2018; 76:4966984. [PMID: 29796669 PMCID: PMC7615687 DOI: 10.1093/femspd/fty035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Since the turn of the millenium, RNA-based control of gene expression has added an extra dimension to the central dogma of molecular biology. Still, the roles of Mycobacterium tuberculosis regulatory RNAs and the proteins that facilitate their functions remain elusive, although there can be no doubt that RNA biology plays a central role in the baterium's adaptation to its many host environments. In this review, we have presented examples from model organisms and from M. tuberculosis to showcase the abundance and versatility of regulatory RNA, in order to emphasise the importance of these 'fine-tuners' of gene expression.
Collapse
MESH Headings
- Aconitate Hydratase/genetics
- Aconitate Hydratase/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host-Pathogen Interactions
- Humans
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Mycobacterium tuberculosis/pathogenicity
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Riboswitch
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
29
|
Sharma K, Verma R, Advani J, Chatterjee O, Solanki HS, Sharma A, Varma S, Modi M, Ray P, Mukherjee KK, Sharma M, Dhillion MS, Suar M, Chatterjee A, Pandey A, Prasad TSK, Gowda H. Whole Genome Sequencing of Mycobacterium tuberculosis Isolates From Extrapulmonary Sites. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:413-425. [PMID: 28692415 DOI: 10.1089/omi.2017.0070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tuberculosis (TB) remains one of the leading causes of morbidity and mortality worldwide. Extrapulmonary tuberculosis (EPTB) constitutes around 15-20% of TB cases in immunocompetent individuals. Extrapulmonary sites that are affected by TB include bones, lymph nodes, meningitis, pleura, and genitourinary tract. Whole genome sequencing has emerged as a powerful tool to map genetic diversity among Mycobacterium tuberculosis (MTB) isolates and identify the genomic signatures associated with drug resistance, pathogenesis, and disease transmission. Several pulmonary isolates of MTB have been sequenced over the years. However, availability of whole genome sequences of MTB isolates from extrapulmonary sites is limited. Some studies suggest that genetic variations in MTB might contribute to disease presentation in extrapulmonary sites. This can be addressed if whole genome sequence data from large number of extrapulmonary isolates becomes available. In this study, we have performed whole genome sequencing of five MTB clinical isolates derived from EPTB sites using next-generation sequencing platform. We identified 1434 nonsynonymous single nucleotide variations (SNVs), 143 insertions and 105 deletions. This includes 279 SNVs that were not reported before in publicly available datasets. We found several mutations that are known to confer resistance to drugs. All the five isolates belonged to East-African-Indian lineage (lineage 3). We identified 9 putative prophage DNA integrations and 14 predicted clustered regularly interspaced short palindromic repeats (CRISPR) in MTB genome. Our analysis indicates that more work is needed to map the genetic diversity of MTB. Whole genome sequencing in conjunction with comprehensive drug susceptibility testing can reveal clinically relevant mutations associated with drug resistance.
Collapse
Affiliation(s)
- Kusum Sharma
- 1 Department of Medical Microbiology, PGIMER , Chandigarh, India
| | - Renu Verma
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Manipal University , Manipal, India
| | - Oishi Chatterjee
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,5 School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Hitendra S Solanki
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Aman Sharma
- 6 Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Subhash Varma
- 6 Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Manish Modi
- 7 Department of Neurology, PGIMER, Chandigarh, India
| | - Pallab Ray
- 1 Department of Medical Microbiology, PGIMER , Chandigarh, India
| | | | - Megha Sharma
- 1 Department of Medical Microbiology, PGIMER , Chandigarh, India
| | | | - Mrutyunjay Suar
- 3 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Aditi Chatterjee
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,10 YU-IOB Center for Systems Biology and Molecular Medicine , Mangalore, India
| | - Akhilesh Pandey
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,11 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland.,13 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,14 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Thottethodi Subrahmanya Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,10 YU-IOB Center for Systems Biology and Molecular Medicine , Mangalore, India .,15 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Harsha Gowda
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,10 YU-IOB Center for Systems Biology and Molecular Medicine , Mangalore, India
| |
Collapse
|
30
|
Dauros-Singorenko P, Blenkiron C, Phillips A, Swift S. The functional RNA cargo of bacterial membrane vesicles. FEMS Microbiol Lett 2018; 365:4830096. [DOI: 10.1093/femsle/fny023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Priscila Dauros-Singorenko
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Anthony Phillips
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Surgery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
31
|
Aguilar-Ayala DA, Tilleman L, Van Nieuwerburgh F, Deforce D, Palomino JC, Vandamme P, Gonzalez-Y-Merchand JA, Martin A. The transcriptome of Mycobacterium tuberculosis in a lipid-rich dormancy model through RNAseq analysis. Sci Rep 2017; 7:17665. [PMID: 29247215 PMCID: PMC5732278 DOI: 10.1038/s41598-017-17751-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is currently the number one killer among infectious diseases worldwide. Lipids are abundant molecules during the infectious cycle of Mycobacterium tuberculosis (Mtb) and studies better mimicking its actual metabolic state during pathogenesis are needed. Though most studies have focused on the mycobacterial lipid metabolism under standard culture conditions, little is known about the transcriptome of Mtb in a lipid environment. Here we determined the transcriptome of Mtb H37Rv in a lipid-rich environment (cholesterol and fatty acid) under aerobic and hypoxic conditions, using RNAseq. Lipids significantly induced the expression of 368 genes. A main core lipid response was observed involving efflux systems, iron caption and sulfur reduction. In co-expression with ncRNAs and other genes discussed below, may act coordinately to prepare the machinery conferring drug tolerance and increasing a persistent population. Our findings could be useful to tag relevant pathways for the development of new drugs, vaccines and new strategies to control TB.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium.
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Jorge A Gonzalez-Y-Merchand
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anandi Martin
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Pôle of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de, Louvain, Brussels, Belgium
| |
Collapse
|
32
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
33
|
AlMatar M, AlMandeal H, Var I, Kayar B, Köksal F. New drugs for the treatment of Mycobacterium tuberculosis infection. Biomed Pharmacother 2017; 91:546-558. [PMID: 28482292 DOI: 10.1016/j.biopha.2017.04.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/29/2017] [Accepted: 04/23/2017] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis presents a grave challenge to health, globally instigating 1.5 million mortalities each year. Following the breakthrough of first-line anti-TB medication, the number of mortalities reduced greatly; nonetheless, the swift appearance of tuberculosis which was drug-resistant, as well as the capability of the bacterium to survive and stay dormant are a considerable problem for public health. In order to address this issue, several novel possible candidates for tuberculosis therapy have been subjected to clinical trials of late. The novel antimycobacterial agents are acquired from different categories of medications, operate through a range of action systems, and are at various phases of advancement. We therefore talk about the present methods of treating tuberculosis and novel anti-TB agents with their action method, in order to advance awareness of these new compounds and medications.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü), Cukurova University, Adana, Turkey.
| | - Husam AlMandeal
- Universitätsklinikum des Saarlandes, Gebäude 90, Kirrberger Straße, D-66421, Homburg, Germany
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
34
|
Moores A, Riesco AB, Schwenk S, Arnvig KB. Expression, maturation and turnover of DrrS, an unusually stable, DosR regulated small RNA in Mycobacterium tuberculosis. PLoS One 2017; 12:e0174079. [PMID: 28323872 PMCID: PMC5360333 DOI: 10.1371/journal.pone.0174079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis depends on the ability to adjust to stresses encountered in a range of host environments, adjustments that require significant changes in gene expression. Small RNAs (sRNAs) play an important role as post-transcriptional regulators of prokaryotic gene expression, where they are associated with stress responses and, in the case of pathogens, adaptation to the host environment. In spite of this, the understanding of M. tuberculosis RNA biology remains limited. Here we have used a DosR-associated sRNA as an example to investigate multiple aspects of mycobacterial RNA biology that are likely to apply to other M. tuberculosis sRNAs and mRNAs. We have found that accumulation of this particular sRNA is slow but robust as cells enter stationary phase. Using reporter gene assays, we find that the sRNA core promoter is activated by DosR, and we have renamed the sRNA DrrS for DosR Regulated sRNA. Moreover, we show that DrrS is transcribed as a longer precursor, DrrS+, which is rapidly processed to the mature and highly stable DrrS. We characterise, for the first time in mycobacteria, an RNA structural determinant involved in this extraordinary stability and we show how the addition of a few nucleotides can lead to acute destabilisation. Finally, we show how this RNA element can enhance expression of a heterologous gene. Thus, the element, as well as its destabilising derivatives may be employed to post-transcriptionally regulate gene expression in mycobacteria in combination with different promoter variants. Moreover, our findings will facilitate further investigations into the severely understudied topic of mycobacterial RNA biology and into the role that regulatory RNA plays in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Alexandra Moores
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ana B. Riesco
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Kristine B. Arnvig
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol 2017; 14:914-925. [PMID: 28296577 PMCID: PMC5546546 DOI: 10.1080/15476286.2017.1306175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are involved in the control of numerous cellular processes through various regulatory mechanisms, and in the past decade many studies have identified sRNAs in a multitude of bacterial species using RNA sequencing (RNA-seq). Here, we present the first genome-wide analysis of sRNA sequencing data in Rhodobacter capsulatus, a purple nonsulfur photosynthetic alphaproteobacterium. Using a recently developed bioinformatics approach, sRNA-Detect, we detected 422 putative sRNAs from R. capsulatus RNA-seq data. Based on their sequence similarity to sRNAs in a sRNA collection, consisting of published putative sRNAs from 23 additional bacterial species, and RNA databases, the sequences of 124 putative sRNAs were conserved in at least one other bacterial species; and, 19 putative sRNAs were assigned a predicted function. We bioinformatically characterized all putative sRNAs and applied machine learning approaches to calculate the probability of a nucleotide sequence to be a bona fide sRNA. The resulting quantitative model was able to correctly classify 95.2% of sequences in a validation set. We found that putative cis-targets for antisense and partially overlapping sRNAs were enriched with protein-coding genes involved in primary metabolic processes, photosynthesis, compound binding, and with genes forming part of macromolecular complexes. We performed differential expression analysis to compare the wild type strain to a mutant lacking the response regulator CtrA, an important regulator of gene expression in R. capsulatus, and identified 18 putative sRNAs with differing levels in the two strains. Finally, we validated the existence and expression patterns of four novel sRNAs by Northern blot analysis.
Collapse
Affiliation(s)
- Marc P Grüll
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Lourdes Peña-Castillo
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada.,b Department of Computer Science , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Martin E Mulligan
- c Department of Biochemistry , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Andrew S Lang
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
36
|
Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio 2017; 8:mBio.02133-16. [PMID: 28096490 PMCID: PMC5241402 DOI: 10.1128/mbio.02133-16] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed. We sought to overcome this limitation by creating a completely saturated transposon library in Mycobacterium tuberculosis In assessing the composition of this highly saturated library by deep sequencing, we discovered that a previously unknown sequence bias of the Himar1 element rendered approximately 9% of potential TA dinucleotide insertion sites less permissible for insertion. We used a hidden Markov model of essentiality that accounted for this unanticipated bias, allowing us to confidently evaluate the essentiality of features that contained as few as 2 TA sites, including open reading frames (ORF), experimentally identified noncoding RNAs, methylation sites, and promoters. In addition, several essential regions that did not correspond to known features were identified, suggesting uncharacterized functions that are necessary for growth. This work provides an authoritative catalog of essential regions of the M. tuberculosis genome and a statistical framework for applying saturating mutagenesis to other bacteria. IMPORTANCE Sequencing of transposon-insertion mutant libraries has become a widely used tool for probing the functions of genes under various conditions. The Himar1 transposon is generally believed to insert with equal probabilities at all TA dinucleotides, and therefore its absence in a mutant library is taken to indicate biological selection against the corresponding mutant. Through sequencing of a saturated Himar1 library, we found evidence that TA dinucleotides are not equally permissive for insertion. The insertion bias was observed in multiple prokaryotes and influences the statistical interpretation of transposon insertion (TnSeq) data and characterization of essential genomic regions. Using these insights, we analyzed a fully saturated TnSeq library for M. tuberculosis, enabling us to generate a comprehensive catalog of in vitro essentiality, including ORFs smaller than those found in any previous study, small (noncoding) RNAs (sRNAs), promoters, and other genomic features.
Collapse
|
37
|
Azhikina TL, Ignatov DV, Salina EG, Fursov MV, Kaprelyants AS. Role of Small Noncoding RNAs in Bacterial Metabolism. BIOCHEMISTRY (MOSCOW) 2016; 80:1633-46. [PMID: 26878570 DOI: 10.1134/s0006297915130015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of prokaryotic small RNAs is one of the most important directions in modern molecular biology. In the last decade, multiple short regulatory transcripts have been found in prokaryotes, and for some of them functional roles have been elucidated. Bacterial small RNAs are implicated in the regulation of transcription and translation, and they affect mRNA stability and gene expression via different mechanisms, including changes in mRNA conformation and interaction with proteins. Most small RNAs are expressed in response to external factors, and they help bacteria to adapt to changing environmental conditions. Bacterial infections of various origins remain a serious medical problem, despite significant progress in fighting them. Discovery of mechanisms that bacteria employ to survive in infected organisms and ways to block these mechanisms is promising for finding new treatments for bacterial infections. Regulation of pathogenesis with small RNAs is an attractive example of such mechanisms. This review considers the role of bacterial small RNAs in adaptation to stress conditions. We pay special attention to the role of small RNAs in Mycobacterium tuberculosis infection, in particular during establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- T L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | |
Collapse
|
38
|
Veatch AV, Niu T, Caskey J, McGillivray A, Gautam US, Subramanian R, Kousoulas KG, Mehra S, Kaushal D. Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons. Tuberculosis (Edinb) 2016; 101S:S9-S17. [PMID: 27729257 DOI: 10.1016/j.tube.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infections cause tuberculosis (TB), an infectious disease which causes ∼1.5 million deaths annually. The ability of this pathogen to evade, escape and encounter immune surveillance is fueled by its adaptability. Thus, Mtb induces a transition in its transcriptome in response to environmental changes. Global transcriptome profiling has been key to our understanding of how Mtb responds to the different stress conditions it faces during its life cycle. While this was initially achieved using microarray technology, RNAseq is now widely employed. It is important to understand the correlation between the large amount of microarray based transcriptome data, which continues to shape our understanding of Mtb stress networks, and newer data being generated using RNAseq. We assessed how well the two platforms correlate using three well-defined stress conditions: diamide, hypoxia, and re-aeration. The data used here was generated by different individuals over time using distinct samples, providing a stringent test of platform correlation. While correlation between microarrays and sequencing was high upon diamide treatment, which causes a rapid reprogramming of the transcriptome, RNAseq allowed a better definition of the hypoxic response, characterized by subtle changes in the magnitude of gene-expression. RNAseq also allows for the best cross-platform reproducibility.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tianhua Niu
- Department of Biostatistics & Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans LA, USA
| | - John Caskey
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Amanda McGillivray
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA
| | - Uma Shankar Gautam
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA
| | - Ramesh Subramanian
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - K Gus Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Smriti Mehra
- Divisions of Microbiology, Tulane National Primate Research Center, Covington LA, USA; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
39
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
40
|
Wang M, Fleming J, Li Z, Li C, Zhang H, Xue Y, Chen M, Zhang Z, Zhang XE, Bi L. An automated approach for global identification of sRNA-encoding regions in RNA-Seq data from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:544-53. [PMID: 27174874 DOI: 10.1093/abbs/gmw037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/31/2016] [Indexed: 11/14/2022] Open
Abstract
Deep-sequencing of bacterial transcriptomes using RNA-Seq technology has made it possible to identify small non-coding RNAs, RNA molecules which regulate gene expression in response to changing environments, on a genome-wide scale in an ever-increasing range of prokaryotes. However, a simple and reliable automated method for identifying sRNA candidates in these large datasets is lacking. Here, after generating a transcriptome from an exponential phase culture of Mycobacterium tuberculosis H37Rv, we developed and validated an automated method for the genome-wide identification of sRNA candidate-containing regions within RNA-Seq datasets based on the analysis of the characteristics of reads coverage maps. We identified 192 novel candidate sRNA-encoding regions in intergenic regions and 664 RNA transcripts transcribed from regions antisense (as) to open reading frames (ORF), which bear the characteristics of asRNAs, and validated 28 of these novel sRNA-encoding regions by northern blotting. Our work has not only provided a simple automated method for genome-wide identification of candidate sRNA-encoding regions in RNA-Seq data, but has also uncovered many novel candidate sRNA-encoding regions in M. tuberculosis, reinforcing the view that the control of gene expression in bacteria is more complex than previously anticipated.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joy Fleming
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihui Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongtai Zhang
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxin Xue
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zongde Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xian-En Zhang
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Bi
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan 528000, China
| |
Collapse
|
41
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
42
|
Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci Rep 2015; 5:17507. [PMID: 26620446 PMCID: PMC4664930 DOI: 10.1038/srep17507] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Genetic heterogeneity of Mycobacterium tuberculosis (MTB) within a patient has caused great concern as it might complicate antibiotic treatment and cause treatment failure. But the extent of genetic heterogeneity has not been described in detail nor has its association with heterogeneous treatment response. During treatment of a subject with MDR-TB, serial computed tomography (CT) scans showed this subject had six anatomically discrete lesions and they responded to treatment with disparate kinetics, suggesting heterogeneous MTB population may exist. To investigate this heterogeneity, we applied deep whole genome sequencing of serial sputum isolates and discovered that the MTB population within this patient contained three dominant sub-clones differing by 10 ~ 14 single nucleotide polymorphisms (SNPs). Differential mutation patterns in known resistance alleles indicated these sub-clones had different drug-resistance patterns, which may explain the heterogeneous treatment responses between lesions. Our results showed clear evidence of branched microevolution of MTB in vivo, which led to a diverse bacterial community. These findings indicated that complex sub-populations of MTB might coexist within patient and contribute to lesions’ disparate responses to antibiotic treatment.
Collapse
|
43
|
Ignatov DV, Salina EG, Fursov MV, Skvortsov TA, Azhikina TL, Kaprelyants AS. Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA. BMC Genomics 2015; 16:954. [PMID: 26573524 PMCID: PMC4647672 DOI: 10.1186/s12864-015-2197-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Background Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K+-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K+ reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. Results RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30–50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This ‘dormant transcriptome’ demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. Conclusions Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2197-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitriy V Ignatov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Elena G Salina
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Mikhail V Fursov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Timofey A Skvortsov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation. .,Current address: The Queen's University of Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Arseny S Kaprelyants
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| |
Collapse
|
44
|
Möbius P, Hölzer M, Felder M, Nordsiek G, Groth M, Köhler H, Reichwald K, Platzer M, Marz M. Comprehensive insights in the Mycobacterium avium subsp. paratuberculosis genome using new WGS data of sheep strain JIII-386 from Germany. Genome Biol Evol 2015; 7:2585-2601. [PMID: 26384038 PMCID: PMC4607514 DOI: 10.1093/gbe/evv154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare.
Collapse
Affiliation(s)
- Petra Möbius
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Marius Felder
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Gabriele Nordsiek
- Department of Genome Analysis, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Heike Köhler
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Kathrin Reichwald
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
45
|
George R, Cavalcante R, Jr CC, Marques E, Waugh JB, Unlap MT. Use of siRNA molecular beacons to detect and attenuate mycobacterial infection in macrophages. World J Exp Med 2015; 5:164-181. [PMID: 26309818 PMCID: PMC4543811 DOI: 10.5493/wjem.v5.i3.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis (MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis (LTB). Persons with LTB are prone to reactivation of the disease when the body’s immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The YrbE and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic siRNAs has been used in knocking down genes in bacteria and over the years this has evolved into a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mRNA is rapidly gaining popularity.
Collapse
|
46
|
Miotto P, Cirillo DM, Migliori GB. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 2015; 147:1135-1143. [PMID: 25846529 DOI: 10.1378/chest.14-1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Physicians are more and more often challenged by difficult-to-treat cases of TB. They include patients infected by strains of Mycobacterium tuberculosis that are resistant to at least isoniazid and rifampicin (multidrug-resistant TB) or to at least one fluoroquinolone (FQ) and one injectable, second-line anti-TB drug in addition to isoniazid and rifampicin (extensively drug-resistant TB). The drug treatment of these cases is very long, toxic, and expensive, and, unfortunately, the proportion of unsatisfactory outcomes is still considerably high. Although FQs and pyrazinamide (PZA) are backbone drugs in the available anti-TB regimens, several uncertainties remain about their mechanisms of action and even more remain about the mechanisms leading to drug resistance. From a clinical point of view, a better understanding of the genetic basis of drug resistance will aid (1) clinicians to provide quality clinical management to both drug-susceptible and drug-resistant TB cases (while preventing emergence of further resistance), and (2) developers of new molecular-based diagnostic assays to better direct their research efforts toward a new generation of sensitive, specific, cheap, and easy-to-use point-of-care diagnostics. In this review we provide an update on the molecular mechanisms leading to FQ- and PZA-resistance in M tuberculosis.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Battista Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy.
| |
Collapse
|
47
|
Tsai CH, Liao R, Chou B, Contreras LM. Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation. Appl Environ Microbiol 2015; 81:1754-64. [PMID: 25548054 PMCID: PMC4325154 DOI: 10.1128/aem.03709-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023] Open
Abstract
Small noncoding RNAs (sRNAs) are posttranscriptional regulators that have been identified in multiple species and shown to play essential roles in responsive mechanisms to environmental stresses. The natural ability of specific bacteria to resist high levels of radiation has been of high interest to mechanistic studies of DNA repair and biomolecular protection. Deinococcus radiodurans is a model extremophile for radiation studies that can survive doses of ionizing radiation of >12,000 Gy, 3,000 times higher than for most vertebrates. Few studies have investigated posttranscriptional regulatory mechanisms of this organism that could be relevant in its general gene regulatory patterns. In this study, we identified 199 potential sRNA candidates in D. radiodurans by whole-transcriptome deep sequencing analysis and confirmed the expression of 41 sRNAs by Northern blotting and reverse transcriptase PCR (RT-PCR). A total of 8 confirmed sRNAs showed differential expression during recovery after acute ionizing radiation (15 kGy). We have also found and confirmed 7 sRNAs in Deinococcus geothermalis, a closely related radioresistant species. The identification of several novel sRNAs in Deinococcus bacteria raises important questions about the evolution and nature of global gene regulation in radioresistance.
Collapse
Affiliation(s)
- Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Rick Liao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Brendan Chou
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
48
|
Hnilicová J, Jirát Matějčková J, Šiková M, Pospíšil J, Halada P, Pánek J, Krásný L. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res 2014; 42:11763-76. [PMID: 25217589 PMCID: PMC4191392 DOI: 10.1093/nar/gku793] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/12/2022] Open
Abstract
Small RNAs (sRNAs) are molecules essential for a number of regulatory processes in the bacterial cell. Here we characterize Ms1, a sRNA that is highly expressed in Mycobacterium smegmatis during stationary phase of growth. By glycerol gradient ultracentrifugation, RNA binding assay, and RNA co-immunoprecipitation, we show that Ms1 interacts with the RNA polymerase (RNAP) core that is free of the primary sigma factor (σA) or any other σ factor. This contrasts with the situation in most other species where it is 6S RNA that interacts with RNAP and this interaction requires the presence of σA. The difference in the interaction of the two types of sRNAs (Ms1 or 6S RNA) with RNAP possibly reflects the difference in the composition of the transcriptional machinery between mycobacteria and other species. Unlike Escherichia coli, stationary phase M. smegmatis cells contain relatively few RNAP molecules in complex with σA. Thus, Ms1 represents a novel type of small RNAs interacting with RNAP.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jitka Jirát Matějčková
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Michaela Šiková
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jiří Pospíšil
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Petr Halada
- Department of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Josef Pánek
- Department of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Libor Krásný
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| |
Collapse
|
49
|
Killick KE, Magee DA, Park SDE, Taraktsoglou M, Browne JA, Conlon KM, Nalpas NC, Gormley E, Gordon SV, MacHugh DE, Hokamp K. Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis. Front Immunol 2014; 5:422. [PMID: 25324841 PMCID: PMC4181336 DOI: 10.3389/fimmu.2014.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
Collapse
Affiliation(s)
- Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Stephen D E Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; IdentiGEN Ltd. , Dublin , Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Biological Agents Unit, Health and Safety Executive , Leeds , UK
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kevin M Conlon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; Science Foundation Ireland (SFI) , Dublin , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College , Dublin , Ireland
| |
Collapse
|
50
|
Latent tuberculosis infection: What we know about its genetic control? Tuberculosis (Edinb) 2014; 94:462-8. [DOI: 10.1016/j.tube.2014.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022]
|