1
|
Wang C, Zhao Q, Zheng X, Li S, Chen J, Zhao H, Chen F, Cui L, Li W. Decellularized brain extracellular matrix slice glioblastoma culture model recapitulates the interaction between cells and the extracellular matrix without a nutrient-oxygen gradient interference. Acta Biomater 2023; 158:132-150. [PMID: 36565784 DOI: 10.1016/j.actbio.2022.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Decellularized extracellular matrix (dECM) is a valuable tool for generating three-dimensional in vitro tumor models that effectively recapitulate tumor-extracellular matrix (ECM) interactions. However, in current culture models, the components and structures of dECM are enzymatically disrupted to form hydrogels, making it difficult to recapitulate the native ECM. Additionally, when studying ECM-cell interactions, large-volume tumor culture models are incompatible with traditional experimental techniques and the nutrient-oxygen concentration gradient, which is a significant confounding factor. To address these issues, we developed a decellularized brain extracellular matrix slice (dBECMS) glioblastoma (GBM) culture model. This model possesses good light transmittance and substance diffusivity, making it compatible with traditional experimental techniques without forming nutrient-oxygen concentration gradients. Through transcriptomic analysis, we found that native brain ECM has a broad impact on glioma cells; the impact involves the ECM-ECM receptor interactions and the ECM and metabolic reprogramming. Further experiments demonstrated that dBECMS promoted glucose consumption and lactate production in GBM cells. Silver staining experiments revealed abundant proteins in the media of dBECMS, suggesting the degradation of the brain ECM by GBM cells. Transcriptome analysis also showed that the dBECMS-GBM culture model more accurately recapitulated the transcriptional profile of GBM than the two-dimensional culture. We experimentally demonstrated that the dBECMS-GBM model enhanced the resistance of GBM cells to temozolomide and increased the stemness of GBM cells. Additionally, we demonstrated the feasibility of the dBECMS-GBM model as a platform for drug response modeling. STATEMENT OF SIGNIFICANCE: The decellularized brain extracellular matrix (ECM) slice glioblastoma culture model mimics the interaction between native brain ECM and glioblastoma when glioblastoma infiltrates the brain and reveals the effects of native brain ECM on glioblastoma metabolism, ECM reprogramming, drug responsiveness, and stemness.
Collapse
Affiliation(s)
- Can Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Qiannan Zhao
- Evidence Based Medicine Center, Xuanwu Hospital of Capital Medical University, Xicheng District, Beijing 100053, China
| | - Xiaohong Zheng
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Jinyi Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Hanyun Zhao
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Lei Cui
- Department of Plastic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Key Laboratory of spine and spinal cord injury repair and regeneration, Ministry of Education of the People's Republic of China & Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200062, China.
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China.
| |
Collapse
|
2
|
Adekeye AO, Needham D, Rahman R. Low-Density Lipoprotein Pathway Is a Ubiquitous Metabolic Vulnerability in High Grade Glioma Amenable for Nanotherapeutic Delivery. Pharmaceutics 2023; 15:pharmaceutics15020599. [PMID: 36839921 PMCID: PMC9958636 DOI: 10.3390/pharmaceutics15020599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Metabolic reprogramming, through increased uptake of cholesterol in the form of low-density lipoproteins (LDL), is one way by which cancer cells, including high grade gliomas (HGG), maintain their rapid growth. In this study, we determined LDL receptor (LDLR) expression in HGGs using immunohistochemistry on tissue microarrays from intra- and inter tumour regions of 36 adult and 133 paediatric patients to confirm LDLR as a therapeutic target. Additionally, we analysed expression levels in three representative cell line models to confirm their future utility to test LDLR-targeted nanoparticle uptake, retention, and cytotoxicity. Our data show widespread LDLR expression in adult and paediatric cohorts, but with significant intra-tumour variation observed between the core and either rim or invasive regions of adult HGG. Expression was independent of paediatric tumour grade or identified clinicopathological factors. LDLR-expressing tumour cells localized preferentially within perivascular niches, also with significant adult intra-tumour variation. We demonstrated variable levels of LDLR expression in all cell lines, confirming their suitability as models to test LDLR-targeted nanotherapy delivery. Overall, our study reveals the LDLR pathway as a ubiquitous metabolic vulnerability in high grade gliomas across all ages, amenable to future consideration of LDL-mediated nanoparticle/drug delivery to potentially circumvent tumour heterogeneity.
Collapse
Affiliation(s)
- Adenike O. Adekeye
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - David Needham
- Department of Mechanical Engineering and Material Science, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Ruman Rahman
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
3
|
Williams G, Chambers D, Rahman R, Molina-Holgado F. Transcription Profile and Pathway Analysis of the Endocannabinoid Receptor Inverse Agonist AM630 in the Core and Infiltrative Boundary of Human Glioblastoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072049. [PMID: 35408449 PMCID: PMC9000751 DOI: 10.3390/molecules27072049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023]
Abstract
Background: We have previously reported that the endocannabinoid receptor inverse agonist AM630 is a potent inhibitor of isocitrade dehydrogenase-1 wild-type glioblastoma (GBM) core tumour cell proliferation. To uncover the mechanism behind the anti-tumour effects we have performed a transcriptional analysis of AM630 activity both in the tumour core cells (U87) and the invasive margin cells (GIN-8), the latter representing a better proxy of post-surgical residual disease. Results: The core and invasive margin cells exhibited markedly different gene expression profiles and only the core cells had high expression of a potential AM630 target, the CB1 receptor. Both cell types had moderate expression of the HTR2B serotonin receptor, a reported AM630 target. We found that the AM630 driven transcriptional response was substantially higher in the central cells than in the invasive margin cells, with the former driving the up regulation of immune response and the down regulation of cell cycle and metastatic pathways and correlating with transcriptional responses driven by established anti-neoplastics as well as serotonin receptor antagonists. Conclusion: Our results highlight the different gene sets involved in the core and invasive margin cell lines derived from GBM and an associated marked difference in responsiveness to AM630. Our findings identify AM630 as an anti-neoplastic drug in the context of the core cells, showing a high correlation with the activity of known antiproliferative drugs. However, we reveal a key set of similarities between the two cell lines that may inform therapeutic intervention.
Collapse
Affiliation(s)
- Gareth Williams
- Wolfson-CARD, Kings College, London SE1 UL, UK; (G.W.); (D.C.)
| | - David Chambers
- Wolfson-CARD, Kings College, London SE1 UL, UK; (G.W.); (D.C.)
| | - Ruman Rahman
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Francisco Molina-Holgado
- Wolfson-CARD, Kings College, London SE1 UL, UK; (G.W.); (D.C.)
- School of Life & Health Sciences, University of Roehampton, London SW15 4JD, UK
- Correspondence:
| |
Collapse
|
4
|
Phon BWS, Kamarudin MNA, Bhuvanendran S, Radhakrishnan AK. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed Pharmacother 2022; 145:112396. [PMID: 34775238 DOI: 10.1016/j.biopha.2021.112396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma (GBM) remains incurable despite the overwhelming discovery of 2-dimensional (2D) cell-based potential therapeutics since the majority of them have met unsatisfactory results in animal and clinical settings. Incremental empirical evidence has laid the widespread need of transitioning 2D to 3-dimensional (3D) cultures that better mimic GBM's complex and heterogenic nature to allow better translation of pre-clinical results. This systematic scoping review analyses the transcriptomic data involving 3D models of GBM against 2D models from 22 studies identified from four databases (PubMed, ScienceDirect, Medline, and Embase). From a total of 499 genes reported in these studies, 313 (63%) genes were upregulated across 3D models cultured using different scaffolds. Our analysis showed that 4 of the replicable upregulated genes are associated with GBM stemness, epithelial to mesenchymal transition (EMT), hypoxia, and migration-related genes regardless of the type of scaffolds, displaying close resemblances to primitive undifferentiated tumour phenotypes that are associated with decreased overall survival and increased hazard ratio in GBM patients. The upregulation of drug response and drug efflux genes (e.g. cytochrome P450s and ABC transporters) mirrors the GBM genetic landscape that contributes to in vivo and clinical treatment resistance. These upregulated genes displayed strong protein-protein interactions when analysed using an online bioinformatics software (STRING). These findings reinforce the need for widespread transition to 3D GBM models as a relatively inexpensive humanised pre-clinical tool with suitable genetic biomarkers to bridge clinical gaps in potential therapeutic evaluations.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Muhamad N A Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
5
|
Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochim Biophys Acta Rev Cancer 2021; 1876:188553. [PMID: 33915221 DOI: 10.1016/j.bbcan.2021.188553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The commencement of cancer is attributed to one or a few cells that become rogue and attain the property of immortality. The inception of distinct cancer cell clones during the hyperplastic and dysplastic stages of cancer progression is the utimate consequence of the dysregulated cellular pathways and the proliferative potential itself. Furthermore, a critical factor that adds a layer of complexity to this pre-existent intra-tumoral heterogeneity (ITH) is the foundation of an oxygen gradient, that is established due to the improper architecture of the tumor vasculature. Therefore, as a resultant effect, the poorly oxygenated regions thus formed and characterized as hypoxic, promote the emergence of aggressive and treatment-resistant cancer cell clones. The extraordinary property of the hypoxic cancer cells to exist harmoniously with cancerous and non-cancerous cells in the tumor microenvironment (TME) further increases the intricacies of ITH. Here in this review, the pivotal influence of differential oxygen concentrations in shaping the ITH is thoroughly discussed. We also emphasize on the vitality of the interacting networks that govern the overall fate of oxygen gradient-dependent origin of tumor heterogeneity. Additionally, the implications of less-appreciated reverse Warburg effect, a symbiotic metabolic coupling, and the associated epigenetic regulation of rewiring of cancer metabolism in response to oxygen gradients, have been highlighted as critical influencers of ITH.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Shruti G Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
6
|
Corsinovi D, Usai A, Sarlo MD, Giannaccini M, Ori M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med Chem 2021; 22:748-759. [PMID: 33797388 DOI: 10.2174/1871520621666210402111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies. OBJECTIVE In this mini-review we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient's biopsy. CONCLUSION Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.
Collapse
Affiliation(s)
- Debora Corsinovi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa. Italy
| | - Alice Usai
- Department of Biology, University of Pisa, Pisa. Italy
| | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa. Italy
| |
Collapse
|
7
|
Advanced Spheroid, Tumouroid and 3D Bioprinted In-Vitro Models of Adult and Paediatric Glioblastoma. Int J Mol Sci 2021; 22:ijms22062962. [PMID: 33803967 PMCID: PMC8000246 DOI: 10.3390/ijms22062962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
The life expectancy of patients with high-grade glioma (HGG) has not improved in decades. One of the crucial tools to enable future improvement is advanced models that faithfully recapitulate the tumour microenvironment; they can be used for high-throughput screening that in future may enable accurate personalised drug screens. Currently, advanced models are crucial for identifying and understanding potential new targets, assessing new chemotherapeutic compounds or other treatment modalities. Recently, various methodologies have come into use that have allowed the validation of complex models—namely, spheroids, tumouroids, hydrogel-embedded cultures (matrix-supported) and advanced bioengineered cultures assembled with bioprinting and microfluidics. This review is designed to present the state of advanced models of HGG, whilst focusing as much as is possible on the paediatric form of the disease. The reality remains, however, that paediatric HGG (pHGG) models are years behind those of adult HGG. Our goal is to bring this to light in the hope that pGBM models can be improved upon.
Collapse
|
8
|
Merrill NM, Vandecan NM, Day KC, Palmbos PL, Day ML, Udager AM, Merajver SD, Soellner MB. MEK is a promising target in the basal subtype of bladder cancer. Oncotarget 2020; 11:3921-3932. [PMID: 33216841 PMCID: PMC7646827 DOI: 10.18632/oncotarget.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/24/2020] [Indexed: 12/03/2022] Open
Abstract
While many resources exist for the drug screening of bladder cancer cell lines in 2D culture, it is widely recognized that screening in 3D culture is more representative of in vivo response. Importantly, signaling changes between 2D and 3D culture can result in changes to drug response. To address the need for 3D drug screening of bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 652 investigational small-molecules and 3 clinically relevant drug combinations in 3D cell culture. Our goal was to identify compounds and classes of compounds with efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for these bladder cancer cell lines, we correlated the genomic molecular parameters with drug response, to identify potentially novel groups of tumors that are vulnerable to specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors are a promising targeted therapy for the basal subtype of bladder cancer, and our data indicate that drug screening of 3D cultures provides an important resource for hypothesis generation.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Temporal changes guided by mesenchymal stem cells on a 3D microgel platform enhance angiogenesis in vivo at a low-cell dose. Proc Natl Acad Sci U S A 2020; 117:19033-19044. [PMID: 32709748 PMCID: PMC7430977 DOI: 10.1073/pnas.2008245117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Therapeutic factors secreted by mesenchymal stem cells (MSCs) promote angiogenesis in vivo. However, delivery of MSCs in the absence of a cytoprotective environment offers limited efficacy due to low cell retention, poor graft survival, and the nonmaintenance of a physiologically relevant dose of growth factors at the injury site. The delivery of stem cells on an extracellular matrix (ECM)-based platform alters cell behavior, including migration, proliferation, and paracrine activity, which are essential for angiogenesis. We demonstrate the biophysical and biochemical effects of preconditioning human MSCs (hMSCs) for 96 h on a three-dimensional (3D) ECM-based microgel platform. By altering the macromolecular concentration surrounding cells in the microgels, the proangiogenic phenotype of hMSCs can be tuned in a controlled manner through cell-driven changes in extracellular stiffness and "outside-in" integrin signaling. The softest microgels were tested at a low cell dose (5 × 104 cells) in a preclinical hindlimb ischemia model showing accelerated formation of new blood vessels with a reduced inflammatory response impeding progression of tissue damage. Molecular analysis revealed that several key mediators of angiogenesis were up-regulated in the low-cell-dose microgel group, providing a mechanistic insight of pathways modulated in vivo. Our research adds to current knowledge in cell-encapsulation strategies by highlighting the importance of preconditioning or priming the capacity of biomaterials through cell-material interactions. Obtaining therapeutic efficacy at a low cell dose in the microgel platform is a promising clinical route that would aid faster tissue repair and reperfusion in "no-option" patients suffering from peripheral arterial diseases, such as critical limb ischemia (CLI).
Collapse
|
10
|
Nelson SR, Walsh N. Genetic Alterations Featuring Biological Models to Tailor Clinical Management of Pancreatic Cancer Patients. Cancers (Basel) 2020; 12:E1233. [PMID: 32423157 PMCID: PMC7281628 DOI: 10.3390/cancers12051233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide. This high mortality rate is due to the disease's lack of symptoms, resulting in a late diagnosis. Biomarkers and treatment options for pancreatic cancer are also limited. In order to overcome this, new research models and novel approaches to discovering PDAC biomarkers are required. In this review, we outline the hereditary and somatic causes of PDAC and provide an overview of the recent genome wide association studies (GWAS) and pathway analysis studies. We also provide a summary of some of the systems used to study PDAC, including established and primary cell lines, patient-derived xenografts (PDX), and newer models such as organoids and organ-on-chip. These ex vitro laboratory systems allow for critical research into the development and progression of PDAC.
Collapse
Affiliation(s)
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland;
| |
Collapse
|
11
|
Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020; 15:955-967. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Solid tumors are highly influenced by a complex tumor microenvironment (TME) that cannot be modeled with conventional two-dimensional (2D) cell culture. In addition, monolayer culture conditions tend to induce undesirable molecular and phenotypic cellular changes. The discrepancy between in vitro and in vivo is an important factor accounting for the high failure rate in drug development. Three-dimensional (3D) multicellular tumor spheroids (MTS) more closely resemble the in vivo situation in avascularized tumors. AREAS COVERED This review describes the use of MTS for anti-cancer drug discovery, with an emphasis on high-throughput screening (HTS) compatible assays. In particular, we focus on how these assays can be used for target discovery in the context of the TME. EXPERT OPINION Arrayed MTS in microtiter plates are HTS compatible but remain more expensive and time consuming than their 2D culture counterpart. It is therefore imperative to use assays with multiplexed readouts, in order to maximize the information that can be gained with the screen. In this context, high-content screening allowing to uncover microenvironmental dependencies is the true added value of MTS-based screening compared to 2D culture-based screening. Hit translation in animal models will, however, be key to allow a broader use of MTS-based screening in industry.
Collapse
Affiliation(s)
- Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland.,Department of Biology, Debiopharm , Lausanne, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
12
|
Tiburcio PDB, Gillespie DL, Jensen RL, Huang LE. Extracellular glutamate and IDH1 R132H inhibitor promote glioma growth by boosting redox potential. J Neurooncol 2020; 146:427-437. [PMID: 32020473 DOI: 10.1007/s11060-019-03359-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Somatic mutations of the isocitrate dehydrogenase 1 (IDH1) gene, mostly substituting Arg132 with histidine, are associated with better patient survival, but glioma recurrence and progression are nearly inevitable, resulting in disproportionate morbidity and mortality. Our previous studies demonstrated that in contrast to hemizygous IDH1R132H (loss of wild-type allele), heterozygous IDH1R132H is intrinsically glioma suppressive but its suppression of three-dimensional (3D) growth is negated by extracellular glutamate and reducing equivalent. This study sought to understand the importance of 3D culture in IDH1R132H biology and the underlying mechanism of the glutamate effect. METHODS RNA sequencing data of IDH1R132H-heterozygous and IDH1R132H-hemizygous glioma cells cultured under two-dimensional (2D) and 3D conditions were subjected to unsupervised hierarchal clustering and gene set enrichment analysis. IDH1R132H-heterozygous and IDH1R132H-hemizygous tumor growth were compared in subcutaneous and intracranial transplantations. Short-hairpin RNA against glutamate dehydrogenase 2 gene (GLUD2) expression was employed to determine the effects of glutamate and the mutant IDH1 inhibitor AGI-5198 on redox potential in IDH1R132H-heterozygous cells. RESULTS In contrast to IDH1R132H-heterozygous cells, 3D-cultured but not 2D-cultured IDH1R132H-hemizygous cells were clustered with more malignant gliomas, possessed the glioblastoma mesenchymal signature, and exhibited aggressive tumor growth. Although both extracellular glutamate and AGI-5198 stimulated redox potential for 3D growth of IDH1R132H-heterozygous cells, GLUD2 expression was required for glutamate, but not AGI-5198, stimulation. CONCLUSION 3D culture is more relevant to IDH1R132H glioma biology. The importance of redox homeostasis in IDH1R132H glioma suggests that metabolic pathway(s) can be explored for therapeutic targeting, whereas IDH1R132H inhibitors may have counterproductive consequences in patient treatment.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84132, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David L Gillespie
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84132, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84132, USA. .,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Cytotoxicity of multicellular cancer spheroids, antibacterial, and antifungal of selected sulfonamide derivatives coupled with a salicylamide and/or anisamide scaffold. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02382-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Musah-Eroje A, Watson S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol 2019; 142:231-240. [PMID: 30694423 PMCID: PMC6449313 DOI: 10.1007/s11060-019-03107-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Purpose Glioblastoma (GBM) is the most common invasive malignant brain tumour in adults. It is traditionally investigated in vitro by culturing cells as a monolayer (2D culture) or as neurospheres (clusters enriched in cancer stem cells) but neither system accurately reflects the complexity of the three-dimensional (3D) chemoresistant microenvironment of GBM. Materials and methods Using three GBM cell-lines (U87, U251, and SNB19), the effect of culturing cells in a Cultrex-based basement membrane extract (BME) [3D Tumour Growth Assay (TGA)] on morphology, gene expression, metabolism, and temozolomide chemoresistance was investigated. Results Cells were easily harvested from the 3D model and cultured as a monolayer (2D) and neurospheres. Indeed, the SNB19 cells formed neurospheres only after they were first cultured in the 3D model. The expression of CD133 and OCT4 was upregulated in the neurosphere and 3D assays respectively. Compared with cells cultured in the 2D model, cells were more resistant to temozolomide in the 3D model and this resistance was potentiated by hypoxia. Conclusion Taken together, these results suggest that micro-environmental factors influence GBM sensitivity to temozolomide. Knowledge of the mechanisms involved in temozolomide resistance in this 3D model might lead to the identification of new strategies that enable the more effective use of the current standard of care agents. Electronic supplementary material The online version of this article (10.1007/s11060-019-03107-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmed Musah-Eroje
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK. .,School of Life Sciences, University of Bedfordshire, Luton, UK.
| | - Sue Watson
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Shehzad A, Ravinayagam V, AlRumaih H, Aljafary M, Almohazey D, Almofty S, Al-Rashid NA, Al-Suhaimi EA. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr Pharm Des 2019; 25:3599-3607. [PMID: 31612821 DOI: 10.2174/1381612825666191014163923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Vijaya Ravinayagam
- Scientific Research & Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamad AlRumaih
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah Aljafary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Almohazey
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Almofty
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor A Al-Rashid
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
16
|
Badiola-Mateos M, Hervera A, Del Río JA, Samitier J. Challenges and Future Prospects on 3D in-vitro Modeling of the Neuromuscular Circuit. Front Bioeng Biotechnol 2018; 6:194. [PMID: 30622944 PMCID: PMC6297173 DOI: 10.3389/fbioe.2018.00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.
Collapse
Affiliation(s)
- Maider Badiola-Mateos
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
17
|
Hamilton G, Rath B. Applicability of tumor spheroids for in vitro chemosensitivity assays. Expert Opin Drug Metab Toxicol 2018; 15:15-23. [DOI: 10.1080/17425255.2019.1554055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Diserens G, Vermathen M, Zurich MG, Vermathen P. Longitudinal investigation of the metabolome of 3D aggregating brain cell cultures at different maturation stages by 1H HR-MAS NMR. Anal Bioanal Chem 2018; 410:6733-6749. [PMID: 30094790 DOI: 10.1007/s00216-018-1295-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to establish the developmental profile of metabolic changes of 3D aggregating brain cell cultures by 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. The histotypic 3D brain aggregate, containing all brain cell types, is an excellent model for mechanistic studies including OMICS analysis; however, their metabolic profile has not been yet fully investigated. Chemometric analysis revealed a clear separation of samples from the different maturation time points. Metabolite concentration evolutions could be followed and revealed strong and various metabolic alterations. The strong metabolite evolution emphasizes the brain modeling complexity during maturation, possibly reflecting physiological processes of brain tissue development. The small observed intra- and inter-experimental variabilities show the robustness of the combination of 1H-HR-MAS NMR and 3D brain aggregates, making it useful to investigate mechanisms of toxicity that will ultimately contribute to improve predictive neurotoxicology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Gaëlle Diserens
- Departments of BioMedical Research and Radiology, University of Bern, Erlachstrasse 9a, 3012, Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Marie-Gabrielle Zurich
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University of Bern, Erlachstrasse 9a, 3012, Bern, Switzerland.
| |
Collapse
|
19
|
Coelho R, Marcos-Silva L, Mendes N, Pereira D, Brito C, Jacob F, Steentoft C, Mandel U, Clausen H, David L, Ricardo S. Mucins and Truncated O-Glycans Unveil Phenotypic Discrepancies between Serous Ovarian Cancer Cell Lines and Primary Tumours. Int J Mol Sci 2018; 19:ijms19072045. [PMID: 30011875 PMCID: PMC6073732 DOI: 10.3390/ijms19072045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023] Open
Abstract
Optimal research results rely on the selection of cellular models capable of recapitulating the characteristics of primary tumours from which they originate. The expression of mucins (MUC16 and MUC1) and truncated O-glycans (Tn, STn and T) represents a characteristic footprint of serous ovarian carcinomas (SOCs). Therefore, selecting ovarian cancer (OVCA) cell lines that reflect this phenotype is crucial to explore the putative biological role of these biomarkers in the SOC setting. Here, we investigated a panel of OVCA cell lines commonly used as SOC models, and tested whether, when cultured in 2D and 3D conditions, these recapitulate the mucin and O-glycan expression profiles of SOCs. We further explored the role of truncating the O-glycosylation capacity in OVCAR3 cells through knockout of the COSMC chaperone, using in vitro and in vivo assays. We found that the majority of OVCA cell lines of serous origin do not share the mucin and truncated O-glycan footprint of SOCs, although 3D cultures showed a higher resemblance. We also found that genetic truncation of the O-glycosylation capacity of OVCAR3 cells did not enhance oncogenic features either in vitro or in vivo. This study underscores the importance of well-characterized cellular models to study specific features of ovarian cancer.
Collapse
Affiliation(s)
- Ricardo Coelho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
| | - Lara Marcos-Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Nuno Mendes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
| | - Daniela Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Francis Jacob
- Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Leonor David
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
| | - Sara Ricardo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
| |
Collapse
|
20
|
Yue X, Nguyen TD, Zellmer V, Zhang S, Zorlutuna P. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials 2018; 170:37-48. [DOI: 10.1016/j.biomaterials.2018.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023]
|
21
|
Nguyen-Thi LH, Nguyen ST, Tran TP, Phan-Lu CN, Van Pham P, The Van T. Anti-cancer Effect of Xao Tam Phan Paramignya trimera Methanol Root Extract on Human Breast Cancer Cell Line MCF-7 in 3D Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1292:13-25. [DOI: 10.1007/5584_2018_148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models. Int J Biomater 2017; 2017:8074890. [PMID: 29599800 PMCID: PMC5828246 DOI: 10.1155/2017/8074890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Preparation of three-dimensional (3D) porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic) acid (PLGA) or polycaprolactone (PCL). Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM) proteins and their receptors. Estrogen receptor- (ER-) positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT) treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.
Collapse
|
23
|
Choi JH, Cho HY, Choi JW. Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering (Basel) 2017; 4:E77. [PMID: 28952555 PMCID: PMC5615323 DOI: 10.3390/bioengineering4030077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip can emulate human physiological functions, particularly at the organ level, as well as its specific roles in the body. Due to the complexity of the structure of the central nervous system and its intercellular interaction, there remains an urgent need for the development of human brain or nervous system models. Thus, various microdevice models have been proposed to mimic actual human brain physiology, which can be categorized as nervous system-on-a-chip. Nervous system-on-a-chip platforms can prove to be promising technologies, through the application of their biomimetic features to the etiology of neurodegenerative diseases. This article reviews the microdevices for nervous system-on-a-chip platform incorporated with neurobiology and microtechnology, including microfluidic designs that are biomimetic to the entire nervous system. The emulation of both neurodegenerative disorders and neural stem cell behavior patterns in micro-platforms is also provided, which can be used as a basis to construct nervous system-on-a-chip.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| |
Collapse
|
24
|
Liu M, Li R, Tang Y, Chang J, Han R, Zhang S, Jiang N, Ma F. New applications of the acridine orange fluorescence staining method: Screening for circulating tumor cells. Oncol Lett 2017; 13:2221-2229. [PMID: 28454384 PMCID: PMC5403171 DOI: 10.3892/ol.2017.5724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to explore use of the acridine orange fluorescence (AO-F) staining method for screening of circulating tumor cells (CTCs) in renal cell carcinoma (RCC) patients. The AO-F positive staining rate of live and dead tumor cells was calculated. The positive staining rate in the live group was 93.4±3.0%, while the dead group failed to emit specific fluorescence. A known number of tumor cells were added to peripheral blood, and the detection sensitivity of the four groups (50, 100, 200 and 500 cells/tube) was 10.2±3.8, 9.2±2.3, 10.8±2.6 and 10.5±1.9%, respectively. The average detection sensitivity of the four groups was 10.16±2.73%. There was a positive correlation between the number of cells that was positively stained with AO-F and the total number cells in the system (χ2=0.959; P<0.001). Subsequently, the AO-F staining method was used to detect positive staining cells in 8 healthy volunteers (control group), and 112 non-metastatic and 27 metastatic RCC patients. The positive staining rate was 13.67% (19/139) in RCC patients, while none of the control group was positive. The AO-F positive staining rate was not significantly different between the metastatic and non-metastatic patients according to age, gender, the pathological pattern, T2/3 (according to the Tumor-Node-Metastasis classification) or Fuhrman grade, while there was a significant difference according to T1. The positive staining rate was 8.93% (10/112) for non-metastatic patients and 33.33% (9/27) for metastatic patients, which showed a significant difference (P<0.05). In 112 non-metastatic and 27 metastatic patients, the positive staining rate was not significantly associated with gender, age, tumor size, the pathological pattern, T classification, Fuhrman grade, the presence of a lesion or metastasis to the lungs. The present study demonstrated that the method of CTC staining with AO-F, which has high reproducibility and specificity, was feasible for identifying CTCs and warrants further study.
Collapse
Affiliation(s)
- Min Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ruizhe Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yang Tang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jiwu Chang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Rong Han
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shumin Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Fuling Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
25
|
Fine B, Vunjak-Novakovic G. Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomater Sci Eng 2017; 3:1884-1897. [PMID: 33440547 DOI: 10.1021/acsbiomaterials.6b00662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide here an historical context of how studies utilizing engineered human cardiac muscle can complement and in some cases substitute animal and cell models for studies of disease and drug testing. We give an overview of the development of animal models and discuss the ability of novel human tissue models to overcome limited predictive power of cell culture and animal models in studies of drug efficacy and safety. The in vitro generation of cardiac tissue is discussed in the context of state of the art in the field. Finally we describe the assembly of multitissue platforms for more accurate representation of integrated human cardiac physiology and consider the advantages of in silico drug trials to augment our ability to predict drug-drug and organ-organ interactions in humans.
Collapse
Affiliation(s)
- Barry Fine
- Department of Biomedical Engineering and ‡Department of Medicine, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, New York 10027, United States
| |
Collapse
|
26
|
Sun H, Merrill D, An R, Turek J, Matei D, Nolte DD. Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:16007. [PMID: 28301634 PMCID: PMC5221565 DOI: 10.1117/1.jbo.22.1.016007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 05/04/2023]
Abstract
Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.
Collapse
Affiliation(s)
- Hao Sun
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Daniel Merrill
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Ran An
- Animated Dynamics, Inc., 5770 Decatur Boulevard Suite A, Indianapolis, Indiana 46241, United States
| | - John Turek
- Purdue University, Department of Basic Medical Sciences, West Lafayette, 625 Harrison Street, Indiana 47907, United States
| | - Daniela Matei
- Northwestern University School of Medicine, 303 East SuperiorChicago, Illinois 60611, United States
| | - David D. Nolte
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0056] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Smith SJ, Ward JH, Tan C, Grundy RG, Rahman R. Endothelial-like malignant glioma cells in dynamic three dimensional culture identifies a role for VEGF and FGFR in a tumor-derived angiogenic response. Oncotarget 2016. [PMID: 26203665 PMCID: PMC4673156 DOI: 10.18632/oncotarget.4339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aims: Recent studies have observed that cells from high-grade glial tumors are capable of assuming an endothelial phenotype and genotype, a process termed ‘vasculogenic mimicry’ (VM). Here we model and manipulate VM in dynamic 3-dimensional (3D) glioma cultures. Methods: The Rotary Cell Culture System (RCCS) was used to derive large macroscopic glioma aggregates, which were sectioned for immunohistochemistry and RNA extracted prior to angiogenic array-PCR. Results: A 3D cell culture induced microenvironment (containing only glial cells) is sufficient to promote expression of the endothelial markers CD105, CD31 and vWF in a proportion of glioma aggregates in vitro. Many pro-angiogenic genes were upregulated in glioma aggregates and in primary explants and glioma cells were capable of forming tubular-like 3D structures under endothelial-promoting conditions. Competitive inhibition of either vascular endothelial growth factor or fibroblast growth factor receptor was sufficient to impair VM and downregulate the tumor-derived angiogenic response, whilst impairing tumor cell derived tubule formation. Glioma xenografts using the same cells reveal tumor-derived vessel-like structures near necrotic areas, consistent with widespread tumor-derived endothelial expression in primary glioma tissue. Conclusions: Our findings support studies indicating that tumor-derived endothelial cells arise in gliomas and describe a dynamic 3D culture as a bona fide model to interrogate the molecular basis of this phenomenon in vitro. Resistance to current anti-angiogenic therapies and the contribution of tumor derived endothelial cells to such resistance are amenable to study using the RCCS.
Collapse
Affiliation(s)
- Stuart J Smith
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jennifer H Ward
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Christopher Tan
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard G Grundy
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Logun MT, Bisel NS, Tanasse EA, Zhao W, Gunasekera B, Mao L, Karumbaiah L. Glioma Cell Invasion is Significantly Enhanced in Composite Hydrogel Matrices Composed of Chondroitin 4- and 4,6-Sulfated Glycosaminoglycans. J Mater Chem B 2016; 4:6052-6064. [PMID: 28217304 DOI: 10.1039/c6tb01083k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of astrocytoma accounting for a majority of primary malignant brain tumors in the United States. Chondroitin sulfate proteoglycans (CSPGs) and their glycosaminoglycan (GAG) side chains are key constituents of the brain extracellular matrix (ECM) implicated in promoting tumor invasion. However, the mechanisms by which sulfated CS-GAGs promote brain tumor invasion are currently unknown. We hypothesize that glioma cell invasion is triggered by the altered sulfation of CS-GAGs in the tumor extracellular environment, and that this is potentially mediated by independent mechanisms involving CXCL12/CXCR4 and LAR signaling respectively. This was tested in vitro by encapsulating the human glioma cell line U87MG-EGFP into monosulfated (4-sulfated; CS-A), composite (4 and 4,6-sulfated; CS-A/E), unsulfated hyaluronic acid (HA), and unsulfated agarose (AG; polysaccharide) hydrogels within microfluidics-based choice assays. Our results demonstrated the enhanced preferential cell invasion into composite hydrogels, when compared to other hydrogel matrices (p<0.05). Haptotaxis assays demonstrated the significantly (p<0.05) faster migration of U87MG-EGFP cells in CXCL12 containing CS-GAG hydrogels when compared to other hydrogel matrices containing the same chemokine concentration. This is likely due to the significantly (p<0.05) greater affinity of composite CS-GAGs to CXCL12 over other hydrogel matrices. Results from qRT-PCR assays further demonstrated the significant (p<0.05) upregulation of the chemokine receptor CXCR4, and the CSPG receptor LAR in glioma cells within CS-GAG hydrogels compared to control hydrogels. Western blot analysis of cell lysates derived from glioma cells encapsulated in different hydrogel matrices further corroborate qRT-PCR results, and indicate the presence of a potential variant of LAR that is selectively expressed only in glioma cells encapsulated in CS-GAG hydrogels. These results suggest that sulfated CS-GAGs may directly induce enhanced invasion and haptotaxis of glioma cells associated with aggressive brain tumors via distinct mechanisms.
Collapse
Affiliation(s)
- Meghan T Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, Athens, Georgia
| | - Nicole S Bisel
- Regenerative Bioscience Center, ADS Complex, University of Georgia, Athens, Georgia
| | - Emily A Tanasse
- College of Engineering, Boise State University, Boise, Idaho
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Bhagya Gunasekera
- Regenerative Bioscience Center, ADS Complex, University of Georgia, Athens, Georgia
| | - Leidong Mao
- College of Engineering, University of Georgia, Athens, Georgia
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, Athens, Georgia
| |
Collapse
|
30
|
Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: Choosing the right tool for the job. J Biotechnol 2016; 236:10-25. [PMID: 27498314 DOI: 10.1016/j.jbiotec.2016.07.028] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma. The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively. In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research.
Collapse
Affiliation(s)
- Delyan P Ivanov
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - David A Walker
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
31
|
Nguyen HTL, Nguyen ST, Van Pham P. Concise Review: 3D cell culture systems for anticancer drug screening. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, Couce M, McLendon RE, Sloan AE, Rich JN. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res 2016; 76:2465-77. [PMID: 26896279 DOI: 10.1158/0008-5472.can-15-2402] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
Abstract
Many cancers feature cellular hierarchies that are driven by tumor-initiating cancer stem cells (CSC) and rely on complex interactions with the tumor microenvironment. Standard cell culture conditions fail to recapitulate the original tumor architecture or microenvironmental gradients and are not designed to retain the cellular heterogeneity of parental tumors. Here, we describe a three-dimensional culture system that supports the long-term growth and expansion of tumor organoids derived directly from glioblastoma specimens, including patient-derived primary cultures, xenografts, genetically engineered glioma models, or patient samples. Organoids derived from multiple regions of patient tumors retain selective tumorigenic potential. Furthermore, organoids could be established directly from brain metastases not typically amenable to in vitro culture. Once formed, tumor organoids grew for months and displayed regional heterogeneity with a rapidly dividing outer region of SOX2(+), OLIG2(+), and TLX(+) cells surrounding a hypoxic core of primarily non-stem senescent cells and diffuse, quiescent CSCs. Notably, non-stem cells within organoids were sensitive to radiotherapy, whereas adjacent CSCs were radioresistant. Orthotopic transplantation of patient-derived organoids resulted in tumors displaying histologic features, including single-cell invasiveness, that were more representative of the parental tumor compared with those formed from patient-derived sphere cultures. In conclusion, we present a new ex vivo model in which phenotypically diverse stem and non-stem glioblastoma cell populations can be simultaneously cultured to explore new facets of microenvironmental influences and CSC biology. Cancer Res; 76(8); 2465-77. ©2016 AACR.
Collapse
Affiliation(s)
- Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Maricruz Rivera
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lisa C Spangler
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Marta Couce
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Roger E McLendon
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Andrew E Sloan
- Center for Brain Tumor and Neuro-Oncology, Department of Neurological Surgery, Neurological Institute and Seidman Cancer Center, Case School of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
33
|
Cox MC, Reese LM, Bickford LR, Verbridge SS. Toward the Broad Adoption of 3D Tumor Models in the Cancer Drug Pipeline. ACS Biomater Sci Eng 2015; 1:877-894. [PMID: 33429520 DOI: 10.1021/acsbiomaterials.5b00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite a cost of approximately $1 billion to develop a new cancer drug, about 90% of drugs that enter clinical trials fail. A tremendous opportunity exists to streamline the drug selection and testing process, and innovative approaches promise to reduce the burdensome cost of health care for those suffering from cancer. There is great potential for 3D models of human tumors to complement more traditional testing methods; however, the shift from 2D to 3D assays at early stages of the drug discovery and development process is far from widely accepted. 3D platforms range from simple tumor spheroids to more complex microfluidic hydrogels that better mimic the tumor microenvironment. While several companies have developed and patented advanced high-throughput 3D platforms for drug screening, their cost and complexity have limited their adoption as an industry standard. In this review, we will highlight the various tumor platforms that have been developed, emphasizing the approaches that have successfully led to commercial products. We will then consider potential directions toward more relevant tumor models, advantages of the adoption of such platforms within the drug development and screening process, and new opportunities in personalized medicine that such platforms will uniquely enable.
Collapse
Affiliation(s)
- Megan C Cox
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Laura M Reese
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Lissett R Bickford
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
34
|
Panditharatna E, Yaeger K, Kilburn LB, Packer RJ, Nazarian J. Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genet 2015. [PMID: 26206682 DOI: 10.1016/j.cancergen.2015.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the most lethal pediatric central nervous system (CNS) cancers. Recently, a surge in molecular studies of DIPG has occurred, in large part due to the increased availability of tumor tissue through donation of post-mortem specimens. These new discoveries have established DIPGs as biologically distinct from adult gliomas, harboring unique genomic aberrations. Mutations in histone encoding genes are shown to be associated with >70% of DIPG cases. However, the exact molecular mechanisms of the tumorigenicity of these mutations remain elusive. Understanding the driving mutations and genomic landscape of DIPGs can now guide the development of targeted therapies for this incurable childhood cancer.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC, USA; Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Kurt Yaeger
- Department of Neurosurgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Lindsay B Kilburn
- Division of Oncology, Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
35
|
Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 2015; 16:5517-27. [PMID: 25768338 PMCID: PMC4394490 DOI: 10.3390/ijms16035517] [Citation(s) in RCA: 637] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design.
Collapse
Affiliation(s)
- Delphine Antoni
- Radiotherapy Department, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| | - Hélène Burckel
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| | - Elodie Josset
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| | - Georges Noel
- Radiotherapy Department, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| |
Collapse
|
36
|
Cockle JV, Picton S, Levesley J, Ilett E, Carcaboso AM, Short S, Steel LP, Melcher A, Lawler SE, Brüning-Richardson A. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting. Br J Cancer 2015; 112:693-703. [PMID: 25628092 PMCID: PMC4333505 DOI: 10.1038/bjc.2015.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. METHODS Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. RESULTS All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. CONCLUSIONS Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours.
Collapse
Affiliation(s)
- J V Cockle
- 1] Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK [2] Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK
| | - S Picton
- Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK
| | - J Levesley
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - E Ilett
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - A M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Preclinical Therapeutics and Drug Delivery Research Program Santa Rosa, 39-57, 4th floor 08950 Esplugues de Llobregat, Barcelona, Spain
| | - S Short
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - L P Steel
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - A Melcher
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - S E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, HIM 930A, Boston, MA, 02115, USA
| | - A Brüning-Richardson
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
37
|
Yang N, Yan T, Zhu H, Liang X, Leiss L, Sakariassen PØ, Skaftnesmo KO, Huang B, Costea DE, Enger PØ, Li X, Wang J. A co-culture model with brain tumor-specific bioluminescence demonstrates astrocyte-induced drug resistance in glioblastoma. J Transl Med 2014; 12:278. [PMID: 25280402 PMCID: PMC4198700 DOI: 10.1186/s12967-014-0278-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Although several studies suggest that stromal fibroblasts mediate treatment resistance in several cancer types, little is known about how tumor-associated astrocytes modulate the treatment response in brain tumors. Since traditionally used metabolic assays do not distinguish metabolic activity between stromal and tumor cells, and since 2-dimensional co-culture system does not recreate the formidable complexity of the microenvironment within 3-dimensional structures such as solid tumor tissue, we instead established a glioblastoma (GBM) cell-specific bioluminescent assay for direct measurements of tumor cell viability in the treatment of clinical relevant drugs. METHODS Using lentiviral transfection, we established a panel of human GBM cell lines constitutively expressing a fusion transgene encoding luciferase and the enhanced green fluorescence protein (eGFP). We then initiated co-cultures with immortalized astrocytes, TNC-1, and the eGFP/Luc GBM cell lines. Next, we treated all eGFP/Luc GBM cell lines with Temozolomide (TMZ) or Doxorubicin, comparing co-cultures of glioblastoma (GBM) cells and TNC-1 astrocytes with mono-cultures of eGFP/Luc GBM cells. Cell viability was quantitated by measuring the luciferase expression. RESULTS Titration experiments demonstrated that luciferase expression was proportional to the number of eGFP/Luc GBM cells, whereas it was not influenced by the number of TNC-1 cells present. Notably, the presence of TNC-1 astrocytes mediated significantly higher cell survival after TMZ treatment in the U251, C6, A172 cell lines as well as the in vivo propagated primary GBM tumor cell line (P3). Moreover, TNC-1 astrocytes mediated significantly higher survival after Doxorubicin treatment in the U251, and LN18 glioma cell lines. CONCLUSION Glioma cell-specific bioluminescent assay is a reliable tool for assessment of cell viability in the brain tumor cell compartment following drug treatment. Moreover, we have applied this assay to demonstrate that astrocytes can modulate chemo sensitivity of GBM tumor cells. These effects varied both with the cell line and cytotoxic drug that were used, suggesting that several mechanisms may be involved.
Collapse
Affiliation(s)
- Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Brain Science Research Institute, Shandong University, Jinan, China.
| | - Tao Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Brain Science Research Institute, Shandong University, Jinan, China.
| | - Huaiyang Zhu
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Xiao Liang
- The Gade Laboratory of Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Lina Leiss
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Neuro Clinic, Haukeland University Hospital, Bergen, Norway.
| | | | | | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.
- Brain Science Research Institute, Shandong University, Jinan, China.
| | - Daniela Elena Costea
- The Gade Laboratory of Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.
- Brain Science Research Institute, Shandong University, Jinan, China.
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
38
|
Trends in polymeric delivery of nucleic acids to tumors. J Control Release 2013; 170:209-18. [PMID: 23770011 DOI: 10.1016/j.jconrel.2013.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/21/2022]
Abstract
Delivery of nucleic acids to tumors has received extensive attention in the past few decades since these molecules are capable of treating disease by modulating the source of abnormalities. Although high efficiency and low toxicity of numerous delivery systems for nucleic acids have been approved frequently with in vitro assays, contradictions have been observed in many cases between these results and what has occurred in the dynamic in vivo situation. Filling this gap seems to be crucial for further preclinical development of such systems. In this paper, we discuss various barriers which polymeric DNA or siRNA nanoparticles encounter upon systemic administration with an aim to assist in designing more relevant in vitro assays. Furthermore, individual considerations concerning delivery of DNA and siRNA have been addressed.
Collapse
|
39
|
Klotz D. Colorectal cancer stem cells and their implications for novel anticancer therapy. Expert Rev Anticancer Ther 2013; 13:461-8. [PMID: 23560840 DOI: 10.1586/era.13.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anticancer therapy relies on targeting highly proliferative cells. Commonly used chemotherapy does not selectively target individual cancer cells. The identification of distinct cancer stem cells that have the unique ability to engraft tumors and maintain cancer self-renewal may prove vital in the development of novel and selective anticancer therapy. Therefore, the discovery of colorectal cancer stem cell markers has attracted much attention. However, it is still controversial whether current markers for cancer cell subpopulations are selectively labeling cancer stem cells, whether these markers contribute to cancer stem cell function and how many cells within tumors maintain this stemness. For this reason, novel anticancer drug approaches need to be considered, that target selective cell death pathways, the tissue microenvironment and, additionally, multiple specific cancer (stem) cell markers. This triple approach of anticancer therapy may contribute to novel chemotherapeutic strategies and improve the understanding of human intestinal tumorigenesis; in particular, the distinct contribution of human cancer stem cells.
Collapse
Affiliation(s)
- Daniel Klotz
- Medical Sciences Division, University of Oxford and Pembroke College, Oxford, OX1 1DW, UK.
| |
Collapse
|