1
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
2
|
Ekeuku SO, Etim EP, Pang KL, Chin KY, Mai CW. Vitamin E in the management of pancreatic cancer: A scoping review. World J Gastrointest Oncol 2023; 15:943-958. [PMID: 37389119 PMCID: PMC10302993 DOI: 10.4251/wjgo.v15.i6.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic cancer is the leading cause of cancer mortality worldwide. Research investigating effective management strategies for pancreatic cancer is ongoing. Vitamin E, consisting of both tocopherol and tocotrienol, has demonstrated debatable effects on pancreatic cancer cells. Therefore, this scoping review aims to summarize the effects of vitamin E on pancreatic cancer. In October 2022, a literature search was conducted using PubMed and Scopus since their inception. Original studies on the effects of vitamin E on pancreatic cancer, including cell cultures, animal models and human clinical trials, were considered for this review. The literature search found 75 articles on this topic, but only 24 articles met the inclusion criteria. The available evidence showed that vitamin E modulated proliferation, cell death, angiogenesis, metastasis and inflammation in pancreatic cancer cells. However, the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies. More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Effiong Paul Etim
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Ibrahim MO, Abuhijleh H, Tayyem R. What Dietary Patterns and Nutrients are Associated with Pancreatic Cancer? Literature Review. Cancer Manag Res 2023; 15:17-30. [PMID: 36643074 PMCID: PMC9832506 DOI: 10.2147/cmar.s390228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
This narrative review summarizes the main findings of observational studies (case-control and cohort) as well as systematic reviews and meta-analyses on the role of nutrients and dietary patterns on pancreatic cancer (PC) risk and elucidates possible mechanisms for the association between nutrients or specific food components and the risk of PC. A literature search of MEDLINE (PubMed), Google Scholar, ScienceDirect, and Scopus was performed. An extensive search of related articles published in the English language from 1985 to 2022 was carried out. Our search included macro- and micronutrient intake as well as dietary patterns associated with PC. In conclusion, the consumption of a diet high in nutrients such as sugar, fats, and red and processed meats can increase the risk of PC. Conversely, a high dietary intake of fresh fruit and vegetables and their associated nutrients like fiber, antioxidants, and polyphenols may prevent PC. Dietary patterns loaded with red and processed meats were also linked to an increased risk of PC, whereas dietary patterns rich in plant-based foods like vegetables, fruits, whole grains, and legumes were associated with a reduced risk of PC. Dietary fiber, fat-soluble vitamins, water-soluble vitamins, and minerals might also play a protective role against PC.
Collapse
Affiliation(s)
- Mohammed O Ibrahim
- Department of Nutrition and Food Technology, Faculty of Agriculture, Mu’tah University, Karak, Jordan
| | - Haya Abuhijleh
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar,Correspondence: Reema Tayyem, Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, 2713, Qatar, Email
| |
Collapse
|
4
|
How vitamin E and its derivatives regulate tumour cells via the MAPK signalling pathway?'. Gene 2022; 808:145998. [PMID: 34626718 DOI: 10.1016/j.gene.2021.145998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
In tumour cells, vitamin E and its derivatives play a critical role in the regulation of multiple signalling pathways through their oxidative and nonoxidative functions. To date, there are 8 known natural vitamin E forms and many kinds of derivatives, among which VES and α-TEA have excellent anticancer activities. The MAPK pathway consists of a complex cascade of proteins that control the proliferation, differentiation and apoptosis of tumour cells. The MAPK pathway includes four subfamilies, ERK1/2, JNK1/2, p38 MAPK, and ERK5. Most of the proteins in these subfamilies interact with each other in a complex manner. The anticancer function of vitamin E and its derivatives is closely related to the MAPK cascade. Studies have shown that in tumour cells, α-T/γ-T/γ-T3/δ-T3/VES/α-TEA regulated ERK1/2, prevent tumorigenesis, inhibit tumour cell growth and metastasis and induce cell differentiation, apoptosis, and cell cycle arrest; γ-T3/δ-T3/VES/α-TEA regulates JNK1/2, induce apoptosis, reduce ceramide synthesis and inhibit proliferation; and γ-T3/δ-T3/VES regulate p38 MAPK and induce apoptosis. This paper reviews the role of vitamin E and its derivatives in the MAPK cascade, and tumour cells are used as a model in an attempt to explore the mechanism of their interactions.
Collapse
|
5
|
Yang CS, Luo P, Zeng Z, Wang H, Malafa M, Suh N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol Carcinog 2020; 59:365-389. [PMID: 32017273 DOI: 10.1002/mc.23160] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
α-Tocopherol (α-T) is the major form of vitamin E (VE) in animals and has the highest activity in carrying out the essential antioxidant functions of VE. Because of the involvement of oxidative stress in carcinogenesis, the cancer prevention activity of α-T has been studied extensively. Lower VE intake or nutritional status has been shown to be associated with increased cancer risk, and supplementation of α-T to populations with VE insufficiency has shown beneficial effects in lowering the cancer risk in some intervention studies. However, several large intervention studies with α-T conducted in North America have not demonstrated a cancer prevention effect. More recent studies have centered on the γ- and δ-forms of tocopherols and tocotrienols (T3). In comparison with α-T, these forms have much lower systemic bioavailability but have shown stronger cancer-preventive activities in many studies in animal models and cell lines. γ-T3 and δ-T3 generally have even higher activities than γ-T and δ-T. In this article, we review recent results from human and laboratory studies on the cancer-preventive activities of different forms of tocopherols and tocotrienols, at nutritional and pharmacological levels. We aim to elucidate the possible mechanisms of the preventive actions and discuss the possible application of the available information for human cancer prevention by different VE forms.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Philip Luo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
6
|
Fontana F, Raimondi M, Marzagalli M, Moretti RM, Marelli MM, Limonta P. Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Pat Anticancer Drug Discov 2019; 14:5-18. [PMID: 30652648 DOI: 10.2174/1574892814666190116111827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties. OBJECTIVE The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy. METHODS Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty. RESULTS TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability. CONCLUSION The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michela Raimondi
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Marzagalli
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Roberta M Moretti
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marina Montagnani Marelli
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH, Yu Y. LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncol 2019; 15:3831-3844. [PMID: 31664866 DOI: 10.2217/fon-2019-0321] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Blocking lipogenesis could significantly inhibit the progression of pancreatic cancer. Exploring the regulatory mechanisms of lipogenesis by lncRNA SNHG16 might be of great significance to control the development of pancreatic cancer. Methods: The proliferation, migration, invasion and lipogenesis were determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, transwell and Oil Red O staining assays, respectively. The interactions among lncRNA SNHG16, miR-195 and SREBP2 were analyzed by dual luciferase reporter assays. Results: Both the knock down of lncRNA SNHG16 and SREBP2 and overexpression of miR-195 suppressed the proliferation, migration, invasion and lipogenesis in pancreatic cancer cells. LncRNA SNHG16 directly sponged miR-195 to modulate the lipogenesis via regulating the expression of SREBP2. Conclusion: LncRNA SNHG16 accelerated the development of pancreatic cancer and promoted lipogenesis via directly regulating miR-195/SREBP2 axis.
Collapse
Affiliation(s)
- Yi Yu
- Department of Pediatrics, Ruijin Hospital North, Shanghai Jiaotong University, School of Medicine, Shanghai 201801, PR China
| | - Jia-Tian Dong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Bing He
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Yu-Feng Zou
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Xue-Song Li
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Chen-Hui Xi
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Yuan Yu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| |
Collapse
|
8
|
Francois RA, Zhang A, Husain K, Wang C, Hutchinson S, Kongnyuy M, Batra SK, Coppola D, Sebti SM, Malafa MP. Vitamin E δ-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIP s. Cancer Cell Int 2019; 19:189. [PMID: 31367187 PMCID: PMC6647259 DOI: 10.1186/s12935-019-0876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects. METHODS We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells. RESULTS When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and β-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, β-, γ-, and δ-tocopherol. CONCLUSIONS c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention.
Collapse
Affiliation(s)
- Rony A. Francois
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anying Zhang
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Department of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kazim Husain
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Chen Wang
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sean Hutchinson
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Michael Kongnyuy
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NB USA
| | - Domenico Coppola
- Department of Anatomical Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Said M. Sebti
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Mokenge P. Malafa
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
9
|
Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. Eur J Nutr 2019; 59:845-857. [PMID: 31016386 DOI: 10.1007/s00394-019-01962-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Despite significant advances in the diagnosis and treatment of cancer, the latter still remains a fatal disease due to the lack of prevention, early diagnosis, and effective drugs. Radiotherapy, chemotherapy, and surgery are not only expensive but produce a number of side effects that are detrimental to the patients' quality of life. Therefore, there is a great need to discover anti-cancer therapies that are specific to cancer cells and affordable, safe, and well tolerated by the patients. Vitamin E is a potential candidate due to its safety. Accumulating evidence on the anti-cancer potency of vitamin E has shifted the focus from tocopherols (TOCs) to tocotrienols (TTs). γ-TT and δ-TT have the highest anti-cancer activities and target common molecular pathways involved in the inhibition of the cell cycle, the induction of apoptosis and autophagy, and the inhibition of invasion, metastasis, and angiogenesis. Future directions should focus on further investigating how γ-TT and δ-TT (solely or in combination) induce anti-cancer molecular pathways when used in the presence of conventional chemotherapeutic drugs. These studies should be carried out in vitro, and promising results and combinations should then be assessed in in vivo experiments and finally in clinical trials. Finally, future research should focus on further evaluating the roles of γ-TT and δ-TT in the chemoprevention of cancer.
Collapse
|
10
|
Tham SY, Loh HS, Mai CW, Fu JY. Tocotrienols Modulate a Life or Death Decision in Cancers. Int J Mol Sci 2019; 20:372. [PMID: 30654580 PMCID: PMC6359475 DOI: 10.3390/ijms20020372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
Collapse
Affiliation(s)
- Shiau-Ying Tham
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
- Biotechnology Research Centre, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
11
|
Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J Cell Physiol 2018; 234:1147-1164. [PMID: 30066964 DOI: 10.1002/jcp.27075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Vitamin E is composed of two groups of compounds: α-, β-, γ-, and δ-tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ-TT and δ-TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol-lowering, anti-inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, "targeted" therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair (Amst) 2018; 69:63-72. [PMID: 30075372 DOI: 10.1016/j.dnarep.2018.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
The cell cycle is controlled by precise mechanisms to prevent malignancies such as cancer, and the cell needs these tight and advanced controls. Cyclin dependent kinase inhibitor p27 (also known as KIP1) is a factor that inhibits the progression of the cell cycle by using specific molecular mechanisms. The inhibitory effect of p27 on the cell cycle is mediated by CDKs inhibition. Other important functions of p27 include cell proliferation, cell differentiation and apoptosis. Post- translational modification of p27 by phosphorylation and ubiquitination respectively regulates interaction between p27 and cyclin/CDK complex and degradation of p27. In this review, we focus on the multiple function of p27 in cell cycle regulation, apoptosis, epigenetic modifications and post- translational modification, and briefly discuss the mechanisms and factors that have important roles in p27 functions.
Collapse
Affiliation(s)
- Maryam Abbastabar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kheyrollah
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
13
|
Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol Res 2018; 130:259-272. [DOI: 10.1016/j.phrs.2018.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
|
14
|
δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis. Oncotarget 2018; 8:31554-31567. [PMID: 28404939 PMCID: PMC5458229 DOI: 10.18632/oncotarget.15767] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.
Collapse
|
15
|
Liu Y, Wang X, Sun X, Lu S, Liu S. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine (Baltimore) 2018; 97:e0114. [PMID: 29595633 PMCID: PMC5895396 DOI: 10.1097/md.0000000000010114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/16/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The relationship between vitamin intake and pancreatic cancer (PC) risk is disputed. We aimed to investigate the association between vitamin intake and the risk of PC via meta-analysis. METHODS We conducted a meta-analysis of studies concerning vitamin intake and the risk of PC from EMBASE, MEDLINE, and Cochrane Library. The search yielded 25 correlative studies including 1,214,995 individuals. The relative risks (RR) were examined by a random-effect model or fixed-effect model. Subgroup analysis, dose-response analysis, sensitivity analysis, meta-regression, and publication bias analysis were used to analyze studies. RESULTS The RR of PC in the highest vitamin intake group was 0.90 (95% confidence interval, 0.83-0.98) compared with that in the lowest vitamin intake in the prospective studies. Different increments of vitamin intake and the risk of PC were examined with dose-response analysis, and a decrease in the risk of PC was observed with vitamin D (25%) and vitamin B12 (27%). CONCLUSIONS This meta-analysis found that vitamin intake can decrease the risk of PC, particularly vitamin D and vitamin B12.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology, The 3rd Affiliated Hospital, Qiqihar Medical University, Qiqihar
| | - Xiaojie Wang
- Heilongjiang Institute of Dermatology and Sexually Transmitted Disease, Harbin
| | - Xuejia Sun
- Department of Radiology, The 3rd Affiliated Hospital, Qiqihar Medical University
| | - Shengnan Lu
- Department of Ultrasound, The 2nd Affiliated Hospital, Qiqihar Medical University
| | - Shi Liu
- Department of General Surgery, The 3rd Affiliated Hospital, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
16
|
Husain K, Malafa MP. Role of Tocotrienols in Chemosensitization of Cancer. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:77-97. [DOI: 10.1016/b978-0-12-812373-7.00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Luo G, Liu D, Huang C, Wang M, Xiao X, Zeng F, Wang L, Jiang G. LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27 Kip1. Mol Cancer Res 2017; 15:789-799. [PMID: 28396462 DOI: 10.1158/1541-7786.mcr-16-0331] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/01/2016] [Accepted: 04/05/2017] [Indexed: 11/16/2022]
Abstract
Recent studies have demonstrated that long noncoding RNAs (lncRNA) have important roles in cancer biology, and that the downregulation of lncRNA growth arrest-specific transcript 5 (GAS5) has been reported in a variety of human cancers. However, its role in prostate cancer is largely unknown. This study aims to investigate the biological role and underlying mechanism of GAS5 on proliferation in prostate cancer. The results demonstrate that GAS5 expression is significantly decreased in prostate cancer cells compared with prostate epithelial cells. Ectopic expression of GAS5 inhibited cell proliferation and induced a cell-cycle arrest in G0-G1 phase, whereas GAS5 knockdown promoted the G1-S phase transition. Subsequent analysis demonstrated that P27Kip1, a known regulator of cell cycle, was positively regulated by GAS5 and upregulation of GAS5 increased its promoter activity. E2F1, an important transcription factor, was shown to bind directly to and activate the P27Kip1 promoter. In addition, GAS5 interacted with E2F1 and enhanced the binding of E2F1 to the P27Kip1 promoter. Collectively, these findings determine that GAS5 functions as a tumor suppressor in prostate cancer development and progression via targeting P27Kip1Implications: This study reveals a molecular pathway involving lncRNA GAS5/E2F1/P27Kip1 which regulates cell proliferation and could be a potential therapeutic target in prostate cancer. Mol Cancer Res; 15(7); 789-99. ©2017 AACR.
Collapse
Affiliation(s)
- Gang Luo
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqing Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
BABURA SR, ABDULLAH SNA, KHAZA′AI H. Advances in Genetic Improvement for Tocotrienol Production: A Review. J Nutr Sci Vitaminol (Tokyo) 2017; 63:215-221. [DOI: 10.3177/jnsv.63.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sulaiman Rufai BABURA
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia
- Department of Plant Biology, Bayero University Kano
| | - Siti Nor Akmar ABDULLAH
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia
| | - Huzwah KHAZA′AI
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia
| |
Collapse
|
19
|
Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J Nutr Biochem 2016; 40:155-163. [PMID: 27889685 DOI: 10.1016/j.jnutbio.2016.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/19/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022]
Abstract
Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Bioscience Technology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan (R.O.C.)
| | - Yue Guo
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xi Zheng
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chung S Yang
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Qu YH, Fu JC, Liu K, Zuo ZY, Jia HN, Ma Y, Luo HL. Screening of α-Tocopherol Transfer Protein Sensitive Genes in Human Hepatoma Cells (HepG2). Int J Mol Sci 2016; 17:ijms17071016. [PMID: 27355945 PMCID: PMC4964392 DOI: 10.3390/ijms17071016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 01/18/2023] Open
Abstract
α-Tocopherol transfer protein (α-TTP) is a ~32 kDa protein expressed mainly in hepatocytes. The major function of the protein is to bind specifically to α-tocopherol and, together, the complex transfers from late lysosomes to the cell membrane. A previous study indicated that some factors might be required in the transferring process. However, there is little information available about the potential transferring factors. In addition, there remains much to learn about other physiological processes which α-TTP might participate in. Thus, in this study a human α-TTP eukaryotic expression vector was successfully constructed and expressed in human hepatoma cells (HepG2). The sensitive genes related to α-TTP were then screened by microarray technology. Results showed that expression of the vector in HepG2 cells led to the identification of 323 genes showing differential expression. The differentially expressed transcripts were divided into four main categories, including (1) cell inflammation; (2) cell cycle and cell apoptosis; (3) cell signaling and gene regulation; and (4) cellular movement. A few cellular movement related transcripts were selected and verified by quantitative real-time PCR. Expressions of some were significantly increased in α-TTP-expressed group, which indicated that these factors were likely to play a role in the transferring process.
Collapse
Affiliation(s)
- Yang-Hua Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jun-Cai Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhao-Yun Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hui-Na Jia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yong Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hai-Ling Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Burdeos GC, Ito J, Eitsuka T, Nakagawa K, Kimura F, Miyazawa T. δ and γ tocotrienols suppress human hepatocellular carcinoma cell proliferation via regulation of Ras-Raf-MEK-ERK pathway-associated upstream signaling. Food Funct 2016; 7:4170-4174. [DOI: 10.1039/c6fo00826g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Springett GM, Husain K, Neuger A, Centeno B, Chen DT, Hutchinson TZ, Lush RM, Sebti S, Malafa MP. A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia. EBioMedicine 2015; 2:1987-95. [PMID: 26844278 PMCID: PMC4703733 DOI: 10.1016/j.ebiom.2015.11.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
Background Vitamin E δ-tocotrienol (VEDT), a natural vitamin E from plants, has shown anti-neoplastic and chemoprevention activity in preclinical models of pancreatic cancer. Here, we investigated VEDT in patients with pancreatic ductal neoplasia in a window-of-opportunity preoperative clinical trial to assess its safety, tolerability, pharmacokinetics, and apoptotic activity. Methods Patients received oral VEDT at escalating doses (from 200 to 3200 mg) daily for 13 days before surgery and one dose on the day of surgery. Dose escalation followed a three-plus-three trial design. Our primary endpoints were safety, VEDT pharmacokinetics, and monitoring of VEDT-induced neoplastic cell apoptosis (ClinicalTrials.gov number NCT00985777). Findings In 25 treated patients, no dose-limiting toxicity was encountered; thus no maximum-tolerated dose was reached. One patient had a drug-related adverse event (diarrhea) at a 3200-mg daily dose level. The effective half-life of VEDT was ~ 4 h. VEDT concentrations in plasma and exposure profiles were quite variable but reached levels that are bioactive in preclinical models. Biological activity, defined as significant induction of apoptosis in neoplastic cells as measured by increased cleaved caspase-3 levels, was seen in the majority of patients at the 400-mg to 1600-mg daily dose levels. Interpretation VEDT from 200 to 1600 mg daily taken orally for 2 weeks before pancreatic surgery was well tolerated, reached bioactive levels in blood, and significantly induced apoptosis in the neoplastic cells of patients with pancreatic ductal neoplasia. These promising results warrant further clinical investigation of VEDT for chemoprevention and/or therapy of pancreatic cancer. Vitamin E δ-tocotrienol is the bioactive form of one of the natural vitamin E with activity against cancer cells Vitamin E δ-tocotrienol is safe in patients up to 3200 mg Vitamin E δ-tocotrienol selectively kills pancreatic tumor cells when compared with normal cells at 400, 600, and 800 mg/day The biomarker effect of vitamin E δ-tocotrienol suggest significant anticancer activity in patients, justifying further study
Vitamin E has been an intriguing vitamin to humans for its potential to promote human health. However, large-scale research with vitamin E to prevent cancer has had mixed results. Because recent laboratory studies have shown that the form of vitamin E used in previous interventions to reduce cancer risk have not been the active tocotrienol form of vitamin E, there is a question as to whether the lack of vitamin activity is due to the use of inactive forms of vitamin E in clinical trials. Based on our laboratory data, which showed that the vitamin E δ-tocotrienol (VEDT) form of vitamin E was active against pancreatic cancer, we tested the ability of VEDT to kill pancreatic tumor cells in patients using a window-of-opportunity design, with measurement of apoptosis as an intermediate endpoint. We found that VEDT was well tolerated at up to 3200 mg when taken for 2 weeks before surgery. We also found that, at doses of 400 to 800 mg, VEDT selectively killed pancreatic tumor cells.
Collapse
Affiliation(s)
| | - Kazim Husain
- Department of Gastrointestinal Oncology, Tampa, FL, USA
| | | | | | | | | | | | - Saïd Sebti
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
23
|
Davis-Yadley AH, Malafa MP. Vitamins in pancreatic cancer: a review of underlying mechanisms and future applications. Adv Nutr 2015; 6:774-802. [PMID: 26567201 PMCID: PMC4642423 DOI: 10.3945/an.115.009456] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer.
Collapse
Affiliation(s)
- Ashley H Davis-Yadley
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL; and Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
24
|
Brkljača R, Urban S. HPLC-NMR and HPLC-MS investigation of antimicrobial constituents in Cystophora monilifera and Cystophora subfarcinata. PHYTOCHEMISTRY 2015; 117:200-208. [PMID: 26093325 DOI: 10.1016/j.phytochem.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
The crude dichloromethane extracts of the marine brown algae Cystophora monilifera and Cystophora subfarcinata were subjected to phytochemical profiling. This enabled the structures of both new and known phloroglucinols to be dereplicated and proposed using HPLC-NMR and HPLC-MS. Subsequent isolation confirmed the presence of four new and eight previously reported compounds. Five of the isolated phloroglucinols displayed selective antimicrobial activity.
Collapse
Affiliation(s)
- Robert Brkljača
- School of Applied Sciences (Discipline of Chemistry), Health Innovations Research Institute (HIRi), RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Sylvia Urban
- School of Applied Sciences (Discipline of Chemistry), Health Innovations Research Institute (HIRi), RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
25
|
Shibata A, Nakagawa K, Tsuduki T, Miyazawa T. δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy. J Nutr Biochem 2015; 26:832-40. [PMID: 25979648 DOI: 10.1016/j.jnutbio.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/26/2022]
Abstract
Tocotrienols, unsaturated forms of vitamin E, inhibit the proliferation of a variety of cancer cells and suppress angiogenesis. However, the mechanisms underlying those effects on cancer cell growth remain unclear especially under hypoxic conditions. In this study, we demonstrated that δ-tocotrienol (δ-T3) could be used as a novel anticancer agent against human colorectal adenocarcinoma (DLD-1) cells under both normoxic and hypoxic conditions. δ-T3 inhibited the growth of DLD-1 cells in a dose-dependent fashion by inducing cell cycle arrest and apoptosis. This effect was more potent under hypoxic than normoxic conditions. The anticancer effect of δ-T3 was achieved by its up-regulation of cyclin-dependent kinase inhibitors (p21 and p27), the activation of caspases and the suppression of phosphorylation of protein kinase B (Akt) at Thr(308) and Ser(473). In in vivo studies, oral administration of rice bran tocotrienol (RBT3, mainly γ-T3) (10 mg/mouse/day) significantly inhibited tumor growth in nude mice. In tumor analyses, RBT3 activated p21, p27, caspase-3 and caspase-9 and decreased Akt phosphorylation. Furthermore, immunostaining revealed that RBT3 decreased the number of cells positive for CD31/platelet endothelial cell adhesion molecule-1 in microvessels in the tumor. Taken together, these data suggest that tocotrienols are potent antitumor agents capable of inducing apoptosis and inhibiting angiogenesis under both hypoxic and normoxic conditions. Tocotrienols could have significant therapeutic potential in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Akira Shibata
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| |
Collapse
|
26
|
Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM, Malafa MP. EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem 2015; 26:797-807. [PMID: 25997867 DOI: 10.1016/j.jnutbio.2015.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
The anticancer activity of δ-tocotrienol, a bioactive vitamin E present in whole grain cereals, annatto beans and palm fruit, is strongly dependent on its effect on the induction of apoptosis. δ-Tocotrienol-induced apoptosis is associated with consistent induction in the expression of the proapoptotic protein Bcl-2-associated X protein (Bax). The molecular mechanism by which δ-tocotrienol regulates Bax expression is unknown. We carried out a DNA microarray study that identified δ-tocotrienol induction of the zinc finger transcription factor EGR-1 in pancreatic cancer cells. Here, we provide evidence linking δ-tocotrienol-induced apoptosis in pancreatic cancer cells to EGR-1 regulation of Bax expression. Forced expression of EGR-1 induces Bax expression and apoptosis in pancreatic cancer cells. In contrast, knockdown of δ-tocotrienol-induced EGR-1 by small interfering RNA attenuated δ-tocotrienol-induced Bax expression and reduced δ-tocotrienol-induced apoptosis. Further analyses showed that de novo protein synthesis was not required for δ-tocotrienol-induced EGR-1 expression, suggesting a direct effect of δ-tocotrienol on EGR-1 expression. Furthermore, a chromatin immunoprecipitation assay demonstrated that EGR-1 binds to the Bax gene promoter. Finally, δ-tocotrienol treatment induced Bax expression and activated EGR-1 in the pancreatic neoplastic cells of the PDX-Cre Kras genetically engineered model of pancreatic cancer. Our study provides the first evidence for EGR-1 as a direct target of vitamin E δ-tocotrienol, suggesting that EGR-1 may act as a proapoptotic factor in pancreatic cancer cells via induction of Bax.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Anying Zhang
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Barbara A Centeno
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Dung-Tsa Chen
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Säid M Sebti
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL.
| |
Collapse
|
27
|
α-Tocopherol suppresses antiangiogenic effect of δ-tocotrienol in human umbilical vein endothelial cells. J Nutr Biochem 2015; 26:345-50. [DOI: 10.1016/j.jnutbio.2014.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022]
|
28
|
Khan S, Chauhan N, Yallapu MM, Ebeling MC, Balakrishna S, Ellis RT, Thompson PA, Balabathula P, Behrman SW, Zafar N, Singh MM, Halaweish FT, Jaggi M, Chauhan SC. Nanoparticle formulation of ormeloxifene for pancreatic cancer. Biomaterials 2015; 53:731-43. [PMID: 25890768 DOI: 10.1016/j.biomaterials.2015.02.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - Swathi Balakrishna
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert T Ellis
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, SD, USA
| | - Pavan Balabathula
- Department of Pharmaceutical Sciences and Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, TN, USA
| | - Man M Singh
- Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Fathi T Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
29
|
Kamisah Y, Qodriyah HMS, Chua KH, Nur Azlina MF. Vitamin E: a potential therapy for gastric mucosal injury. PHARMACEUTICAL BIOLOGY 2014; 52:1591-1597. [PMID: 25026358 DOI: 10.3109/13880209.2014.902082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Many scientific reports have shown the involvement of oxidative stress and inflammation as well as diminished gastroprotective substances in the pathogenesis of gastric lesions using various models. Therefore, treatment with antioxidants like tocopherol and tocotrienol may afford beneficial effects in attentuating the formation of the gastric lesions. OBJECTIVE The aim of this work was to summarize documented reports on the effects of vitamin E on various models of gastric lesion. METHODS A literature search was performed from databases in Medline (PubMed), Web of Science, ScienceDirect, and Googlescholar from June to December 2013. RESULTS AND CONCLUSION The potential roles of tocopherol and tocotrienol in modifying the effects of ulcerogenic agents are discussed in this review. The protective effects of the vitamin E might involve ameliorating oxidative stress and inflammation as well as restoration of endogenous gastroprotective substances. This vitamin has the potential to be used as a therapy for gastric mucosal injury.
Collapse
|
30
|
Nuclear p27 expression confers a favorable outcome for nasopharyngeal carcinoma patients. DISEASE MARKERS 2014; 35:925-32. [PMID: 24427780 PMCID: PMC3881392 DOI: 10.1155/2013/251209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective. The purpose of the present study is to explore the correlation between nuclear expression of cyclin-dependent kinase inhibitor 1B (p27) and clinicopathologic features in nasopharyngeal carcinoma (NPC), including patient survival. Methods. Immunohistochemistry was used to examine the expression of p27 in 130 primary NPC tissues. The relationship between the levels of p27 expression and clinicopathologic characteristics was analyzed. Survival curves were plotted using the Kaplan-Meier method and compared using the log-rank test. The significance of various survival variables was analyzed using multivariate Cox proportional hazards model. Results. p27 was expressed in both nuclear and cytoplasmic compartments. Nuclear expression of p27 was inversely correlated with T classification and clinical stage. Patients with nuclear p27 expression had better overall survival rates than those without nuclear expression of p27. Further, we observed that nuclear expression of p27 was positively associated with survival time of NPC patients not only in N0-1 and M0 classifications but also in radiotherapy and chemotherapy treatment groups. Finally, we found that nuclear expression of p27 was not an independent prognostic factor for patients with NPC. Conclusions. Our findings hint that nuclear expression of p27 is a potentially favorable factor in the progression and prognosis of NPC.
Collapse
|
31
|
Li C, Chen D, Luo M, Ge M, Zhu J. Knockdown of ribosomal protein L39 by RNA interference inhibits the growth of human pancreatic cancer cells in vitro and in vivo. Biotechnol J 2014; 9:652-63. [PMID: 24799381 DOI: 10.1002/biot.201300321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer remains a major unsolved health problem lacking a potent therapeutic option. Our previous studies showed that the ribosomal protein L39 (RPL39) gene was up-regulated after long-term silencing of oncogenic KRAS in pancreatic cancer PANC-1 cells, which indicated that RPL39 may be important for pancreatic cancer development and survival. In the current study, small interfering RNA (siRNA) targeting of the RPL39 gene was performed to determine the effects of the RPL39 gene on growth of pancreatic cancer PANC-1 and BxPC-3 cells in vitro and in vivo. Results from in vitro experiments showed that knockdown of RPL39 expression with RPL39-siRNA suppressed cell proliferation and specifically enhanced cell apoptosis significantly in both PANC-1 and BxPC-3 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL39 silencing indicated that the RPL39 gene may be involved in caspase-8-related mitochondrial apoptosis. Further, treatment with the RPL39-siRNA inhibited the growth of a human pancreatic cancer xenograft in BALB/c nude mice, accompanied by a decreased expression of RPL39. In the xenograft tumors with injection of RPL39-siRNA, the expressions of Ki-67 and CD31 were significantly down-regulated, and apoptosis was markedly induced. Our findings suggested that siRNA against the RPL39 gene may be of value for gene therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chaodong Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Engineering Research Center for Cell Engineering and Therapeutic Antibody, SJTU, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Husain K, Centeno BA, Chen DT, Hingorani SR, Sebti SM, Malafa MP. Vitamin E δ-tocotrienol prolongs survival in the LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer. Cancer Prev Res (Phila) 2013; 6:1074-83. [PMID: 23963802 PMCID: PMC4165552 DOI: 10.1158/1940-6207.capr-13-0157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous work has shown that vitamin E δ-tocotrienol (VEDT) prolongs survival and delays progression of pancreatic cancer in the LSL-Kras(G12D)(/+);Pdx-1-Cre mouse model of pancreatic cancer. However, the effect of VEDT alone or in combination with gemcitabine in the more aggressive LSL-Kras(G12D)(/+);LSL-Trp53(R172H)(/+);Pdx-1-Cre (KPC) mouse model is unknown. Here, we studied the effects of VEDT and the combination of VEDT and gemcitabine in the KPC mice. KPC mice were randomized into four groups: (i) vehicle [olive oil, 1.0 mL/kg per os twice a day and PBS 1.0 mL/kg intrapertoneally (i.p.) twice a week], (ii) gemcitabine (100 mg/kg i.p. twice a week), (iii) VEDT (200 mg/kg per os twice a day), and (iv) gemcitabine + VEDT. Mice received treatment until they displayed symptoms of impending death from pancreatic cancer, at which point animals were euthanized. At 16 weeks, survival was 10% in the vehicle group, 30% in the gemcitabine group, 70% in the VEDT group (P < 0.01), and 90% in the VEDT combined with gemcitabine group (P < 0.05). VEDT alone and combined with gemcitabine resulted in reversal of epithelial-to-mesenchymal transition in tumors. Biomarkers of apoptosis (plasma CK18), PARP1 cleavage, and Bax expression were more greatly induced in tumors subjected to combined treatment versus individual treatment. Combined treatment induced cell-cycle inhibitors (p27(Kip1) and p21(Cip1)) and inhibited VEGF, vascularity (CD31), and oncogenic signaling (pAKT, pMEK, and pERK) greater than individual drugs. No significant differences in body weight gain between drug treatment and control mice were observed. These results strongly support further investigation of VEDT alone and in combination with gemcitabine for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612.
| | | | | | | | | | | |
Collapse
|
33
|
Su S, Minges JT, Grossman G, Blackwelder AJ, Mohler JL, Wilson EM. Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins. J Biol Chem 2013; 288:24809-24. [PMID: 23853093 DOI: 10.1074/jbc.m113.468579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanoma antigen-A11 (MAGE-A11) is a low-abundance, primate-specific steroid receptor coregulator in normal tissues of the human reproductive tract that is expressed at higher levels in prostate cancer. Increased expression of MAGE-A11 enhances androgen receptor transcriptional activity and promotes prostate cancer cell growth. Further investigation into the mechanisms of MAGE-A11 function in prostate cancer demonstrated interactions with the retinoblastoma-related protein p107 and Rb tumor suppressor but no interaction with p130 of the Rb family. MAGE-A11 interaction with p107 was associated with transcriptional repression in cells with low MAGE-A11 and transcriptional activation in cells with higher MAGE-A11. Selective interaction of MAGE-A11 with retinoblastoma family members suggested the regulation of E2F transcription factors. MAGE-A11 stabilized p107 by inhibition of ubiquitination and linked p107 to hypophosphorylated E2F1 in association with the stabilization and activation of E2F1. The androgen receptor and MAGE-A11 modulated endogenous expression of the E2F1-regulated cyclin-dependent kinase inhibitor p27(Kip1). The ability of MAGE-A11 to increase E2F1 transcriptional activity was similar to the activity of adenovirus early oncoprotein E1A and depended on MAGE-A11 interactions with p107 and p300. The immunoreactivity of p107 and MAGE-A11 was greater in advanced prostate cancer than in benign prostate, and knockdown with small inhibitory RNA showed that p107 is a transcriptional activator in prostate cancer cells. These results suggest that MAGE-A11 is a proto-oncogene whose increased expression in prostate cancer reverses retinoblastoma-related protein p107 from a transcriptional repressor to a transcriptional activator of the androgen receptor and E2F1.
Collapse
Affiliation(s)
- Shifeng Su
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|