1
|
de Oliveira NFP, Persuhn DC, dos Santos MCLG. Can Global DNA Methylation Be Influenced by Polymorphisms in Genes Involved in Epigenetic Mechanisms? A Review. Genes (Basel) 2024; 15:1504. [PMID: 39766772 PMCID: PMC11675890 DOI: 10.3390/genes15121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Global methylation refers to the total methylation in the DNA and can also be inferred from the Line 1 and Alu regions, as these repeats are very abundant in the genome. The main function of DNA methylation is to control gene expression and is associated with both normal and pathological mechanisms. DNA methylation depends on enzymes that generate the methyl radical (e.g., methylenetetrahydrofolate reductase-MTHFR) and attach this radical to the DNA (DNA methyltransferases-DNMT). Genetic variants such as single nucleotide polymorphisms (SNP) in these genes can lead to changes in the activity or expression of MTHFR and DNMT proteins and consequently influence the DNA methylation profile. This review focuses on studies investigating inter-individual variations in the global DNA methylation profile associated with genetic polymorphisms in the MTHFR and DNMT genes. METHODS A narrative review was conducted, taking into account articles published in the last 15 years. RESULTS It was found that the SNPs rs1801131, rs1801133 and rs1537514 in the MTHFR gene, rs2241531, rs2228611, rs2228612, rs21124724 and the haplotype rs2288349, rs2228611, rs2228612, rs16999593 in the DNMT1 gene, rs2424909, rs998382, rs6058891, rs6058897, rs4911256, rs2889703 and rs1883729 in the DNMT3B were associated with the level of global DNA methylation, including LINE and Alu regions in different contexts. No association was found with polymorphisms in the DNMT3A gene. CONCLUSIONS It is concluded that polymorphisms in the MTHFR and DNMT genes may influence the global DNA methylation profile in health, inflammation, tumours and mental illness.
Collapse
Affiliation(s)
- Naila Francis Paulo de Oliveira
- Department of Molecular Biology, Center for Exact and Natural Sciences, Federal University of Paraíba—UFPB, João Pessoa 58051-900, PB, Brazil;
| | - Darlene Camati Persuhn
- Department of Molecular Biology, Center for Exact and Natural Sciences, Federal University of Paraíba—UFPB, João Pessoa 58051-900, PB, Brazil;
| | | |
Collapse
|
2
|
Liu Y, Tian J. Neuroprotective factors affect the progression of Alzheimer's disease. Biochem Biophys Res Commun 2023; 681:276-282. [PMID: 37797415 DOI: 10.1016/j.bbrc.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Alzheimer's disease(AD) is a neurodegenerative disease that occurs mostly in the elderly and is characterized by chronic progressive cognitive dysfunction, which seriously threatens the health and life-quality of patients. Alterations at the molecular level, which causes pathological changes of AD brain, have impacted the progression of AD. In this review, we illustrate the recent evidence of the alteration of neuroprotective proteins in AD, such as changes in their contents and variants. Furthermore, we elucidate the single nucleotide polymorphism (SNP) and gene changes. Finally, we highlight the epigenetic changes in AD, which helps to display the characteristics of the disease and provides guidance regarding research hot spots in the field against AD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China.
| |
Collapse
|
3
|
Smederevac S, Delgado-Cruzata L, Mitrović D, Dinić BM, Bravo TAT, Delgado M, Bugarski Ignjatović V, Sadiković S, Milovanović I, Vučinić N, Branovački B, Prinz M, Budimlija Z, Kušić‐Tišma J, Nikolašević Ž. Differences in MB-COMT DNA methylation in monozygotic twins on phenotypic indicators of impulsivity. Front Genet 2023; 13:1067276. [PMID: 36685886 PMCID: PMC9852709 DOI: 10.3389/fgene.2022.1067276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications of the membrane bound catechol-O-methyltransferase (MB-COMT) gene may affect the enzymatic degradation of dopamine, and consequently, human behavior. This study investigated the association between membrane bound catechol-O-methyltransferase DNA methylation (DNAm) differences in 92 monozygotic (MZ) twins with phenotypic manifestations of cognitive, behavioral, and personality indicators associated with reward-related behaviors and lack of control. We used pyrosequencing to determine DNAm of the regulatory region of membrane bound catechol-O-methyltransferase in saliva DNA. Results of intrapair differences in the percentage of membrane bound catechol-O-methyltransferase DNAm at each of five CpG sites show that there are associations between phenotypic indicators of lack of control and membrane bound catechol-O-methyltransferase DNAm differences on CpG1, CpG2 and CpG4, suggesting the common epigenetic patterns for personality traits, cognitive functions, and risk behaviors.
Collapse
Affiliation(s)
- Snežana Smederevac
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia,*Correspondence: Selka Sadiković, ; Snežana Smederevac,
| | | | - Dušanka Mitrović
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Bojana M. Dinić
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | | | - Maria Delgado
- Mount Holyoke College, South Hadley, MA, United States
| | | | - Selka Sadiković
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia,*Correspondence: Selka Sadiković, ; Snežana Smederevac,
| | - Ilija Milovanović
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Branovački
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Mechthild Prinz
- John Jay College of Criminal Justice, New York, NY, United States
| | - Zoran Budimlija
- Department of Neurology, School of Medicine, New York University, New York City, NY, United States
| | - Jelena Kušić‐Tišma
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The Impact of Exercise on Telomere Length, DNA Methylation and Metabolic Footprints. Cells 2022; 11:153. [PMID: 35011715 PMCID: PMC8750279 DOI: 10.3390/cells11010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Aging as a major risk factor influences the probability of developing cancer, cardiovascular disease and diabetes, amongst others. The underlying mechanisms of disease are still not fully understood, but research suggests that delaying the aging process could ameliorate these pathologies. A key biological process in aging is cellular senescence which is associated with several stressors such as telomere shortening or enhanced DNA methylation. Telomere length as well as DNA methylation levels can be used as biological age predictors which are able to detect excessive acceleration or deceleration of aging. Analytical methods examining aging are often not suitable, expensive, time-consuming or require a high level of technical expertise. Therefore, research focusses on combining analytical methods which have the potential to simultaneously analyse epigenetic, genomic as well as metabolic changes.
Collapse
Affiliation(s)
- Sandra Haupt
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria;
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR-Centre, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
5
|
Kucher OV, Vydyborets SV. LONG/TERM GENETIC AND EPIGENETIC DISORDERS IN PERSONS EXPOSED TO IONIZING RADIATION AND THEIR DESCENDANTS (review). PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:36-56. [PMID: 34965542 DOI: 10.33145/2304-8336-2021-26-36-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 06/14/2023]
Abstract
The review is devoted to long-term genetic and epigenetic disorders in exposed individuals and their descendants,namely to cytogenetic effects in the Chornobyl NPP accident clean-up workers and their children, DNA methylation as an epigenetic modification of human genome. Data presented in review expand the understanding of risk of the prolonged exposure for the present and future generations, which is one of key problems posed by fundamental radiation genetics and human radiobiology.
Collapse
Affiliation(s)
- O V Kucher
- Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
| | - S V Vydyborets
- Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
| |
Collapse
|
6
|
Światowy WJ, Drzewiecka H, Kliber M, Sąsiadek M, Karpiński P, Pławski A, Jagodziński PP. Physical Activity and DNA Methylation in Humans. Int J Mol Sci 2021; 22:ijms222312989. [PMID: 34884790 PMCID: PMC8657566 DOI: 10.3390/ijms222312989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Physical activity is a strong stimulus influencing the overall physiology of the human body. Exercises lead to biochemical changes in various tissues and exert an impact on gene expression. Exercise-induced changes in gene expression may be mediated by epigenetic modifications, which rearrange the chromatin structure and therefore modulate its accessibility for transcription factors. One of such epigenetic mark is DNA methylation that involves an attachment of a methyl group to the fifth carbon of cytosine residue present in CG dinucleotides (CpG). DNA methylation is catalyzed by a family of DNA methyltransferases. This reversible DNA modification results in the recruitment of proteins containing methyl binding domain and further transcriptional co-repressors leading to the silencing of gene expression. The accumulation of CpG dinucleotides, referred as CpG islands, occurs at the promoter regions in a great majority of human genes. Therefore, changes in DNA methylation profile affect the transcription of multiple genes. A growing body of evidence indicates that exercise training modulates DNA methylation in muscles and adipose tissue. Some of these epigenetic markers were associated with a reduced risk of chronic diseases. This review summarizes the current knowledge about the influence of physical activity on the DNA methylation status in humans.
Collapse
Affiliation(s)
- Witold Józef Światowy
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
- Correspondence: ; Tel.: +48-618-546-513
| | - Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
| | - Michalina Kliber
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
| | - Maria Sąsiadek
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
| |
Collapse
|
7
|
Mendes CC, Zampieri BL, Arantes LMRB, Melendez ME, Biselli JM, Carvalho AL, Eberlin MN, Riccio MF, Vannucchi H, Carvalho VM, Goloni-Bertollo EM, Pavarino ÉC. One-carbon metabolism and global DNA methylation in mothers of individuals with Down syndrome. Hum Cell 2021; 34:1671-1681. [PMID: 34410622 DOI: 10.1007/s13577-021-00586-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Down syndrome (DS) is the most common chromosomal disorder, resulting from the failure of normal chromosome 21 segregation. Studies have suggested that impairments within the one-carbon metabolic pathway can be of relevance for the global genome instability observed in mothers of individuals with DS. Based on the association between global DNA hypomethylation, genome instability, and impairments within the one-carbon metabolic pathway, the present study aimed to identify possible predictors, within the one-carbon metabolism, of global DNA methylation, measured by methylation patterns of LINE-1 and Alu repetitive sequences, in mothers of individuals with DS and mothers of individuals without the syndrome. In addition, we investigated one-carbon genetic polymorphisms and metabolites as maternal predisposing factors for the occurrence of trisomy 21 in children. Eighty-three samples of mothers of children with DS with karyotypically confirmed free trisomy 21 (case group) and 84 of mothers who had at least one child without DS or any other aneuploidy were included in the study. Pyrosequencing assays were performed to access global methylation. The results showed that group affiliation (case or control), betaine-homocysteine methyltransferase (BHMT) G742A and transcobalamin 2 (TCN2) C776G polymorphisms, and folate concentration were identified as predictors of global Alu DNA methylation values. In addition, thymidylate synthase (TYMS) 28-bp repeats 2R/3R or 3R/3R genotypes are independent maternal predisposing factors for having a child with DS. This study adds evidence that supports the association of impairments in the one-carbon metabolism, global DNA methylation, and the possibility of having a child with DS.
Collapse
Affiliation(s)
- Cristiani Cortez Mendes
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | | | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Joice Matos Biselli
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, Departamento de Ciências Biológicas, São José do Rio Preto, São Paulo, Brazil
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Universidade Presbiteriana Mackenzie, Discovery-Mackenzie-Núcleo Mackenzie de Pesquisa, Núcleo Mackenzie de Pesquisas em Ciência, Fé e Sociedade, São Paulo, São Paulo, Brazil
| | | | - Hélio Vannucchi
- Laboratório de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Eny Maria Goloni-Bertollo
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Érika Cristina Pavarino
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil.
- , Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil.
| |
Collapse
|
8
|
Yadav S, Longkumer I, Joshi S, Saraswathy KN. Methylenetetrahydrofolate reductase gene polymorphism, global DNA methylation and blood pressure: a population based study from North India. BMC Med Genomics 2021; 14:59. [PMID: 33639933 PMCID: PMC7912464 DOI: 10.1186/s12920-021-00895-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertension is a complex disorder affected by gene-environment interactions. Methylenetetrahydrofolate reductase (MTHFR) gene is one of the genes in One Carbon Metabolic (OCM) pathway that affects both blood pressure and epigenetic phenomenon. MTHFR C677T gene polymorphism leads to reduced methylation capacity via increased homocysteine concentrations. Global DNA methylation (5mC%) also gets affected in conditions such as hypertension. However, no study is found to understand hypertension in terms of both genetics and epigenetics. The present study aims to understand the relation between methylation, MTHFR C677T gene polymorphism and hypertension. It also tries to understand relation (if any) between methylation and anti-hypertensive drugs. METHODS This is a cross-sectional study where data were collected from a total of 1634 individuals of either sex in age group 35-65 years. Hypertensives (SBP ≥ 140 mm Hg and DBP ≥ 90 mm Hg) (on treatment/not on treatment) and absolute controls were 236 (cases) and 307 (controls), respectively. All the samples were subjected to MTHFR C677T gene polymorphism screening (PCR-RFLP) and global DNA methylation assay (ELISA based colorimetric assay). Results of both the analyses were obtained on 218 cases, 263 controls. RESULTS Median 5mC% was relatively lower among cases (p > 0.05) compared to controls, despite controlling for confounders (age, sex, smoking, alcohol, diet) (r2-0.92, p-0.08). Cases not on medication had significantly reduced 5mC% compared to controls (p < 0.05), despite adjusting for confounders (r2-0.857, p-0.01). Among cases (irrespective of treatment), there was a significant variation in 5mC% across the three genotypes i.e. CC, CT and TT, with no such variation among controls. Cases (not on medication) with TT genotype had significantly lower methylation levels compared to the TT genotype controls and cases (on medication) (p < 0.01). CONCLUSION Global DNA hypomethylation seems to be associated with hypertension and antihypertensive drugs seem to improve methylation. Hypertensive individuals with TT genotype but not on medication are more likely to be prone to global DNA hypomethylation. Important precursors in OCM pathway include micronutrients such as vitamin B-12, B-9 and B-6; their nutritional interventions (either dietary or supplement) may serve as strategies to prevent hypertension at population level. However, more epidemiological-longitudinal studies are needed for further validation.
Collapse
Affiliation(s)
- Suniti Yadav
- Indian Council of Medical Research, New Delhi, 110029 India
| | | | - Shipra Joshi
- Manbhum Ananda Ashram Nityananda Trust-MANT, Kolkata, West Bengal 700078 India
| | | |
Collapse
|
9
|
Whole Genome 5'-Methylcytosine Level Quantification in Cirrhotic HCV-Infected Egyptian Patients with and without Hepatocellular Carcinoma. Int J Genomics 2020; 2020:1769735. [PMID: 33083446 PMCID: PMC7556053 DOI: 10.1155/2020/1769735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an epigenetic mechanism used by cells to control gene expression. DNA methylation is a commonly used epigenetic signaling tool that can hold genes in the “off” position. Chronic infection with hepatitis C virus (HCV) is considered a major risk for chronic liver impairment. It is the most common leading cause of HCC. The present work is aimed at studying whole genome 5′-methylcytosine levels in cirrhotic HCV-infected Egyptian patients. In the present study, 120 Egyptian adults were included. They were divided into two groups: group І (40 apparently healthy control subjects) and group ІІ (80 HCV-infected patients). Furthermore, group II was subdivided into 2 subgroups according to the presence of HCC in HCV-infected subjects. To all studied subjects, the level of 5-mC% was measured in peripheral blood. In the present study, the median of 5′-methylcytosine% in the control group (group I) was 2.5, in the HCV group (group IIa) was 2.45, and in the HCC group (group II b) was 2.25. A stepwise decrease in 5′-methylcytosine% from the control (group I) toward HCC (group IIb) was observed, taking into consideration that the stepwise global hypomethylation was not statistically significant (p = 0.811). There was a negative correlation between ALT and 5′-methylcytosine% (p = −0.029). From this study, we can conclude that global DNA 5′-methylcytosine% does not differ in HCV-infected cirrhotic patients and HCC patients when compared to normal controls. Consecutively, we had concluded that there is no impact of 5′-methylcytosine% on the development of liver cirrhosis or HCC. Moreover, the negative correlation between 5′-methylcytosine% and serum ALT level denotes a trend of decrease in 5′-methylcytosine% with more liver damage.
Collapse
|
10
|
Ratna MG, Nugrahaningsih DAA, Sholikhah EN, Dwianingsih EK, Malueka RG. The association between PON1 and GSTM1 genetic variation with methylation of p16 gene promoter among Javanese farmers exposed to pesticides at Magelang Regency, Central Java, Indonesia. Heliyon 2020; 6:e03993. [PMID: 32478190 PMCID: PMC7248662 DOI: 10.1016/j.heliyon.2020.e03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 12/08/2022] Open
Abstract
Occupational exposure to pesticides leads to the development of cancer. Aberrant DNA methylation plays a crucial role in cancer. The manifestation of the carcinogenic effect of pesticides could be determined by the variation of genes encoding enzyme, including PON1 Q192R and GSTM1. The goal of this study was to find out polymorphism of PON1 Q192R and methylation of p16 gene promoter, and their correlation on Javanese farmers in the agricultural area of Ngablak Subdistrict, Magelang Regency, Central Java. Seventy-eight pesticide-exposed farmers enrolled in the study. Polymorphism of PON Q192R was determined using PCR-RFLP and variation of GSTM1 was examined using conventional PCR. The methylation of the p16 gene promoter was determined using methylation-specific PCR. The result revealed 94.9% polymorphism of PON1 Q192R, which was higher in the R/R (Arg/Arg) genotypes than Q/R (Gln/Arg) and lowest in Q/Q (Gln/Gln) genotypes. We also found 82.1% GSTM1 null genotype among the farmers enrolled in the study. As many as 26.9% methylations of p16 gene promoter were found among farmers. Genetic variation of PON1 Q192R and GSTM1 were not found to be correlated to the methylation status of p16 gene promoter in the Javanese population.
Collapse
Affiliation(s)
- Maya G Ratna
- Master of Biomedical Science Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi A A Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| | - Eti N Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ery K Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| | - Rusdy G Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| |
Collapse
|
11
|
Martins NIM, Caldas PR, Cabral ED, Lins CCDSA, Coriolano MDGWDS. Instrumentos de avaliação cognitiva utilizados nos últimos cinco anos em idosos brasileiros. CIENCIA & SAUDE COLETIVA 2019; 24:2513-2530. [DOI: 10.1590/1413-81232018247.20862017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
Resumo A detecção e o monitoramento do déficit cognitivo em idosos são necessários já que podem causar impacto em sua funcionalidade. O objetivo dessa revisão integrativa é analisar a produção científica sobre uso de instrumentos de avaliação cognitiva em idosos brasileiros por meio de artigos publicados nos últimos cinco anos, indexados nas bases de dados Web of Science, PubMed, Scopus e Bireme. Os critérios de inclusão foram: artigos originais publicados em inglês e português, de 2012 a 2016, com critério de idade definido para ser considerado idoso, e escore maior que 6 no CASP adaptado. O critério de exclusão foi: ser resumo de congresso. A amostra final foi composta por 100 artigos. Foram apresentados os 61 instrumentos de avaliação cognitiva utilizados nos estudos, com destaque para o Mini Exame do Estado Mental. Essa revisão apresenta o uso de instrumentos cognitivos na pesquisa brasileira, suas diferentes versões e quais domínios são avaliados. O número de instrumentos presentes na literatura foi amplo. Os mais utilizados foram o MEEM (versão de Brucki e colaboradores), o Teste de Fluência Verbal (categoria animais) e o Teste Span de dígitos (ordem direta e inversa). Os achados apresentados nessa revisão são relevantes não apenas para área da pesquisa observacional e experimental, mas também para a prática clínica.
Collapse
|
12
|
Zhou J, Wu YC, Xiao BJ, Guo XD, Zheng QX, Wu B. Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords. Curr Med Sci 2019; 39:67-74. [PMID: 30868493 DOI: 10.1007/s11596-019-2001-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/27/2018] [Indexed: 01/12/2023]
Abstract
Demyelination of axons plays an important role in the pathology of many spinal cord diseases and injuries. Remyelination in demyelinated lesions is primarily performed by oligodendrocyte progenitor cells (OPCs), which generate oligodendrocytes in the developing and mature central nervous system. The efficiency of remyelination decreases with age. Many reports suggest that this decline in remyelination results from impaired OPC recruitment and differentiation during aging. Of the various molecular mechanisms involved in aging, changes in epigenetic modifications have received particular attention. Global DNA methylation is a major epigenetic modification that plays important roles in cellular senescence and organismal aging. Thus, we aimed to evaluate the dynamic changes in the global DNA methylation profiles of OPCs derived from rat spinal cords during the aging process. We separated and cultured OPCs from the spinal cords of neonatal, 4-month-old, and 16-month-old rats and investigated the age-related alterations of genomic DNA methylation levels by using quantitative colorimetric analysis. To determine the potential cause of dynamic changes in global DNA methylation, we further analyzed the activity of DNA methyltransferases (DNMTs) and the expression of DNMT1, DNMT3a, DNMT3b, TET1, TET2, TET3, MBD2, and MeCP2 in the OPCs from each group. Our results showed the genomic DNA methylation level and the activity of DNMTs from OPCs derived from rat spinal cords decreased gradually during aging, and OPCs from 16-month-old rats were characterized by global hypomethylation. During OPC aging, the mRNA and protein expression levels of DNMT3a, DNMT3b, and MeCP2 were significantly elevated; those of DNMT1 were significantly down-regulated; and no significant changes were observed in those for TET1, TET2, TET3, or MBD2. Our results indicated that global DNA hypomethylation in aged OPCs is correlated with DNMT1 downregulation. Together, these data provide important evidence for partly elucidating the mechanism of age-related impaired OPC recruitment and differentiation and assist in the development of new treatments for promoting efficient remyelination.
Collapse
Affiliation(s)
- Jing Zhou
- Department of General Surgery, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong-Chao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao-Jun Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Dong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Xin Zheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry 2018; 8:242. [PMID: 30397195 PMCID: PMC6218441 DOI: 10.1038/s41398-018-0276-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme for the critical process of one-carbon metabolism involving folate and homocysteine metabolisms. It is known that some polymorphism of MTHFR would result in reduction of MTHFR enzyme activity as well as DNA methylation process, later shown to have significant impacts in various psychiatric diseases. However, it is unclear whether the polymorphism of MTHFR could be an independent or an add-on risk factor for specific psychiatric symptoms, such as anxiety, depression, positive, or negative symptoms of schizophrenia, or acts as risk factor for specific psychiatric disorders, such as schizophrenia, major depression, autisms, and bipolar disorders. It is also understudied on whether folate supplements could be an effective treatment for psychiatric patients with defect MTHFR activity. In this review, we not only gathered the most recent discoveries on MTHFR polymorphism and related DNA methylation in various psychiatric disorders, but also highlighted the potential relationships between MTHFR activity and implication of folate-related function in specific mental diseases.
Collapse
Affiliation(s)
- Lin Wan
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, 100069, China
| | - Yuhong Li
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, 100069, China
| | - Zhengrong Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Rena Li
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, 100069, China.
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, 34243, USA.
| |
Collapse
|
14
|
Navalta JW, Ciulei MA, Tibana RA, Voltarelli FA, Prestes J, Young JC. Global DNA methylation is stable across time and following acute exercise. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2018. [DOI: 10.23736/s0393-3660.17.03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Boyne DJ, O'Sullivan DE, Olij BF, King WD, Friedenreich CM, Brenner DR. Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2018; 27:1320-1331. [PMID: 29991518 DOI: 10.1158/1055-9965.epi-18-0175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
The extent to which physical activity reduces breast cancer risk through changes in global DNA methylation is unknown. We systematically identified studies that investigated the association between: (i) physical activity and global DNA methylation; or (ii) global DNA methylation and breast cancer risk. Associations were quantified using random-effects models. Heterogeneity was investigated through subgroup analyses and the Q-test and I 2 statistics. Twenty-four studies were reviewed. We observed a trend between higher levels of physical activity and higher levels of global DNA methylation [pooled standardized mean difference = 0.19; 95% confidence interval (CI), -0.03-0.40; P = 0.09] which, in turn, had a suggestive association with a reduced breast cancer risk (pooled relative risk = 0.70; 95% CI, 0.49-1.02; P = 0.06). In subgroup analyses, a positive association between physical activity and global DNA methylation was observed among studies assessing physical activity over long periods of time (P = 0.02). Similarly, the association between global DNA methylation and breast cancer was statistically significant for prospective cohort studies (P = 0.007). Despite the heterogeneous evidence base, the literature suggests that physical activity reduces the risk of breast cancer through increased global DNA methylation. This study is the first to systematically overview the complete biologic pathway between physical activity, global DNA methylation, and breast cancer. Cancer Epidemiol Biomarkers Prev; 27(11); 1320-31. ©2018 AACR.
Collapse
Affiliation(s)
- Devon J Boyne
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Branko F Olij
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Public Health, Erasmus MC-University Medical Center Rotterdam, the Netherlands
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada. .,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Gogna P, O'Sullivan DE, King WD. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation. Epigenomics 2018; 10:785-796. [PMID: 29888958 DOI: 10.2217/epi-2017-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the relationship between inflammation-related lifestyle factors and long interspersed nuclear element-1 (LINE-1) DNA methylation, and test for interaction by gene variants involved in one-carbon metabolism. PATIENTS & METHODS The study population consisted of 280 individuals undergoing colonoscopy screening. Multivariable linear regression was employed to examine associations of physical activity, BMI and NSAID use with LINE-1 DNA methylation and interactions with MTR and MTHFR gene variants. RESULTS The highest quartile of physical activity compared with the lowest was associated with higher LINE-1 DNA methylation (p = 0.005). Long-term NSAID use and a normal BMI were associated with increased LINE-1 DNA methylation among individuals with the variant MTR allele (p = 0.02; p = 0.03). CONCLUSION This study provides evidence that inflammation-related exposures may influence LINE-1 DNA methylation.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
17
|
Del Gobbo GF, Price EM, Hanna CW, Robinson WP. No evidence for association of MTHFR 677C>T and 1298A>C variants with placental DNA methylation. Clin Epigenetics 2018; 10:34. [PMID: 29564022 PMCID: PMC5851070 DOI: 10.1186/s13148-018-0468-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 01/30/2023] Open
Abstract
Background 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in one-carbon metabolism that ensures the availability of methyl groups for methylation reactions. Two single-nucleotide polymorphisms (SNPs) in the MTHFR gene, 677C>T and 1298A>C, result in a thermolabile enzyme with reduced function. These variants, in both the maternal and/or fetal genes, have been associated with pregnancy complications including miscarriage, neural tube defects (NTDs), and preeclampsia (PE), perhaps due to altered capacity for DNA methylation (DNAm). In this study, we assessed the association between MTHFR 677TT and 1298CC genotypes and risk of NTDs, PE, or normotensive intrauterine growth restriction (nIUGR). Additionally, we assessed whether these high-risk genotypes are associated with altered DNAm in the placenta. Results In 303 placentas screened for this study, we observed no significant association between the occurrence of NTDs (N = 55), PE (early-onset: N = 28, late-onset: N = 20), or nIUGR (N = 21) and placental (fetal) MTHFR 677TT or 1298CC genotypes compared to healthy pregnancies (N = 179), though a trend of increased 677TT genotype in PE/IUGR together was observed (OR 2.53, p = 0.048). DNAm was profiled in 10 high-risk 677 (677TT + 1298AA), 10 high-risk 1298 (677CC + 1298CC), and 10 reference (677CC + 1298AA) genotype placentas. Linear modeling identified no significantly differentially methylated sites between high-risk 677 or 1298 and reference placentas at a false discovery rate < 0.05 and Δβ ≥ 0.05 using the Illumina Infinium HumanMethylation450 BeadChip. Using a differentially methylated region analysis or separating cytosine-guanine dinucleotides (CpGs) by CpG density to reduce multiple comparisons also did not identify differential methylation. Additionally, there was no consistent evidence for altered methylation of repetitive DNA between high-risk and reference placentas. Conclusions We conclude that large-scale, genome-wide disruption in DNAm does not occur in placentas with the high-risk MTHFR 677TT or 1298CC genotypes. Furthermore, there was no evidence for an association of the 1298CC genotype and only a tendency to higher 677TT in pregnancy complications of PE/IUGR. This may be due to small sample sizes or folate repletion in our Canadian population attenuating effects of the high-risk MTHFR variants. However, given our results and the conflicting results in the literature, investigations into alternative mechanisms that may explain the link between MTHFR variants and pregnancy complications, or in populations at risk of folate deficiencies, are warranted. Electronic supplementary material The online version of this article (10.1186/s13148-018-0468-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- 1BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,2Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1 Canada
| | - E Magda Price
- 1BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,2Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1 Canada
| | - Courtney W Hanna
- 3Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,4Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
| | - Wendy P Robinson
- 1BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,2Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1 Canada.,5Child and Family Research Institute, Room 2082, 950 W 28th Avenue, Vancouver, BC V5Z 4H4 Canada
| |
Collapse
|
18
|
Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 2018; 174:18-29. [PMID: 29337038 DOI: 10.1016/j.mad.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is the most important risk factor for major human lifestyle diseases, including cancer, neurological and cardiometabolic disorders. Due to the complex interplay between genetics, lifestyle and environmental factors, some individuals seem to age faster than others, whereas centenarians seem to have a slower aging process. Therefore, a biochemical biomarker reflecting the relative biological age would be helpful to predict an individual's health status and aging disease risk. Although it is already known for years that cumulative epigenetic changes occur upon aging, DNA methylation patterns were only recently used to construct an epigenetic clock predictor for biological age, which is a measure of how well your body functions compared to your chronological age. Moreover, the epigenetic DNA methylation clock signature is increasingly applied as a biomarker to estimate aging disease susceptibility and mortality risk. Finally, the epigenetic clock signature could be used as a lifestyle management tool to monitor healthy aging, to evaluate preventive interventions against chronic aging disorders and to extend healthy lifespan. Dissecting the mechanism of the epigenetic aging clock will yield valuable insights into the aging process and how it can be manipulated to improve health span.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium.
| |
Collapse
|
19
|
Passador J, Toffoli LV, Fernandes KB, Neves-Souza RD, Pelosi GG, Gomes MV. Dietary Ingestion of Calories and Micronutrients Modulates the DNA Methylation Profile of Leukocytes from Older Individuals. J Nutr Health Aging 2018; 22:1281-1285. [PMID: 30498838 DOI: 10.1007/s12603-018-1085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Several lines of evidence from the last decade support the connection between nutrition and epigenetic mechanisms. In the present study we evaluated the impact of the daily dietary intake of calories and the micronutrients vitamin A, D, B1, B2, B5, C, E, copper, calcium, phosphorus, iron, iodine, selenium, manganese, potassium and sodium on the global DNA methylation profile of blood cells from older individuals. RESEARCH METHODS AND PROCEDURES The study enrolled 126 physically independent elderly of both sexes (60 men and 66 women). For the molecular analysis, DNA samples were extracted from leukocytes and global DNA methylation was evaluated using a high throughput Elisa-based method. Correlations between global DNA methylation and the daily intake of calorie or micronutrients were evaluated using Prism5 GraphPad Software. RESULTS A statistically significant correlation was observed between global DNA methylation and the daily caloric value (p=0.019, r=-0.21), and the intake of vitamin A (p=0.03, r=-0.18), Vitamin E (p=0.027, r=-0.20) and copper (p=0.04, r=-0.18). No correlation was observed between global DNA methylation and the daily intake of vitamin D, B1, B2, B5, C, calcium, phosphorus, iron, iodine, selenium, manganese and potassium (p>0.05). CONCLUSION Our data demonstrate that the daily intake of calories or the micronutrients vitamin A, vitamin E and copper can potentially modulate the global DNA methylation profile of leukocytes in older adults and corroborate the notion of nutritional influences on epigenetic mechanisms.
Collapse
Affiliation(s)
- J Passador
- Gislaine Garcia Pelosi, Departamento de Ciências Fisiológicas, CCB-UEL, Campus Universitário, Rod Celso Garcia Cid, Km 380, CEP 86055-900, Londrina, Paraná, Brazil. Phone.: +55 43 3371 4201; fax: +55 43 3371 4467, E-mail address:
| | | | | | | | | | | |
Collapse
|
20
|
Relationships between Global DNA Methylation in Circulating White Blood Cells and Breast Cancer Risk Factors. J Cancer Epidemiol 2017; 2017:2705860. [PMID: 28484492 PMCID: PMC5397634 DOI: 10.1155/2017/2705860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
It is not yet clear whether white blood cell DNA global methylation is associated with breast cancer risk. In this review we examine the relationships between multiple breast cancer risk factors and three markers of global DNA methylation: LINE-1, 5-mdC, and Alu. A literature search was conducted using Pubmed up to April 1, 2016, using combinations of relevant outcomes such as “WBC methylation,” “blood methylation,” “blood LINE-1 methylation,” and a comprehensive list of known and suspected breast cancer risk factors. Overall, the vast majority of reports in the literature have focused on LINE-1. There was reasonably consistent evidence across the studies examined that males have higher levels of LINE-1 methylation in WBC DNA than females. None of the other demographic, lifestyle, dietary, or health condition risk factors were consistently associated with LINE-1 DNA methylation across studies. With the possible exception of sex, there was also little evidence that the wide range of breast cancer risk factors we examined were associated with either of the other two global DNA methylation markers: 5-mdC and Alu. One possible implication of the observed lack of association between global WBC DNA methylation and known breast cancer risk factors is that the association between global WBC DNA methylation and breast cancer, if it exists, is due to a disease effect.
Collapse
|
21
|
Vryer R, Saffery R. What's in a name? Context-dependent significance of 'global' methylation measures in human health and disease. Clin Epigenetics 2017; 9:2. [PMID: 28149330 PMCID: PMC5270354 DOI: 10.1186/s13148-017-0311-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
The study of DNA methylation in development and disease has 'exploded' as a field in recent years, with three major classes of measurement now routine. These encompass (i) locus-specific, (ii) genome-scale/wide and (iii) 'global' methylation approaches. Measures of global methylation refer to the level of 5-methylcytosine (5mC) content in a sample relative to total cytosine. Despite this, several other measures are often referred to as 'global', with the underlying assumption that they accurately reflect 5mC content. The two most common surrogate, or proxy, measures include generating a mean or median methylation value from (i) the average measure in thousands of highly repetitive genomic elements and (ii) many thousands to several million primarily unique CpG sites throughout the genome. Numerous lines of evidence suggest the underlying assumption of equivalence of these measures is flawed, with considerable variation in the regulation of different 'flavours' of DNA methylation throughout the genome depending on cell type, differentiation and disease state. As such, the regulation of methylation 'types' is often uncoupled. The emerging picture suggests that no approach can accurately detect all biologically important differences in 5mC variation and distribution in all instances, with this needing to be ascertained on a case-by-case basis. Thus, it is important to clearly elaborate the genomic context and content of DNA methylation being analysed, the sample and developmental stage in which it is being examined and to remember that in most instances, the most common measures are not a true representation of 'global' 5mC content as orginally defined.
Collapse
Affiliation(s)
- Regan Vryer
- Murdoch Childrens Research Institute, 50 Flemington Rd, Parkville, Victoria 3052 Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute, 50 Flemington Rd, Parkville, Victoria 3052 Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria Australia
| |
Collapse
|
22
|
Chan MA, Ciaccio CE, Gigliotti NM, Rezaiekhaligh M, Siedlik JA, Kennedy K, Barnes CS. DNA methylation levels associated with race and childhood asthma severity. J Asthma 2016; 54:825-832. [PMID: 27929694 DOI: 10.1080/02770903.2016.1265126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Asthma is a common chronic childhood disease worldwide. Socioeconomic status, genetic predisposition and environmental factors contribute to its incidence and severity. A disproportionate number of children with asthma are economically disadvantaged and live in substandard housing with potential indoor environmental exposures such as cockroaches, dust mites, rodents and molds. These exposures may manifest through epigenetic mechanisms that can lead to changes in relevant gene expression. We examined the association of global DNA methylation levels with socioeconomic status, asthma severity and race/ethnicity. METHODS We measured global DNA methylation in peripheral blood of children with asthma enrolled in the Kansas City Safe and Healthy Homes Program. Inclusion criteria included residing in the same home for a minimum of 4 days per week and total family income of less than 80% of the Kansas City median family income. DNA methylation levels were quantified by an immunoassay that assessed the percentage of 5-methylcytosine. RESULTS Our results indicate that overall, African American children had higher levels of global DNA methylation than children of other races/ethnicities (p = 0.029). This difference was more pronounced when socioeconomic status and asthma severity were coupled with race/ethnicity (p = 0.042) where low-income, African American children with persistent asthma had significantly elevated methylation levels relative to other races/ethnicities in the same context (p = 0.006, Hedges g = 1.14). CONCLUSION Our study demonstrates a significant interaction effect among global DNA methylation levels, asthma severity, race/ethnicity, and socioeconomic status.
Collapse
Affiliation(s)
- Marcia A Chan
- a Division of Allergy, Asthma and Immunology , Children's Mercy Hospital , Kansas City , MO , USA
| | - Christina E Ciaccio
- b Department of Pediatrics , University of Chicago Medicine, Comer Comer Children's Hospital , Chicago , IL , USA
| | - Nicole M Gigliotti
- a Division of Allergy, Asthma and Immunology , Children's Mercy Hospital , Kansas City , MO , USA
| | - Mo Rezaiekhaligh
- a Division of Allergy, Asthma and Immunology , Children's Mercy Hospital , Kansas City , MO , USA
| | - Jacob A Siedlik
- c Department of Exercise Science and Pre-Health Professions , Creighton University , Omaha , NE , USA
| | - Kevin Kennedy
- d Center for Environmental Health, Children's Mercy Hospital , Kansas City , MO , USA
| | - Charles S Barnes
- a Division of Allergy, Asthma and Immunology , Children's Mercy Hospital , Kansas City , MO , USA
| |
Collapse
|
23
|
Casanello P, Krause BJ, Castro-Rodríguez JA, Uauy R. [Epigenetics and obesity]. ACTA ACUST UNITED AC 2016; 87:335-342. [PMID: 27692574 DOI: 10.1016/j.rchipe.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022]
Abstract
Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations.
Collapse
Affiliation(s)
- Paola Casanello
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo J Krause
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A Castro-Rodríguez
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Fan S, Yang B, Zhi X, Wang Y, Wei J, Zheng Q, Sun G. Interactions of Methylenetetrahydrofolate Reductase C677T Polymorphism with Environmental Factors on Hypertension Susceptibility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060601. [PMID: 27322299 PMCID: PMC4924058 DOI: 10.3390/ijerph13060601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023]
Abstract
Hypertension is considered to be the result of genes, environment, and their interactions. Among them age, sex, tobacco use, alcohol consumption, and being overweight/obesity are well documented environmental determinants, and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is nominated as a potential genetic candidate. However, the synergistic effect of the MTHFR C677T polymorphism with these environmental factors on the risk of hypertension has received little attention. The aim of this study was to explore the associations of the MTHFR C677T polymorphism, environmental factors, and their interactions with hypertension predisposition in a Northern Chinese Han population. A total of 708 participants were enrolled in the study. The genotypes of the MTHFR C677T were determined by a TaqMan assay. We found that participants of an older age, being overweight/obesity, with a smoking habit, drinking habit, or carrying the 677T allele were at an increased risk of hypertension. Additionally, there existed marginally significant interactions of the polymorphism with age and overweight/obesity. However, future large, well-designed studies in Chinese and other populations, as well as mechanistic studies, are still needed to validate our findings, especially considering that the interactions observed in our study were only marginally significant.
Collapse
Affiliation(s)
- Shujun Fan
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Boyi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xueyuan Zhi
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Yanxun Wang
- Division of Molecular Preventive Medicine, Shanghai Institute of Targeted Therapy and Molecular Medicine, Shanghai 200433, China.
| | - Jian Wei
- Brain Disease Center, Tianjin Dagang Oil Field General Hospital, Tianjin 300280, China.
| | - Quanmei Zheng
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Guifan Sun
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110013, China.
| |
Collapse
|
25
|
de la Rocha C, Pérez-Mojica JE, León SZD, Cervantes-Paz B, Tristán-Flores FE, Rodríguez-Ríos D, Molina-Torres J, Ramírez-Chávez E, Alvarado-Caudillo Y, Carmona FJ, Esteller M, Hernández-Rivas R, Wrobel K, Wrobel K, Zaina S, Lund G. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep 2016; 6:25867. [PMID: 27181711 PMCID: PMC4867649 DOI: 10.1038/srep25867] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 02/08/2023] Open
Abstract
Fatty acids (FA) modify DNA methylation in vitro, but limited information is available on whether corresponding associations exist in vivo and reflect any short-term effect of the diet. Associations between global DNA methylation and FAs were sought in blood from lactating infants (LI; n = 49) and adult males (AMM; n = 12) equally distributed across the three conventional BMI classes. AMM provided multiple samples at 2-hour intervals during 8 hours after either a single Western diet-representative meal (post-prandial samples) or no meal (fasting samples). Lipid/glucose profile, HDAC4 promoter and PDK4 5’UTR methylation were determined in AMM. Multiple regression analysis revealed that global (in LI) and both global and PDK4-specific DNA methylation (in AMM) were positively associated with eicosapentaenoic and arachidonic acid. HDAC4 methylation was inversely associated with arachidonic acid post-prandially in AMM. Global DNA methylation did not show any defined within-day pattern that would suggest a short-term response to the diet. Nonetheless, global DNA methylation was higher in normal weight subjects both post-prandially and in fasting and coincided with higher polyunsaturated relative to monounsaturated and saturated FAs. We show for the first time strong associations of DNA methylation with specific FAs in two human cohorts of distinct age, diet and postnatal development stage.
Collapse
Affiliation(s)
- Carmen de la Rocha
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - J Eduardo Pérez-Mojica
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico.,Department of Molecular Biomedicine, CINVESTAV Campus Zacatenco, Mexico D.F., Mexico
| | - Silvia Zenteno-De León
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Braulio Cervantes-Paz
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Fabiola E Tristán-Flores
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Jorge Molina-Torres
- Department of Biochemistry and Biotechnology, CINVESTAV Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Enrique Ramírez-Chávez
- Department of Biochemistry and Biotechnology, CINVESTAV Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Yolanda Alvarado-Caudillo
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico
| | - F Javier Carmona
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | | | - Katarzyna Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| |
Collapse
|
26
|
Rohde K, Keller M, Stumvoll M, Dietrich A, Blüher M, Böttcher Y. DNA 5-hydroxymethylation in human adipose tissue differs between subcutaneous and visceral adipose tissue depots. Epigenomics 2015; 7:911-20. [PMID: 26418625 DOI: 10.2217/epi.15.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A stable intermediate during DNA demethylation, 5-hydroxymethylcytosine (5-hmC), raises questions about its function and distribution. Therefore, we tested whether 5-hmC exists in human adipose tissue depots and correlates with clinical variables. MATERIALS & METHODS We measured the % 5-hmC content in both subcutaneous adipose tissue and visceral adipose tissue (VAT) from 81 individuals by using ELISA technology. To test for associations with several clinical variables we used paired students t-tests and linear regression analyses. RESULTS We observed an average % 5-hmC content of 0.47% ± 0.093 in subcutaneous adipose tissue, while VAT (0.51% ± 0.122) is higher hydroxymethylated (p = 0.005). In the total cohort we observed a positive association of % 5-hmC in VAT with age (p = 0.034) and a negative relationship with low density lipoprotein-cholesterol (p = 0.008). CONCLUSION Our data suggest adipose tissue depot specific 5-hmC levels with higher levels in VAT.
Collapse
Affiliation(s)
- Kerstin Rohde
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Maria Keller
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.,Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.,Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Yvonne Böttcher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Canto C, Marchese AE, Vinciguerra M. Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. GENES AND NUTRITION 2015; 10:480. [PMID: 26183162 PMCID: PMC4504850 DOI: 10.1007/s12263-015-0480-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/02/2015] [Indexed: 01/05/2023]
Abstract
Several dietary agents, such as micronutrient and non-nutrient components, the so-called bioactive food components, have been shown to display anticancer properties and influence genetic processes. The most common epigenetic change is DNA methylation. Hypomethylation of long interspersed elements (LINE-1) has been associated with an increased risk of several cancers, although conflicting findings have also been observed. The aim of the present study was to test the hypothesis that a low adherence to the Mediterranean diet (MD) and folate deficiency may cause LINE-1 hypomethylation in blood leukocytes of healthy women, and thus genomic instability. One hundred and seventy-seven non-pregnant women were enrolled. Mediterranean diet score (MDS) and folate intake were calculated using a food frequency questionnaire. LINE-1 methylation level was measured by pyrosequencing analysis in three CpG sites of LINE-1 promoter. According to MDS, only 9.6 % of subjects achieved a high adherence to MD. Taking into account the use of supplements, there was a high prevalence of folate deficiency (73.4 %). Women whose consumption of fruit was below the median value (i.e., <201 gr/day) were 3.7 times more likely to display LINE-1 hypomethylation than women whose consumption was above the median value (OR 3.7; 95 % CI 1.4–9.5). Similarly, women with folate deficiency were 3.6 times more likely to display LINE-1 hypomethylation than women with no folate deficiency (OR 3.6; 95 % CI 1.1–12.1). A dietary pattern characterized by low fruit consumption and folate deficiency is associated with LINE-1 hypomethylation and with cancer risk.
Collapse
Affiliation(s)
- Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95121, Catania, Italy,
| | | | | | | | | | | | | |
Collapse
|
28
|
Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril 2015; 104:145-53.e6. [DOI: 10.1016/j.fertnstert.2015.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
|
29
|
Lévesque ML, Casey KF, Szyf M, Ismaylova E, Ly V, Verner MP, Suderman M, Brendgen M, Vitaro F, Dionne G, Boivin M, Tremblay RE, Booij L. Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics 2015; 9:1410-21. [PMID: 25437055 DOI: 10.4161/15592294.2014.970060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation patterns are characterized by highly conserved developmental programs, but allow for divergent gene expression resulting from stochastic epigenetic drift or divergent environments. Genome-wide methylation studies in monozygotic (MZ) twins are providing insight into the extent of epigenetic variation that occurs, irrespective of genotype. However, little is known about the variability of DNA methylation patterns in adolescence, a period involving significant and rapid physical, emotional, social, and neurodevelopmental change. Here, we assessed genome-wide DNA methylation using the 450 K Illumina BeadChip in a sample of 37 MZ twin pairs followed longitudinally since birth to investigate: 1) the extent of variation in DNA methylation in identical genetic backgrounds in adolescence and; 2) whether these variations are randomly distributed or enriched in particular functional pathways. We also assessed stability of DNA methylation over 3-6 months to distinguish stable trait-like and variable state-like genes. A pathway analysis found high within-pair variability in genes associated with development, cellular mechanisms, tissue and cell morphology, and various disorders. Test-retest analyses performed in a sub-sample of 8 twin pairs demonstrated enrichment in gene pathways involved in organismal development, cellular growth and proliferation, cell signaling, and particular disorders. The variability found in functional gene pathways may plausibly underlie phenotypic differences in this adolescent MZ twin sample. Furthermore, we assessed stability of methylation over 3-6 months and found that some genes were stable while others were unstable, suggesting that the methylome remains dynamic in adolescence and that dynamic sites tend to be organized in certain gene pathways.
Collapse
|
30
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [PMID: 25911292 DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|
31
|
Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med 2015; 49:1567-78. [PMID: 25824446 DOI: 10.1136/bjsports-2014-094073] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). OBJECTIVE We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). DESIGN Gene ontology (ie, gene product elucidation)/meta-analysis. DATA SOURCES 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. DATA EXTRACTION g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. DATA SYNTHESIS Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. RESULTS Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. CONCLUSIONS Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. TRIAL REGISTRATION NUMBER CRD42014009800.
Collapse
|
32
|
Genome-wide methylation analysis in Silver-Russell syndrome patients. Hum Genet 2015; 134:317-332. [PMID: 25563730 DOI: 10.1007/s00439-014-1526-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023]
Abstract
Silver-Russell syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately, half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7. We measured DNA methylation in 18 SRS patients at >485,000 CpG sites using DNA methylation microarrays. Using a novel bioinformatics methodology specifically designed to identify subsets of patients with a shared epimutation, we analysed methylation changes genome-wide as well as at known imprinted regions to identify SRS-associated epimutations. Our analysis identifies epimutations at the previously characterised domains of H19/IGF2 and at imprinted regions on chromosome 7, providing proof of principle that our methodology can detect DNA methylation changes at imprinted loci. In addition, we discovered two novel epimutations associated with SRS and located at imprinted loci previously linked to relevant mouse and human phenotypes. We identify RB1 as an additional imprinted locus associated with SRS, with a region near the RB1 differentially methylated region hypermethylated in 13/18 (~70%) patients. We also report 6/18 (~33%) patients were hypermethylated at a CpG island near the ANKRD11 gene. We do not observe consistent co-occurrence of epimutations at multiple imprinted loci in single SRS individuals. SRS is clinically heterogeneous and the absence of multiple imprinted loci epimutations reflects the heterogeneity at the molecular level. Further stratification of SRS patients by molecular phenotypes might aid the identification of disease causes.
Collapse
|
33
|
Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 2015; 213:39-59. [PMID: 25345837 DOI: 10.1111/apha.12414] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/14/2014] [Accepted: 10/18/2014] [Indexed: 12/17/2022]
Abstract
The response to exercise training (trainability) has been shown to have a strong heritable component. There is growing evidence suggesting that traits such as trainability do not only depend on the genetic code, but also on epigenetic signals. Epigenetic signals play an important role in the modulation of gene expression, through mechanisms such as DNA methylation and histone modifications. There is an emerging evidence to show that physical activity influences DNA methylation in humans. The present review aims to summarize current knowledge on the link between DNA methylation and physical activity in humans. We have critically reviewed the literature and only papers focused on physical activity and its influence on DNA methylation status were included; a total of 25 papers were selected. We concluded that both acute and chronic exercises significantly impact DNA methylation, in a highly tissue- and gene-specific manner. This review also provides insights into the molecular mechanisms of exercise-induced DNA methylation changes, and recommendations for future research.
Collapse
Affiliation(s)
- S. Voisin
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
| | - N. Eynon
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
- Murdoch Childrens Research Institute; Royal Children's Hospital; Melbourne Vic. Australia
| | - X. Yan
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
- Murdoch Childrens Research Institute; Royal Children's Hospital; Melbourne Vic. Australia
| | - D. J. Bishop
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
| |
Collapse
|
34
|
Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C, De Jager PL. Epigenomics of Alzheimer's disease. Transl Res 2015; 165:200-20. [PMID: 24905038 PMCID: PMC4233194 DOI: 10.1016/j.trsl.2014.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a large and growing public health problem. It is characterized by the accumulation of amyloid β peptides and abnormally phosphorylated tau proteins that are associated with cognitive decline and dementia. Much has been learned about the genomics of AD from linkage analyses and, more recently, genome-wide association studies. Several but not all aspects of the genomic landscape are involved in amyloid β metabolism. The moderate concordance of disease among twins suggests other factors, potentially epigenomic factors, are related to AD. We are at the earliest stages of examining the relation of the epigenome to the clinical and pathologic phenotypes that characterize AD. Our literature review suggests that there is some evidence of age-related changes in human brain methylation. Unfortunately, studies of AD have been relatively small with limited coverage of methylation sites and microRNA, let alone other epigenomic marks. We are in the midst of 2 large studies of human brains including coverage of more than 420,000 autosomal cytosine-guanine dinucleotides with the Illumina Infinium HumanMethylation450 BeadArray, and histone acetylation with chromatin immunoprecipitation sequencing. We present descriptive data to help inform other researchers what to expect from these approaches to better design and power their studies. We then discuss future directions to inform on the epigenomic architecture of AD.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill
| | - Gyan P Srivastava
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| | - Cristin Aubin
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| |
Collapse
|
35
|
Mather KA, Kwok JB, Armstrong N, Sachdev PS. The role of epigenetics in cognitive ageing. Int J Geriatr Psychiatry 2014; 29:1162-71. [PMID: 25098266 DOI: 10.1002/gps.4183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE As the population is ageing, a better understanding of the underlying causes of age-related cognitive decline (cognitive ageing) is required. Epigenetic dysregulation is proposed as one of the underlying mechanisms for cognitive ageing. We review the current knowledge on epigenetics and cognitive ageing and appraise the potential of epigenetic preventative and therapeutic interventions. DESIGN Articles on cognitive ageing and epigenetics in English were identified. RESULTS Epigenetic dysregulation occurs with cognitive ageing, with changes in histone post-translational modifications, DNA methylation and non-coding RNA reported. However, human studies are lacking, with most being cross-sectional using peripheral blood samples. Pharmacological and lifestyle factors have the potential to change aberrant epigenetic profiles; but few studies have examined this in relation to cognitive ageing. CONCLUSIONS The relationship between epigenetic modifications and cognitive ageing is only beginning to be investigated. Epigenetic dysregulation appears to be an important feature in cognitive ageing, but whether it is an epiphenomenon or a causal factor remains to be elucidated. Clarification of the relationship between epigenetic profiles of different cell types is essential and would determine whether epigenetic marks of peripheral tissues can be used as a proxy for changes occurring in the brain. The use of lifestyle and pharmacological interventions to improve cognitive performance and quality of life of older adults needs more investigation.
Collapse
Affiliation(s)
- Karen A Mather
- Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
36
|
Xiong HL, Liu XQ, Sun AH, He Y, Li J, Xia Y. Aberrant DNA methylation of P16, MGMT, hMLH1 and hMSH2 genes in combination with the MTHFR C677T genetic polymorphism in gastric cancer. Asian Pac J Cancer Prev 2014; 14:3139-42. [PMID: 23803092 DOI: 10.7314/apjcp.2013.14.5.3139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Associations of P16, MGMT, hMLH1 and hMLH2 with gastric cancer and their relation with MTHFR status in gastric patients who were confirmed with pathological diagnosis were assessed. Aberrant DNA methylation of P16, MGMT, hMLH1 and hMLH2 and polymorphisms of MTHFR C677T were assayed. The proportional DNA hypermethylation in P16, MGMT, hMLH1 and hMLH2 in cancer tissues was significantly higher than in remote normal-appearing tissues. DNA hypermethylation of P16 and MGMT was correlated with the T and N stages. Individuals with homozygotes (TT) of MTHFR C677T had significant risk of hypermethylation of MGMT in cancer tissues [OR (95% CI)= 3.47(1.41-7.93)]. However, we did not find association between polymorphism in MTHFR C677T and risk of hypermethylation in P16, MGMT, hMLH1 and hMLH2 genes either in cancer or remote normal-appearing tissues. Aberrant hypermethylation of P16, MGMT, hMLH1 and hMLH2 could be predictive of gastric cancer.
Collapse
Affiliation(s)
- Hai-Lin Xiong
- Department of Medical Oncology, Huizhou Municipal Central Hospital, Huizhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Rodney NC, Mulligan CJ. A biocultural study of the effects of maternal stress on mother and newborn health in the Democratic Republic of Congo. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:200-9. [DOI: 10.1002/ajpa.22568] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Nicole C. Rodney
- Department of Anthropology; University of Florida; Gainesville FL 32611
| | - Connie J. Mulligan
- Department of Anthropology; University of Florida; Gainesville FL 32611
- Genetics Institute, University of Florida; Gainesville FL 32610
| |
Collapse
|
38
|
Vidi PA, Leary JF, Lelièvre SA. Building risk-on-a-chip models to improve breast cancer risk assessment and prevention. Integr Biol (Camb) 2014; 5:1110-8. [PMID: 23681255 DOI: 10.1039/c3ib40053k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preventive actions for chronic diseases hold the promise of improving lives and reducing healthcare costs. For several diseases, including breast cancer, multiple risk and protective factors have been identified by epidemiologists. The impact of most of these factors has yet to be fully understood at the organism, tissue, cellular and molecular levels. Importantly, combinations of external and internal risk and protective factors involve cooperativity thus, synergizing or antagonizing disease onset. Models are needed to mechanistically decipher cancer risks under defined cellular and microenvironmental conditions. Here, we briefly review breast cancer risk models based on 3D cell culture and propose to improve risk modeling with lab-on-a-chip approaches. We suggest epithelial tissue polarity, DNA repair and epigenetic profiles as endpoints in risk assessment models and discuss the development of 'risks-on-chips' integrating biosensors of these endpoints and of general tissue homeostasis. Risks-on-chips will help identify biomarkers of risk, serve as screening platforms for cancer preventive agents, and provide a better understanding of risk mechanisms, hence resulting in novel developments in disease prevention.
Collapse
Affiliation(s)
- Pierre-Alexandre Vidi
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47907-2026, USA.
| | | | | |
Collapse
|
39
|
Karlic H, Herrmann H, Varga F, Thaler R, Reitermaier R, Spitzer S, Ghanim V, Blatt K, Sperr WR, Valent P, Pfeilstöcker M. The role of epigenetics in the regulation of apoptosis in myelodysplastic syndromes and acute myeloid leukemia. Crit Rev Oncol Hematol 2014; 90:1-16. [DOI: 10.1016/j.critrevonc.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 09/03/2013] [Accepted: 10/02/2013] [Indexed: 01/17/2023] Open
|
40
|
Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 2014; 136-137:101-15. [DOI: 10.1016/j.mad.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
|
41
|
Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat's offspring: modulation by folic acid supplementation. Behav Brain Res 2014; 265:142-7. [PMID: 24583191 DOI: 10.1016/j.bbr.2014.02.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Fluoxetine is an antidepressant that has been largely used for treatment of depression in pregnancy. In the present study we evaluated the effects of the exposure to fluoxetine during gestation and lactation on DNA methylation of rat brain regions. Female Wistar rats were treated with 5mg/kg of fluoxetine during pregnancy and lactation. In order to assess the effects of fluoxetine in the context of maternal folic acid supplementation we performed an additional combined treatment composed by folic acid (8 mg/kg/day) and fluoxetine (5 mg/kg/day). On the postnatal day 22, male rats were euthanized and hippocampus, cortex, hypothalamus, and periaqueductal gray area were removed. Global DNA methylation was quantified using a high-throughput ELISA-based method. Neurofunctional changes were addressed using validated behavioral tests: hot plate, elevated plus maze and open field. A decrease in the global DNA methylation profile of hippocampus was associated to the exposure to fluoxetine, whereas an increase in methylation was observed in cortex. The combined treatment induced an increase in the methylation of hippocampus indicating the potential of folic acid to modulate this epigenetic alteration. Increase in the latency to the thermal nociceptive response was observed in animals exposed to fluoxetine whereas this effect was abolished in animals from the combined treatment. In summary we demonstrated that exposure to fluoxetine during gestation and lactation affect the DNA methylation of brain and the nociceptive response of rats. Furthermore our data reveal the potential of folic acid to modulate epigenetic and functional changes induced by early exposure to fluoxetine.
Collapse
|
42
|
Song B, Ai J, Kong X, Liu D, Li J. Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism in gastric cancer. Pak J Med Sci 2014; 29:1338-43. [PMID: 24550949 PMCID: PMC3905372 DOI: 10.12669/pjms.296.3711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE We aimed to explore the association of P16, MGMT and HMLH1 with gastric cancer and their relation with Methylenetetrahydrofolate reductase (MTHFR). METHODS 322 gastric patients who were confirmed with pathological diagnosis were included in our study. Aberrant DNA methylation of P16, MGMT and HMLH1 and polymorphisms of MTHFR C677T and A1298C were detected using PCR-RFLP. RESULTS The proportions of DNA hypermethylation in P16, MGMT and hMLH1 genes in gastric cancer tissues were 75.2% (242/322), 27.6% (89/322) and 5.3% (17/322), respectively. In the remote normal-appearing tissues, 29.5% (95/322) and 16.1%(52/322) showed hypermethylation in P16 and MGMT genes, respectively. We found a significantly higher proportion of DNA hypermethylation of P16 in patients with N1 TNM stage in cancer tissues and remote normal-appearing tissues (P<0.05). Similarly, we found DNA hypermethylation of MGMT had significantly higher proportion in N1 and M1 TNM stage (P<0.05). Individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues [OR (95% CI)=4.27(1.76-7.84)], and a significant risk was also found in those carrying MTHFR 677CT/TT genotype [OR (95% CI)= 3.27(1.21-4.77)]. CONCLUSION We found the aberrant hypermethylation of cancer-related genes, such as P16, MGMT and HMLH1, could be predictive biomarkers for detection of gastric cancer.
Collapse
Affiliation(s)
- Binbin Song
- Binbin Song, Department of Gastroenterology, Hongqi Hospital, Mudanjiang, China
| | - Jiang Ai
- Jiang Ai, Department of Gastroenterology, Hongqi Hospital, Mudanjiang, China
| | - Xianghong Kong
- Xianghong Kong, Department of Gastroenterology, Hongqi Hospital, Mudanjiang, China
| | - Dexin Liu
- Dexin Liu, Department of Gastroenterology, Hongqi Hospital, Mudanjiang, China
| | - Jun Li
- Jun Li, Affiliated Hospital of Sun Yat-sen University of Huzhou, Huizhou, China
| |
Collapse
|
43
|
Wang Y, Fang Y, Zhang F, Xu M, Zhang J, Yan J, Ju W, Brown WT, Zhong N. Hypermethylation of the enolase gene (ENO2) in autism. Eur J Pediatr 2014; 173:1233-44. [PMID: 24737292 PMCID: PMC4134484 DOI: 10.1007/s00431-014-2311-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED It has been hypothesized that dysregulation of brain-expressed genes is the major predisposing underlying mechanism for autism. This dysregulation may be mediated by differential methylation of CpG sites within gene promoters, which could be candidate biomarkers and used for early clinical screening of autism. A total of 131 pairs of age- and sex-matched autistic and control subjects were recruited in this study. Peripheral blood cells were analyzed. The first five pairs were randomly applied to array-based genome-wide methylation studies. A neuron-specific gene, ENO2, was found to be hypermethylated in the autistic samples. This difference was validated by bisulfite sequencing PCR (BSP). The differential expression of ENO2 gene was further analyzed with RT-qPCR and ELISA. The hypermethylation of ENO2 within the promoter region was confirmed by BSP to be present in 14.5 % (19/131) of the total of the autistic samples. The mean ENO2 RNA level in these 19 autistic samples was reduced by about 70 % relative to that in controls. The average level of ENO2 protein expression in the 19 autistic samples (15.18 ± 3.51 μg/l) was about half of that in the controls (33.86 ± 8.16 μg/l). CONCLUSION These findings suggest that reduced ENO2 expression may be a biomarker for a subset of autistic children.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China,
| | - Yudan Fang
- Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China ,Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai, China ,Shanghai Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fengling Zhang
- Institute of Children Health Care, Shanghai Children’s Hospital, Shanghai Jiaotong University, 1440 Beijing West Road, Shanghai, 200040 China
| | - Miao Xu
- Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China ,Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai, China ,Shanghai Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Jingzhi Zhang
- Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China ,Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai, China ,Shanghai Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Jingbin Yan
- Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China ,Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai, China ,Shanghai Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY USA
| | - W. Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY USA
| | - Nanbert Zhong
- Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China ,Institute of Children Health Care, Shanghai Children’s Hospital, Shanghai Jiaotong University, 1440 Beijing West Road, Shanghai, 200040 China ,Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai, China ,Shanghai Laboratory of Embryo and Reproduction Engineering, Shanghai, China ,Peking University Center of Medical Genetics, Beijing, China ,New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY USA
| |
Collapse
|
44
|
Tremolizzo L, Messina P, Conti E, Sala G, Cecchi M, Airoldi L, Pastorelli R, Pupillo E, Bandettini Di Poggio M, Filosto M, Lunetta C, Agliardi C, Guerini F, Mandrioli J, Calvo A, Beghi E, Ferrarese C. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph Lateral Scler Frontotemporal Degener 2013; 15:98-105. [PMID: 24224837 DOI: 10.3109/21678421.2013.851247] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ALS is a heterogeneous disease that is not well understood. Epigenetic rearrangements are important in complex disorders including motor neuron diseases. The aim of this study was to determine whether whole-blood DNA methylation (DNA MET %) is a potential modifier of age at onset in ALS. DNA MET % was measured as incorporation of [(3)H]dCTP following HpaII cut in 96 ALS patients and 87 controls, comprising: early-onset (< 55 years of age) and late-onset (> 74 years of age). Methionine (Met) and homocysteine (Hcy) plasma levels were assessed by liquid chromatography selected reaction monitoring coupled with isotope-dilution mass spectrometry. Results showed that DNA MET % was increased in ALS patients independently of age of onset. Compared to the other three groups, Hcy plasma levels were reduced in early-onset ALS patients but Met levels were similar. ROC analysis reported Met levels and DNA MET %, respectively, with a slight and moderate discriminative power. In conclusion, increased DNA MET % is a possible marker of epigenetic dysfunction in ALS independently of age of onset. Further studies dissecting biological determinants of phenotypic complexity in ALS may help in developing successful therapeutic strategies.
Collapse
Affiliation(s)
- Lucio Tremolizzo
- Department of Neurology, 'San Gerardo' Hospital and University of Milano-Bicocca , Monza
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shen H, Qiu C, Li J, Tian Q, Deng HW. Characterization of the DNA methylome and its interindividual variation in human peripheral blood monocytes. Epigenomics 2013; 5:255-69. [PMID: 23750642 DOI: 10.2217/epi.13.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Peripheral blood monocytes (PBMs) play multiple and critical roles in the immune response, and abnormalities in PBMs have been linked to a variety of human disorders. However, the DNA methylation landscape in PBMs is largely unknown. In this study, we characterized epigenome-wide DNA methylation profiles in purified PBMs. MATERIALS & METHODS PBMs were isolated from freshly collected peripheral blood from 18 unrelated healthy postmenopausal Caucasian females. Epigenome-wide DNA methylation profiles (the methylome) were characterized by using methylated DNA immunoprecipitation combined with high-throughput sequencing. RESULTS Distinct patterns were revealed at different genomic features. For instance, promoters were commonly (∼58%) found to be unmethylated; whereas protein coding regions were largely (∼84%) methylated. Although CpG-rich and -poor promoters showed distinct methylation patterns, interestingly, a negative correlation between promoter methylation levels and gene transcription levels was consistently observed across promoters with high to low CpG densities. Importantly, we observed substantial interindividual variation in DNA methylation across the individual PBM methylomes and the pattern of this interindividual variation varied between different genomic features, with highly variable regions enriched for repetitive DNA elements. Furthermore, we observed a modest but significant excess (p < 2.2 × 10(-16)) of genes showing a negative correlation between interindividual promoter methylation and transcription levels. These significant genes were enriched in biological processes that are closely related to PBM functions, suggesting that alteration in DNA methylation is likely to be an important mechanism contributing to the interindividual variation in PBM function, and PBM-related phenotypic and disease-susceptibility variation in humans. CONCLUSION This study represents a comprehensive analysis of the human PBM methylome and its interindividual variation. Our data provide a valuable resource for future epigenomic and multiomic studies, exploring biological and disease-related regulatory mechanisms in PBMs.
Collapse
Affiliation(s)
- Hui Shen
- Center for Bioinformatics & Genomics, Department of Biostatistics & Bioinformatics, School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|