1
|
de Melo Yamamoto AP, Chiba FY, Astolphi RD, de Oliveira da Mota MS, Louzada MJQ, de Lima Coutinho Mattera MS, Garbin CAS, Ervolino E, Tsosura TVS, Belardi BE, Dos Santos RM, Okamoto MM, Machado UF, Matsushita DH. Effect of resistance training on osteopenic rat bones in neonatal streptozotocin-induced diabetes: Analysis of GLUT4 content and biochemical, biomechanical, densitometric, and microstructural evaluation. Life Sci 2021; 287:120143. [PMID: 34785192 DOI: 10.1016/j.lfs.2021.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the effect of resistance training-RT on glycemia, expression of the glucose transporter-GLUT4, bone mineral density-BMD, and microstructural and biomechanical properties of osteopenic rat bones in neonatal streptozotocin-induced diabetes. MAIN METHODS Sixty-four 5-day-old male rats were divided into two groups: control and diabetic rats injected with vehicle or streptozotocin, respectively. After 55 days, densitometric analysis-DA of the tibia was performed. These groups were subdivided into four subgroups: non-osteopenic control-CN, osteopenic control-OC, non-osteopenic diabetic-DM, and osteopenic diabetic-OD. The OC and OD groups were suspended by their tails for 21 days to promote osteopenia in the hindlimb; subsequently, a second DA was performed. The rats were subdivided into eight subgroups: sedentary control-SC, sedentary osteopenic control-SOC, exercised control-EC, exercised osteopenic control-EOC, sedentary diabetic-SD, sedentary osteopenic diabetic-SOD, exercised diabetic-ED, and exercised osteopenic diabetic-EOD. For RT, the rats climbed a ladder with weights secured to their tails for 12 weeks. After RT, a third DA was performed, and blood samples, muscles, and tibias were assessed to measure glycemia, insulinemia, GLUT4 content, bone maximum strength, fracture energy, extrinsic stiffness, BMD, cancellous bone area, trabecular number, and trabecular width. KEY FINDINGS After RT, glycemia, GLUT4 content, BMD, and bone microstructural and biomechanical properties were improved in diabetic rats (osteopenic and non-osteopenic). However, RT had no effect on these parameters in the EC and SC groups. SIGNIFICANCE These results suggest that RT improves GLUT4 content, BMD, and microstructural and biomechanical properties of bone in osteopenic and non-osteopenic diabetic rats and is effective in controlling glycemia.
Collapse
Affiliation(s)
- Aline Pedro de Melo Yamamoto
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Fernando Yamamoto Chiba
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| | - Rafael Dias Astolphi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Max Sander de Oliveira da Mota
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Mário Jefferson Quirino Louzada
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Maria Sara de Lima Coutinho Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Cléa Adas Saliba Garbin
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| | - Edilson Ervolino
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Thaís Verônica Saori Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Bianca Elvira Belardi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Rodrigo Martins Dos Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, São Paulo Institute of Biomedical Sciences, USP, Brazil.
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, São Paulo Institute of Biomedical Sciences, USP, Brazil.
| | - Doris Hissako Matsushita
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
2
|
Gurley JM, Ilkayeva O, Jackson RM, Griesel BA, White P, Matsuzaki S, Qaisar R, Van Remmen H, Humphries KM, Newgard CB, Olson AL. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes 2016; 65:3585-3597. [PMID: 27679559 PMCID: PMC5127250 DOI: 10.2337/db16-0709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Impaired GLUT4-dependent glucose uptake is a contributing factor in the development of whole-body insulin resistance in obese patients and obese animal models. Previously, we demonstrated that transgenic mice engineered to express the human GLUT4 gene under the control of the human GLUT4 promoter (i.e., transgenic [TG] mice) are resistant to obesity-induced insulin resistance. A likely mechanism underlying increased insulin sensitivity is increased glucose uptake in skeletal muscle. The purpose of this study was to investigate the broader metabolic consequences of enhanced glucose uptake into muscle. We observed that the expression of several nuclear and mitochondrially encoded mitochondrial enzymes was decreased in TG mice but that mitochondrial number, size, and fatty acid respiration rates were unchanged. Interestingly, both pyruvate and glutamate respiration rates were decreased in TG mice. Metabolomics analyses of skeletal muscle samples revealed that increased GLUT4 transgene expression was associated with decreased levels of some tricarboxylic acid intermediates and amino acids, whereas the levels of several glucogenic amino acids were elevated. Furthermore, fasting acyl carnitines in obese TG mice were decreased, indicating that increased GLUT4-dependent glucose flux decreases nutrient stress by altering lipid and amino acid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Jami M Gurley
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Robert M Jackson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Beth A Griesel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Phillip White
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Satochi Matsuzaki
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Rizwan Qaisar
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Holly Van Remmen
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Kenneth M Humphries
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Ann Louise Olson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
3
|
Doerner SK, Reis ES, Leung ES, Ko JS, Heaney JD, Berger NA, Lambris JD, Nadeau JH. High-Fat Diet-Induced Complement Activation Mediates Intestinal Inflammation and Neoplasia, Independent of Obesity. Mol Cancer Res 2016; 14:953-965. [PMID: 27535705 DOI: 10.1158/1541-7786.mcr-16-0153] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/24/2016] [Indexed: 12/18/2022]
Abstract
Obesity and related metabolic disturbances are closely associated with pathologies that represent a significant burden to global health. Epidemiological and molecular evidence links obesity and metabolic status with inflammation and increased risk of cancer. Here, using a mouse model of intestinal neoplasia and strains that are susceptible or resistant to diet-induced obesity, it is demonstrated that high-fat diet-induced inflammation, rather than obesity or metabolic status, is associated with increased intestinal neoplasia. The complement fragment C5a acts as the trigger for inflammation and intestinal tumorigenesis. High-fat diet induces complement activation and generation of C5a, which in turn induces the production of proinflammatory cytokines and expression of proto-oncogenes. Pharmacological and genetic targeting of the C5a receptor reduced both inflammation and intestinal polyposis, suggesting the use of complement inhibitors for preventing diet-induced neoplasia. IMPLICATIONS This study characterizes the relations between diet and metabolic conditions on risk for a common cancer and identifies complement activation as a novel target for cancer prevention. Mol Cancer Res; 14(10); 953-65. ©2016 AACR.
Collapse
Affiliation(s)
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elaine S Leung
- Pacific Northwest Research Institute, Seattle, Washington
| | - Justine S Ko
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas. Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Nathan A Berger
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Nadeau
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio. Pacific Northwest Research Institute, Seattle, Washington.
| |
Collapse
|