1
|
Lu L, Jin Y, Tong Y, Xiao L, Hou Y, Liu Z, Dou H. Myeloid-derived suppressor cells promote the formation of abdominal aortic aneurysms through the IL-3-ICOSL-ICOS axis. BBA ADVANCES 2023; 4:100103. [PMID: 37705722 PMCID: PMC10495679 DOI: 10.1016/j.bbadva.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Th17 cells are powerful inflammation promoters in the pathogenesis of abdominal aortic aneurysms (AAAs). Myeloid-derived suppressor cells (MDSCs) can promote the differentiation of Th17 cells in chronic inflammatory autoimmune injury. Here, we aim to examine whether MDSCs regulate the differentiation of Th17 cells to participate in the development of AAA. We demonstrated an abnormal accumulation of MDSCs in AAA patients, which was positively associated with Th17 cells. We established angiotensin II-induced apolipoprotein E knockout mice and found the impaired immunosuppressive function of M-MDSCs. After systemic injection of anti-Gr-1 antibody in AAA mice to deplete circulating MDSCs, AAA formation and the differentiation of Th17 cells were abolished, and the overexpression of inducible T-cell costimulator (ICOS) on Th17 cells was reversed accordingly. Regulating the expression of ICOS ligand (ICOSL) on MDSCs affects the differentiation of Th17 cells. The adoptive transfer of ICOSLlowMDSCs in AAA mice inhibited the differentiation of Th17 cells and the development of AAA. Meanwhile, rIL-3 promoted the survival and immunosuppressive dysfunction of MDSCs, upregulated ICOSL expression on MDSCs by inhibiting activation of the PI3K/AKT signaling pathway, and regulated MDSCs to promote the differentiation of Th17 cells via the ICOSL-ICOS axis. An increase in serum IL-3, ICOSL+MDSCs, and ICOS+Th17 cells was detected in AAA patients, and IL-3 levels were positively correlated with the proportion of ICOSL+MDSC cells. In conclusion, we uncovered a pivotal role of MDSCs in promoting the differentiation of Th17 cells through the IL-3-ICOSL-ICOS axis during AAA, providing an important theoretical basis for understanding the pathogenesis of AAA.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Yi Jin
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuanhao Tong
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Lun Xiao
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
2
|
Thomas R, Wang S, Rashu R, Peng Y, Gounni AS, Yang X. Exogenous Semaphorin 3E treatment protects against chlamydial lung infection in mice. Front Immunol 2022; 13:882412. [PMID: 35983029 PMCID: PMC9379098 DOI: 10.3389/fimmu.2022.882412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies reported that semaphorins play a significant role in various settings of the immune response. In particular, Semaphorin 3E (Sema3E), a secreted semaphorin protein, is involved in cell proliferation, migration, inflammatory responses, and host defence against infections. However, the therapeutic function of Sema3E in bacterial infection has not been investigated. Our data showed that exogenous Sema3E treatment protects mice from chlamydial infection with lower bacterial burden, reduced body weight loss, and pathological lung changes. Cytokine analysis in the lung and spleen revealed that Sema3E-Fc treated mice, compared to saline-Fc treated mice, showed enhanced production of IFN-γ and IL-17 but reduced IL-4 and IL-10 production. Cellular analysis showed that Sema3E treatment leads to enhanced Th1/Th17 response but reduced Treg response in lungs following chlamydial infection. Moreover, Sema3E treatment also enhanced the recruitment of pulmonary dendritic cells, which express higher co-stimulatory but lower inhibitory surface molecules. The data demonstrate that Sema3E plays a vital role in protective immunity against chlamydial lung infection, mainly through coordinating functions of T cells and DCs.
Collapse
|
3
|
Zha X, Yang S, Niu W, Tan L, Xu Y, Zeng J, Tang Y, Sun L, Pang G, Qiao S, Zhang H, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-27/IL-27R Mediates Protective Immunity against Chlamydial Infection by Suppressing Excessive Th17 Responses and Reducing Neutrophil Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2160-2169. [PMID: 33863788 DOI: 10.4049/jimmunol.2000957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
IL-27, a heterodimeric cytokine of the IL-12 family, has diverse influences on the development of multiple inflammatory diseases. In this study, we identified the protective role of IL-27/IL-27R in host defense against Chlamydia muridarum respiratory infection and further investigated the immunological mechanism. Our results showed that IL-27 was involved in C. muridarum infection and that IL-27R knockout mice (WSX-1-/- mice) suffered more severe disease, with greater body weight loss, higher chlamydial loads, and more severe inflammatory reactions in the lungs than C57BL/6 wild-type mice. There were excessive IL-17-producing CD4+ T cells and many more neutrophils, neutrophil-related proteins, cytokines, and chemokines in the lungs of WSX-1-/- mice than in wild-type mice following C. muridarum infection. In addition, IL-17/IL-17A-blocking Ab treatment improved disease after C. muridarum infection in WSX-1-/- mice. Overall, we conclude that IL-27/IL-27R mediates protective immunity during chlamydial respiratory infection in mice by suppressing excessive Th17 responses and reducing neutrophil inflammation.
Collapse
Affiliation(s)
- Xiaoyu Zha
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Shuaini Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Wenhao Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Lu Tan
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yueyue Xu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Jiajia Zeng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yingying Tang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Lida Sun
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Gaoju Pang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Sai Qiao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Hong Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Tengli Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Ningbo Zheng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yongci Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Hong Bai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Niu W, Xu Y, Zha X, Zeng J, Qiao S, Yang S, Zhang H, Tan L, Sun L, Pang G, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-21/IL-21R Signaling Aggravated Respiratory Inflammation Induced by Intracellular Bacteria through Regulation of CD4 + T Cell Subset Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1586-1596. [PMID: 33608454 DOI: 10.4049/jimmunol.2001107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-β in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.
Collapse
Affiliation(s)
- Wenhao Niu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yueyue Xu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xiaoyu Zha
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jiajia Zeng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sai Qiao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shuaini Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lu Tan
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lida Sun
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Gaoju Pang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Tengli Liu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Huili Zhao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ningbo Zheng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yongci Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
5
|
Thomas R, Wang S, Shekhar S, Peng Y, Qiao S, Zhang C, Shan L, Movassagh H, Gounni AS, Yang J, Yang X. Semaphorin 3E Protects against Chlamydial Infection by Modulating Dendritic Cell Functions. THE JOURNAL OF IMMUNOLOGY 2021; 206:1251-1265. [PMID: 33504621 DOI: 10.4049/jimmunol.2001013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022]
Abstract
Recent studies have identified semaphorin 3E (Sema3E) as a novel mediator of immune responses. However, its function in immunity to infection has yet to be investigated. Using a mouse model of chlamydial lung infection, we show that Sema3E plays a significant role in the host immune response to the infection. We found that Sema3E is induced in the lung after chlamydial infection, and Sema3E deficiency has a detrimental impact on disease course, dendritic cell (DC) function, and T cell responses. Specifically, we found that Sema3E knockout (KO) mice exhibited higher bacterial burden, severe body weight loss, and pathological changes after Chlamydia muridarum lung infection compared with wild-type (WT) mice. The severity of disease in Sema3E KO mice was correlated with reduced Th1/Th17 cytokine responses, increased Th2 response, altered Ab response, and a higher number of regulatory CD4 T cells. Moreover, DCs isolated from Sema3E KO mice showed lower surface expression of costimulatory molecules and production of IL-12, but higher expression of PD-L1, PD-L2, and IL-10 production. Functional DC-T cell coculture studies revealed that DCs from infected Sema3E KO mice failed to induce Th1 and Th17 cell responses compared with DCs from infected WT mice. Upon adoptive transfer, mice receiving DCs from Sema3E KO mice, unlike those receiving DCs from WT mice, were not protected against challenge infection. In conclusion, our data evidenced that Sema3E acts as a critical factor for protective immunity against intracellular bacterial infection by modulating DC functions and T cell subsets.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Sudhanshu Shekhar
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Ying Peng
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chunyan Zhang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Hesam Movassagh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
6
|
Wan Z, Zhou Z, Liu Y, Lai Y, Luo Y, Peng X, Zou W. Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol 2020; 91:e12873. [PMID: 32090360 DOI: 10.1111/sji.12873] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
CD4+ T cells are the central element of the adaptive immune responses and protect the body from a variety of pathogens. Starting from naive cells, CD4+ T cells can differentiate into various effector cell subsets with specialized functions including T helper (Th) 1, Th2, Th17, regulatory T (Treg) and T follicular helper (Tfh) cells. Among them, Tregs and Th17 cells show a strong plasticity allowing the functional adaptation to various physiological and pathological environments during immune responses. Although they are derived from the same precursor cells and their differentiation pathways are interrelated, the terminally differentiated cells have totally opposite functions. Studies have shown that Tregs and Th17 cells have rather complex interplays in viral infection: Th17 cells may contribute to immune activation and disease progression while Tregs may inhibit this process and play a key role in the maintenance of immune homoeostasis, possibly at the cost of compromised viral control. In this review, we take respiratory syncytial virus (RSV), hepatitis B virus (HBV)/hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections as examples to discuss these interplays and their impacts on disease progression in viral infection.
Collapse
Affiliation(s)
- Zhikai Wan
- Medical College of Nanchang University, Nanchang, China
| | - Zhifeng Zhou
- Medical College of Nanchang University, Nanchang, China
| | - Yao Liu
- Medical College of Nanchang University, Nanchang, China
| | - Yuhan Lai
- Medical College of Nanchang University, Nanchang, China
| | - Yuan Luo
- Medical College of Nanchang University, Nanchang, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Role of Co-stimulatory Molecules in T Helper Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:153-177. [PMID: 31758534 DOI: 10.1007/978-981-32-9717-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD4+ T cells play a central role in orchestrating the immune response to a variety of pathogens but also regulate autoimmune responses, asthma, allergic responses, as well as tumor immunity. To cover this broad spectrum of responses, naïve CD4+ T cells differentiate into one of several lineages of T helper cells, including Th1, Th2, Th17, and TFH, as defined by their cytokine pattern and function. The fate decision of T helper cell differentiation integrates signals delivered through the T cell receptor, cytokine receptors, and the pattern of co-stimulatory signals received. In this review, we summarize the contribution of co-stimulatory and co-inhibitory receptors to the differentiation and maintenance of T helper cell responses.
Collapse
|
8
|
Panneton V, Chang J, Witalis M, Li J, Suh W. Inducible T‐cell co‐stimulator: Signaling mechanisms in T follicular helper cells and beyond. Immunol Rev 2019; 291:91-103. [DOI: 10.1111/imr.12771] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Vincent Panneton
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
| | - Jinsam Chang
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Mariko Witalis
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Joanna Li
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Woong‐Kyung Suh
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| |
Collapse
|
9
|
Qiao S, Zhang H, Zha X, Niu W, Liang J, Pang G, Tang Y, Liu T, Zhao H, Wang Y, Bai H. Endogenous IL-17A mediated neutrophil infiltration by promoting chemokines expression during chlamydial lung infection. Microb Pathog 2019; 129:106-111. [PMID: 30703475 DOI: 10.1016/j.micpath.2019.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Chlamydia is an obligate intracellular bacteria, which can infect cervix, urethra, conjunctiva, joints, lungs and so on. Neutrophils are important in host protection against microbial invasion during the early phase of infection. Here, to investigate the mechanism of IL-17A in recruiting neutrophils during Chlamydia muridarum (Cm) lung infection, we introduced IL-17A antibodies and IL-17-/- mice to confirm the effect of IL-17A on influencing neutrophil attractants expressions. From the analysis of the data, we found that showed that Cm infection could upregulate the expression of neutrophil-related chemokines such as KC, MIP-2 and IL-6, as well as adhesion molecules including ICAM-1 and VCAM-1. With blocking endogenous IL-17A, the upregulated MIP-2 and IL-6 were decreased, which induced less neutrophil recruitment in lung. Comparing to WT mice, IL-17-/- mice showed decreased infiltration of neutrophils in lung during the early phase of Cm infection, which were accordant with decreased chemokines, such as KC, MIP-2 and IL-6 expression. Whereas, the expression of adhesion molecules including ICAM and VCAM-1 in lungs were significantly increased in IL-17-/- mice comparing to WT mice during Cm lung infection. The results demonstrated that IL-17A influenced neutrophil infiltration by affecting expression of chemokines and adhesion molecules during the early phase of chlamydial lung infection.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Hong Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Xiaoyu Zha
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Wenhao Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Juyou Liang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Gaoju Pang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Yingying Tang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Tengli Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Yue Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Hong Bai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China.
| |
Collapse
|
10
|
Gao X, Wu C, Wang X, Xu H, Wu Y, Li Y, Jia Y, Wei C, He W, Wang Y, Zhang B. The DosR antigen Rv1737c from Mycobacterium tuberculosis confers inflammation regulation in tuberculosis infection. Scand J Immunol 2018; 89:e12729. [PMID: 30372549 DOI: 10.1111/sji.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
There is an urgent need to identify the potential risk factors for activating latent Mycobacterium tuberculosis infection. In this study, we evaluated the immune function of Rv1737c, which is a latency-associated antigen of dormancy survival regulator (DosR) of M. tuberculosis in a mouse model. Our data showed that mice pretreated with recombinant Rv1737c (rRv1737c) exhibited higher levels of antigen-specific antibodies (IgG, IgM and IgA) than sham-treated mice. Following Bacilli Calmette-Guerin (BCG) challenge, rRv1737c adjuvanted with cholera toxin subunit B (CTB) induced diffuse lung inflammation and fibrosis compared to the control mice. The inflammatory pathogenesis due to rRv1737c pre-exposure was associated with a switch in the macrophage phenotype from M1 to activated M2 and was characterized by IL-10 production. Intracellular cytokine analysis further showed that the rRv1737c-pretreated mice exhibited an increased frequency of Th2 cells in the lungs, lymph nodes and spleen after BCG challenge. Furthermore, IFN-γ expression increased in the lungs after rRv1737c pretreatment compared to that in the sham mice. Accordingly, lung cells from rRv1737c-immunized mice stimulated with killed BCG produced higher levels of multiple cytokines, such as IFN-γ, IL-10 and IL-6. The results confirmed that the pathological features of rRv1737c promoted inflammation. Overall, our findings provide direct evidence of the pro-inflammatory function of rRv1737c in a murine model of BCG infection, indicating that Rv1737c is a pathogenic antigen of M. tuberculosis and may be key to the recurrence of latent infection.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Cong Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Hui Xu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yu Wu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Chaojun Wei
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhua He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Pedros C, Altman A, Kong KF. Role of TRAFs in Signaling Pathways Controlling T Follicular Helper Cell Differentiation and T Cell-Dependent Antibody Responses. Front Immunol 2018; 9:2412. [PMID: 30405612 PMCID: PMC6204373 DOI: 10.3389/fimmu.2018.02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Follicular helper T (TFH) cells represent a highly specialized CD4+ T cell subpopulation that supports the generation of germinal centers (GC) and provides B cells with critical signals promoting antibody class switching, generation of high affinity antibodies, and memory formation. TFH cells are characterized by the expression of the chemokine receptor CXCR5, the transcription factor Bcl-6, costimulatory molecules ICOS, and PD-1, and the production of cytokine IL-21. The acquisition of a TFH phenotype is a complex and multistep process that involves signals received through engagement of the TCR along with a multitude of costimulatory molecules and cytokines receptors. Members of the Tumor necrosis factor Receptor Associated Factors (TRAF) represent one of the major classes of signaling mediators involved in the differentiation and functions of TFH cells. TRAF molecules are the canonical adaptor molecules that physically interact with members of the Tumor Necrosis Factor Receptor Superfamily (TNFRSF) and actively modulate their downstream signaling cascades through their adaptor function and/or E3 ubiquitin ligase activity. OX-40, GITR, and 4-1BB are the TRAF-dependent TNFRSF members that have been implicated in the differentiation and functions of TFH cells. On the other hand, emerging data demonstrate that TRAF proteins also participate in signaling from the TCR and CD28, which deliver critical signals leading to the differentiation of TFH cells. More intriguingly, we recently showed that the cytoplasmic tail of ICOS contains a conserved TANK-binding kinase 1 (TBK1)-binding motif that is shared with TBK1-binding TRAF proteins. The presence of this TRAF-mimicking signaling module downstream of ICOS is required to mediate the maturation step during TFH differentiation. In addition, JAK-STAT pathways emanating from IL-2, IL-6, IL-21, and IL-27 cytokine receptors affect TFH development, and crosstalk between TRAF-mediated pathways and the JAK-STAT pathways can contribute to generate integrated signals required to drive and sustain TFH differentiation. In this review, we will introduce the molecular interactions and the major signaling pathways controlling the differentiation of TFH cells. In each case, we will highlight the contributions of TRAF proteins to these signaling pathways. Finally, we will discuss the role of individual TRAF proteins in the regulation of T cell-dependent humoral responses.
Collapse
Affiliation(s)
- Christophe Pedros
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
12
|
Zhang M, Wu Y, Bastian D, Iamsawat S, Chang J, Daenthanasanmak A, Nguyen HD, Schutt S, Dai M, Chen F, Suh WK, Yu XZ. Inducible T-Cell Co-Stimulator Impacts Chronic Graft-Versus-Host Disease by Regulating Both Pathogenic and Regulatory T Cells. Front Immunol 2018; 9:1461. [PMID: 29988391 PMCID: PMC6023972 DOI: 10.3389/fimmu.2018.01461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/12/2018] [Indexed: 01/22/2023] Open
Abstract
The incidence of chronic graft-versus-host disease (cGVHD) is on the rise and still the major cause of morbidity and mortality among patients after allogeneic hematopoietic stem cell transplantation (HCT). Both donor T and B cells contribute to the pathogenesis of cGVHD. Inducible T-cell co-stimulator (ICOS), a potent co-stimulatory receptor, plays a key role in T-cell activation and differentiation. Yet, how ICOS regulates the development of cGVHD is not well understood. Here, we investigated the role of ICOS in cGVHD pathogenesis using mice with germline or regulatory T cell (Treg)-specific ICOS deficiency. The recipients of ICOS−/− donor grafts had reduced cGVHD compared with wild-type controls. In recipients of ICOS−/− donor grafts, we observed significant reductions in donor T follicular helper (Tfh), Th17, germinal center B-cell, and plasma cell differentiation, coupled with lower antibody production. Interestingly, Tregs, including follicular regulatory T (Tfr) cells, were also impaired in the absence of ICOS. Using ICOS conditional knockout specific for Foxp3+ cells, we found that ICOS was indispensable for optimal survival and homeostasis of induced Tregs during cGVHD. Furthermore, administration of anti-ICOS alleviated cGVHD severity via suppressing T effector cells without affecting Treg generation. Taken together, ICOS promotes T- and B-cell activation and differentiation, which can promote cGVHD development; however, ICOS is critical for the survival and homeostasis of iTregs, which can suppress cGVHD. Hence, ICOS balances the development of cGVHD and could offer a potential target after allo-HCT in the clinic.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongxia Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - David Bastian
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Supinya Iamsawat
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Anusara Daenthanasanmak
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Hung D Nguyen
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Steven Schutt
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.,Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
13
|
Wang Y, Wang BS, Hui X, Qiao J, Li WZ, Sun N. [Role of inducible costimulatory molecule-mediated Th17 cell polarization in renal fibrosis in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:534-540. [PMID: 29891448 PMCID: PMC6743898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To explore the role of inducible costimulatory molecule (ICOS) signaling pathway-mediated Th17 cells polarization in renal damage in essential hypertension. METHODS Four-week-old spontaneously hypertensive rats (SHR) were randomly divided into control (SHR-C) group and intervention (SHR-I) group and subjected to intraperitoneal injections of PBS and ICOS monoclonal antibody for 2 weeks, respectively. Blood pressure of the rats was monitored using noninvasive tail artery blood pressure measuring instrument. The percentage of Th17 cells in the splenocytes was analyzed using flow cytometry, and the expression levels of IL-17A mRNA in the rat's kidneys were detected using RT-PCR. The levels of IL-17A and TGF-β1 in the plasma and kidneys were dynamically detected using ELISA and immunohistochemistry, respectively. Renal pathological changes in the rats were detected using Masson staining. RESULTS At the age of 10 and 30 weeks, the rats in SHR-C group had a significantly higher blood pressure than those in SHR-I group (P<0.05 or 0.01). In rats in SHR-C group, Th17 cells percentage in the splenocytes and IL-17A mRNA level in the kidney was significantly higher than those in SHR-I group from the age of 6 weeks (P<0.05). The expressions of IL-17A and TGF-β1 in the plasma and kidney were significantly higher in SHR-C group than that in SHR-I group at 6 weeks (P<0.05). Compared with those in SHR-C group, the rats in SHR-I group showed significant alleviation of renal fibrosis from the age of 30 weeks (P<0.05). CONCLUSION The ICOS signaling pathway-mediated Th17 cells polarization plays an important role in renal fibrosis in hypertensive rats.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medical Sciences, Medical College, Anhui University of Science & Technology, Huainan 232001, China.E-mail:
| | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Wang BS, Hui X, Qiao J, Li WZ, Sun N. [Role of inducible costimulatory molecule-mediated Th17 cell polarization in renal fibrosis in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:534-540. [PMID: 29891448 PMCID: PMC6743898 DOI: 10.3969/j.issn.1673-4254.2018.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the role of inducible costimulatory molecule (ICOS) signaling pathway-mediated Th17 cells polarization in renal damage in essential hypertension. METHODS Four-week-old spontaneously hypertensive rats (SHR) were randomly divided into control (SHR-C) group and intervention (SHR-I) group and subjected to intraperitoneal injections of PBS and ICOS monoclonal antibody for 2 weeks, respectively. Blood pressure of the rats was monitored using noninvasive tail artery blood pressure measuring instrument. The percentage of Th17 cells in the splenocytes was analyzed using flow cytometry, and the expression levels of IL-17A mRNA in the rat's kidneys were detected using RT-PCR. The levels of IL-17A and TGF-β1 in the plasma and kidneys were dynamically detected using ELISA and immunohistochemistry, respectively. Renal pathological changes in the rats were detected using Masson staining. RESULTS At the age of 10 and 30 weeks, the rats in SHR-C group had a significantly higher blood pressure than those in SHR-I group (P<0.05 or 0.01). In rats in SHR-C group, Th17 cells percentage in the splenocytes and IL-17A mRNA level in the kidney was significantly higher than those in SHR-I group from the age of 6 weeks (P<0.05). The expressions of IL-17A and TGF-β1 in the plasma and kidney were significantly higher in SHR-C group than that in SHR-I group at 6 weeks (P<0.05). Compared with those in SHR-C group, the rats in SHR-I group showed significant alleviation of renal fibrosis from the age of 30 weeks (P<0.05). CONCLUSION The ICOS signaling pathway-mediated Th17 cells polarization plays an important role in renal fibrosis in hypertensive rats.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medical Sciences, Medical College, Anhui University of Science & Technology, Huainan 232001, China.E-mail:
| | | | | | | | | | | |
Collapse
|
15
|
Panneton V, Bagherzadeh Yazdchi S, Witalis M, Chang J, Suh WK. ICOS Signaling Controls Induction and Maintenance of Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3067-3076. [PMID: 29581356 DOI: 10.4049/jimmunol.1701305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023]
Abstract
ICOS is a key costimulatory receptor facilitating differentiation and function of follicular helper T cells and inflammatory T cells. Rheumatoid arthritis patients were shown to have elevated levels of ICOS+ T cells in the synovial fluid, suggesting a potential role of ICOS-mediated T cell costimulation in autoimmune joint inflammation. In this study, using ICOS knockout and knockin mouse models, we found that ICOS signaling is required for the induction and maintenance of collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis. For the initiation of CIA, the Tyr181-based SH2-binding motif of ICOS that is known to activate PI3K was critical for Ab production and expansion of inflammatory T cells. Furthermore, we found that Tyr181-dependent ICOS signaling is important for maintenance of CIA in an Ab-independent manner. Importantly, we found that a small molecule inhibitor of glycolysis, 3-bromopyruvate, ameliorates established CIA, suggesting an overlap between ICOS signaling, PI3K signaling, and glucose metabolism. Thus, we identified ICOS as a key costimulatory pathway that controls induction and maintenance of CIA and provide evidence that T cell glycolytic pathways can be potential therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sahar Bagherzadeh Yazdchi
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; .,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and.,Molecular Biology Program, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
16
|
Shekhar S, Peng Y, Wang S, Yang X. CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11b hi LDCs. Cell Mol Immunol 2017; 15:377-387. [PMID: 28194020 DOI: 10.1038/cmi.2016.68] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/04/2016] [Accepted: 12/04/2016] [Indexed: 12/24/2022] Open
Abstract
Recent studies suggest differential roles for CD103+ and CD11bhi lung dendritic cells (LDCs) in host defense against viral and bacterial infections. In this study, we examined the contribution of these LDC subsets in protective immunity to chlamydial lung infection using a Chlamydia muridarum mouse infection model. We found that CD103+ LDCs showed higher expression of costimulatory molecules (CD40, CD80 and CD86) and increased production of cytokines (IL-12p70, IL-10, IL-23 and IL-6) compared with CD11bhi LDCs, but the expression of programmed death-ligand 1 (PD-L1) was similar between the two subsets. More importantly, we found, in adoptive transfer experiments, that the mice receiving CD103+ LDCs from Chlamydia-infected mice exhibited better protection than the recipients of CD11bhi LDCs, which was associated with more robust Th1/Th17 cytokine responses. In addition, in vitro experiments showed that CD103+ LDCs induced stronger IFN-γ and IL-17 responses, when cocutured with chlamydial antigen-primed CD4+ T cells, than CD11bhi LDCs. Furthermore, the blockade of PD1 in the culture of CD4+ T cells with either CD103+ or CD11bhi LDCs enhanced production of IFN-γ and IL-17. In conclusion, our data provide direct evidence that CD103+ LDCs are more potent in promoting Th1/Th17 immunity to chlamydial lung infection than CD11bhi LDCs.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
17
|
Bai H, Gao X, Zhao L, Peng Y, Yang J, Qiao S, Zhao H, Wang S, Fan Y, Joyee AG, Yao Z, Yang X. Respective IL-17A production by γδ T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol 2016; 14:850-861. [PMID: 27796286 DOI: 10.1038/cmi.2016.53] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
The role of IL-17A is important in protection against lung infection with Chlamydiae, an obligate intracellular bacterial pathogen. In this study, we explored the producers of IL-17A in chlamydial lung infection and specifically tested the role of major IL-17A producers in protective immunity. We found that γδT cells and Th17 cells are the major producers of IL-17A at the early and later stages of chlamydial infection, respectively. Depletion of γδT cells in vivo at the early postinfection (p.i.) stage, when most γδT cells produce IL-17A, failed to alter Th1 responses and bacterial clearance. In contrast, the blockade of IL-17A at the time when IL-17A was mainly produced by Th17 (day 7 p.i.) markedly reduced the Th1 response and increased chlamydial growth. The data suggest that the γδ T cell is the highest producer of IL-17A in the very early stages of infection, but the protection conferred by IL-17A is mainly mediated by Th17 cells. In addition, we found that depletion of γδ T cells reduced IL-1α production by dendritic cells, which was associated with a reduced Th17 response. This finding is helpful to understand the variable role of IL-17A in different infections and to develop preventive and therapeutic approaches against infectious diseases by targeting IL-17A.
Collapse
Affiliation(s)
- Hong Bai
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Xiaoling Gao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Lei Zhao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Ying Peng
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Jie Yang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Sai Qiao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Shuhe Wang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - YiJun Fan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Antony George Joyee
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Xi Yang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| |
Collapse
|
18
|
Leconte J, Bagherzadeh Yazdchi S, Panneton V, Suh WK. Inducible costimulator (ICOS) potentiates TCR-induced calcium flux by augmenting PLCγ1 activation and actin remodeling. Mol Immunol 2016; 79:38-46. [PMID: 27693916 DOI: 10.1016/j.molimm.2016.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
Abstract
The inducible costimulator (ICOS) is a T cell costimulatory receptor that plays crucial roles in T cell differentiation and function. So far, ICOS has been shown to activate three signaling components: phosphoinositide 3-kinase (PI3K), intracellular calcium mobilization, and TANK binding kinase 1 (TBK1). By generating a knock-in strain of mice in which the ICOS gene is modified such that the ICOS-mediated PI3K pathway is selectively abrogated while the capacity of ICOS to mobilize intracellular calcium remains intact, we have shown that ICOS-mediated PI3K activation is required for some but not all T cell responses. This suggests that the ICOS-calcium signaling axis may explain some of the PI3K-independent ICOS functions. Further, a recent in vivo imaging study indicated that ICOS-dependent intracellular calcium flux facilitates cognate T cell-B cell interactions within the germinal center. However, how ICOS promotes TCR-mediated calcium flux has not been clear. Here we identified a membrane proximal motif in the cytoplasmic tail of ICOS that is essential for ICOS-assisted calcium signaling and demonstrate that ICOS can induce calcium flux independently of other signaling motifs. We also provide evidence that ICOS potentiates phospholipase Cγ1 (PLCγ1) activation to enhance calcium release from the intracellular pool. In parallel, acute ligation of ICOS without TCR co-engagement leads to activation of small GTPases, RhoA and Cdc42, consistent with the capacity of ICOS to induce actin remodeling. Importantly, interruption of actin dynamics during acute TCR or TCR-ICOS co-ligation severely impairs calcium flux in T cells even in the presence of activated PLCγ1. Thus, ICOS potentiates TCR-induced calcium flux by enhancing PLCγ1 activation and actin remodeling in a coordinated manner.
Collapse
Affiliation(s)
- Julien Leconte
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sahar Bagherzadeh Yazdchi
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
19
|
Wikenheiser DJ, Stumhofer JS. ICOS Co-Stimulation: Friend or Foe? Front Immunol 2016; 7:304. [PMID: 27559335 PMCID: PMC4979228 DOI: 10.3389/fimmu.2016.00304] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Over the last 15 years, the inducible T cell co-stimulator (ICOS) has been implicated in various immune outcomes, including the induction and regulation of Th1, Th2, and Th17 immunity. In addition to its role in directing effector T cell differentiation, ICOS has also been consistently linked with the induction of thymus-dependent (TD) antibody (Ab) responses and the germinal center (GC) reaction. ICOS co-stimulation, therefore, appears to play a complex role in dictating the course of adaptive immunity. In this article, we summarize the initial characterization of ICOS and its relationship with the related co-stimulatory molecule CD28. We then address the contribution of ICOS in directing an effector T cell response, and ultimately disease outcome, against various bacterial, viral, and parasitic infections. Next, we assess ICOS in the context of TD Ab responses, connecting ICOS signaling to follicular helper T cell differentiation and its role in the GC reaction. Finally, we address the link between ICOS and human autoimmune disorders and evaluate potential therapies aiming to mitigate disease progression by modulating ICOS signaling.
Collapse
Affiliation(s)
- Daniel J Wikenheiser
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| |
Collapse
|
20
|
Research Progress on Chlamydia trachomatis Infection and Related Cytokines. INFECTION INTERNATIONAL 2015. [DOI: 10.1515/ii-2017-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractChlamydia trachomatis(Ct) infection can induce host cells to produce numerous cytokines. Cytokines play important roles in inflammatory response. Although inflammation can protect the body, persistent inflammation can lead to pathological changes and tissue damages. Further research should determine whether cytokine production directly affects development and outcomes of inflammation. This study summarizes Ct infection and related cytokines.
Collapse
|
21
|
Shekhar S, Peng Y, Gao X, Joyee AG, Wang S, Bai H, Zhao L, Yang J, Yang X. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection. Eur J Immunol 2015. [PMID: 26222048 DOI: 10.1002/eji.201445390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Antony G Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hong Bai
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Wang X, Wang L, Mo Q, Dong Y, Wang G, Ji A. Changes of Th17/Treg cell and related cytokines in pancreatic cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5702-8. [PMID: 26191284 PMCID: PMC4503155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/26/2015] [Indexed: 06/04/2023]
Abstract
To explore the mechanism of Th17 cells and Treg cells in the peripheral blood of patients with pancreatic cancer through analyzing the changes of the related genes and cytokines expression. 40 patients were divided into three groups based on clinical staging, and 20 healthy subjects were treated as normal control. Proportion of Th17 cells and Treg cells were detected by flow cytometry. RORα, RORγt, FoxP3, and CTLA-4 expression in peripheral blood mononuclear cells were detected by RT-PCR. IL-10, IL-23, INF-γ, TGF-β, and IL-17 cytokine levels in peripheral blood were determined by enzyme-linked immunosorbent assay (ELISA). The proportion of Th17 cells in peripheral blood of pancreatic cancer patients was lower than that in the normal control, while the proportion of Treg was higher. RORα and RORγt mRNA expression in Th17 cells from pancreatic cancer patients decreased, while FoxP3 and CTLA-4 mRNA expressions in Treg cells increased compared with the normal control. And the correlation analysis revealed that they were significantly correlated with clinical staging. Compared with healthy control, IL-23, IL-17 and INF-γ levels were lower in pancreatic cancer patients, while IL-10 and TGF-β levels were higher. Following the progression of disease, patients in advanced stage exhibited higher level of IL-10 and TGF-β, and lower levels of IL-23 and INF-γ. Pancreatic cancer patients exhibited Th17/Treg balance disorders with higher Treg and lower Th17 cells. They affect cytokine IL-10, IL-23, INF-γ, TGF-β, and IL-17 expression changes mainly through regulating transcription factors such as RORα, RORγt, FoxP3 and CTLA-4, suggesting that Th17/Treg balance disorders plays an important role in the tumorigenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University China
| | - Lei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University China
| | - Qingjiang Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University China
| | - Yuqian Dong
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University China
| | - Guoqiang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University China
| | - Ankui Ji
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University China
| |
Collapse
|
23
|
Peng Y, Gao X, Yang J, Shekhar S, Wang S, Fan Y, Yang X. Chlamydial lung infection induces transient IL-9 production which is redundant for host defense against primary infection. PLoS One 2015; 10:e0115195. [PMID: 25646821 PMCID: PMC4315580 DOI: 10.1371/journal.pone.0115195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022] Open
Abstract
IL-9/Th9 responses are recently found to be important for innate and adaptive immunity particularly in parasitic infections. To date, the study on the role of IL-9 in bacterial infections is limited and the reported data are contradictory. One reported function of IL-9/Th9 is to modulate Th1/Th17 responses. Since our and others’ previous work has shown a critical role of Th1 and Th17 cells in host defense against chlamydial lung infection, we here examined the role of IL-9 responses in Chlamydia muridarum (Cm) lung infection, particularly its effect on Th1 and Th17 responses and outcome infection. Our data showed quick but transient IL-9 production in the lung following infection, peaking at day 3 and back to baseline around day 7. CD4+ T cell was the major source of IL-9 production in the lung infection. Blockade of endogenous IL-9 using neutralizing antibody failed to change Interferon-γ (IFN-γ) and IL-17 production by cultured spleen mononuclear cells isolated from Cm infected mice. Similarly, in vivo neutralization of IL-9 failed to show significant effect on T cell (Th1 and Th17) and antibody responses (IgA, IgG1 and IgG2a). Consistently, the neutralization of IL-9 had no significant effect on disease process, including body weight change, bacterial burden and histopathological score. The data suggest that IL-9 production following chlamydial lung infection is redundant for host defense against the intracellular bacteria.
Collapse
Affiliation(s)
- Ying Peng
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sudhanshu Shekhar
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yijun Fan
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
24
|
Sakthivel P, Gereke M, Breithaupt A, Fuchs D, Gigliotti L, Gruber AD, Dianzani U, Bruder D. Attenuation of immune-mediated influenza pneumonia by targeting the inducible co-stimulator (ICOS) molecule on T cells. PLoS One 2014; 9:e100970. [PMID: 25029240 PMCID: PMC4100737 DOI: 10.1371/journal.pone.0100970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022] Open
Abstract
Inducible Co-stimulator (ICOS) plays a critical role in mediating T cell differentiation and function and is considered a key player in balancing T effector and T regulatory (Treg) cell responses. Here we show that activation of the ICOS signalling pathway during acute influenza A virus (IAV) infection by application of an agonistic ICOS antibody reduced the frequency of CD8+ T cells in the respiratory tract of IAV infected animals and delayed pathogen elimination. In line with this, immune-mediated influenza pneumonia was significantly ameliorated in mice that received ICOS agonist as indicated by significantly reduced alveolar infiltrations and bronchointerstitial pneumonia, while at the same time virus-related pathology remained unaffected. Importantly, ICOS agonist treatment resulted in expansion of CD4+Foxp3+ Tregs in IAV infected mice, which was associated with elevated levels of the immunosuppressive cytokine IL-10 in the alveolar space. Together, our findings suggest a prominent role of ICOS signaling during acute IAV infection by increasing the Treg/CD8+ T cell ratio with beneficial outcome on immune-mediated pneumonia and underline the suitability of ICOS as potential therapeutic target for immune intervention in those infectious conditions characterized by strong immunopathology rather than virus-mediated cytopathic effects.
Collapse
Affiliation(s)
- Priya Sakthivel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
| | - Angele Breithaupt
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Achim D. Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Peng Y, Gao X, Yang J, Shekhar S, Wang S, Fan Y, Zhao W, Yang X. Interleukin-22 promotes T helper 1 (Th1)/Th17 immunity in chlamydial lung infection. Mol Med 2014; 20:109-19. [PMID: 24531835 DOI: 10.2119/molmed.2013.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The role of interleukin-22 (IL-22) in intracellular bacterial infections is a controversial issue, although the contribution of this cytokine to host defense against extracellular bacterial pathogens has been well established. In this study, we focused on an intra-cellular bacterium, Chlamydia, and evaluated the production and function of IL-22 in host defense against chlamydial lung infection using a mouse model. We found that Chlamydia muridarum infection elicited quick IL-22 responses in the lung, which increased during infection and were reduced when bacterial loads decreased. More importantly, blockade of endogenous IL-22 using neutralizing anti-IL-22 monoclonal antibodies (mAb) resulted in more severe disease in the mice, leading to significantly higher weight loss and bacterial growth and much more severe pathological changes than treatment with isotype control antibody. Immunological analyses identified significantly lower T helper 1 (Th1) and Th17 responses in the IL-22-neutralized mice. In contrast, intranasal administration of exogenous IL-22 significantly enhanced protection following chlamydial lung infection, which was associated with a significant increase of Th17 response. The data demonstrate that IL-22 is a critical cytokine, mediating host defense against chlamydial lung infection and coordinating the function of distinct Th-cell subsets, particularly Th1 and Th17, in the process.
Collapse
Affiliation(s)
- Ying Peng
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Medical Microbiology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Xiaoling Gao
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sudhanshu Shekhar
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yijun Fan
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Weiming Zhao
- Department of Medical Microbiology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Xi Yang
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Gao X, Zhao L, Wang S, Yang J, Yang X. Enhanced inducible costimulator ligand (ICOS-L) expression on dendritic cells in interleukin-10 deficiency and its impact on T-cell subsets in respiratory tract infection. Mol Med 2013; 19:346-56. [PMID: 24100657 DOI: 10.2119/molmed.2013.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/25/2013] [Indexed: 11/06/2022] Open
Abstract
An association between inducible costimulator ligand (ICOS-L) expression and interleukin (IL)-10 production by dendritic cells (DCs) has been commonly found in infectious disease. DCs with higher ICOS-L expression and IL-10 production are reportedly more efficient in inducing regulatory T cells (Tregs). Here we use the Chlamydia muridarum (Cm) lung infection model in IL-10 knockout (KO) mice to test the relationship between IL-10 production and ICOS-L expression by DCs. We examined ICOS-L expression, the development of T-cell subsets, including Treg, Th17 and Th1 cell, in the background of IL-10 deficiency and its relationship with ICOS-L/ICOS signaling after infection. Surprisingly, we found that the IL-10 KO mice exhibited significantly higher ICOS-L expression by DCs. Moreover, IL-10 KO mice showed lower Tregs but higher Th17 and Th1 responses, but only the Th17 response depended on ICOS signaling. Consistently, most of the Th17 cells were ICOS⁺, whereas most of the Th1 cells were ICOS⁻ in the infected mice. Furthermore, neutralization of IL-17 in IL-10 KO mice significantly exacerbated lung infection. The data suggest that ICOS-L expression on DC may be negatively regulated by IL-10 and that ICOS-L expression on DC in the presence or absence of IL-10 costimulation may promote Treg or Th17 response, without significant impact on Th1.
Collapse
Affiliation(s)
- Xiaoling Gao
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|