1
|
Zmarlak NM, Lavazec C, Brito-Fravallo E, Genève C, Aliprandini E, Aguirre-Botero MC, Vernick KD, Mitri C. The Anopheles leucine-rich repeat protein APL1C is a pathogen binding factor recognizing Plasmodium ookinetes and sporozoites. PLoS Pathog 2024; 20:e1012008. [PMID: 38354186 PMCID: PMC10898737 DOI: 10.1371/journal.ppat.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.
Collapse
Affiliation(s)
- Natalia Marta Zmarlak
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université de Paris, Institut Cochin, Paris, France
| | - Emma Brito-Fravallo
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| | - Corinne Genève
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| | - Eduardo Aliprandini
- Institut Pasteur, Université de Paris, Unit of Malaria Infection & Immunity, Department of Parasites and Insect Vectors, Paris, France
| | - Manuela Camille Aguirre-Botero
- Institut Pasteur, Université de Paris, Unit of Malaria Infection & Immunity, Department of Parasites and Insect Vectors, Paris, France
| | - Kenneth D. Vernick
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Christian Mitri
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| |
Collapse
|
2
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
3
|
Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Guelbeogo WM, Sagnon N, Riehle MM, Vernick KD. Leucine-Rich Immune Factor APL1 Is Associated With Specific Modulation of Enteric Microbiome Taxa in the Asian Malaria Mosquito Anopheles stephensi. Front Microbiol 2020; 11:306. [PMID: 32174902 PMCID: PMC7054466 DOI: 10.3389/fmicb.2020.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Eugeni Belda Cuesta
- Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Mitri C, Bischoff E, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Raz A, Zakeri S, Nejad MIK, Djadid ND, Vernick KD, Riehle MM. Gene copy number and function of the APL1 immune factor changed during Anopheles evolution. Parasit Vectors 2020; 13:18. [PMID: 31931885 PMCID: PMC6958605 DOI: 10.1186/s13071-019-3868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background The recent reference genome assembly and annotation of the Asian malaria vector Anopheles stephensi detected only one gene encoding the leucine-rich repeat immune factor APL1, while in the Anopheles gambiae and sibling Anopheles coluzzii, APL1 factors are encoded by a family of three paralogs. The phylogeny and biological function of the unique APL1 gene in An. stephensi have not yet been specifically examined. Methods The APL1 locus was manually annotated to confirm the computationally predicted single APL1 gene in An. stephensi. APL1 evolution within Anopheles was explored by phylogenomic analysis. The single or paralogous APL1 genes were silenced in An. stephensi and An. coluzzii, respectively, followed by mosquito survival analysis, experimental infection with Plasmodium and expression analysis. Results APL1 is present as a single ancestral gene in most Anopheles including An. stephensi but has expanded to three paralogs in an African lineage that includes only the Anopheles gambiae species complex and Anopheles christyi. Silencing of the unique APL1 copy in An. stephensi results in significant mosquito mortality. Elevated mortality of APL1-depleted An. stephensi is rescued by antibiotic treatment, suggesting that pathology due to bacteria is the cause of mortality, and indicating that the unique APL1 gene is essential for host survival. Successful Plasmodium development in An. stephensi depends upon APL1 activity for protection from high host mortality due to bacteria. In contrast, silencing of all three APL1 paralogs in An. coluzzii does not result in elevated mortality, either with or without Plasmodium infection. Expression of the single An. stephensi APL1 gene is regulated by both the Imd and Toll immune pathways, while the two signaling pathways regulate different APL1 paralogs in the expanded APL1 locus. Conclusions APL1 underwent loss and gain of functions concomitant with expansion from a single ancestral gene to three paralogs in one lineage of African Anopheles. We infer that activity of the unique APL1 gene promotes longevity in An. stephensi by conferring protection from or tolerance to an effect of bacterial pathology. The evolution of an expanded APL1 gene family could be a factor contributing to the exceptional levels of malaria transmission mediated by human-feeding members of the An. gambiae species complex in Africa.![]()
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France.,Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Mahdokht I K Nejad
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Navid D Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France. .,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France.
| | - Michelle M Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Carissimo G, Pain A, Belda E, Vernick KD. Highly focused transcriptional response of Anopheles coluzzii to O'nyong nyong arbovirus during the primary midgut infection. BMC Genomics 2018; 19:526. [PMID: 29986645 PMCID: PMC6038350 DOI: 10.1186/s12864-018-4918-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background Anopheles mosquitoes are efficient vectors of human malaria, but it is unknown why they do not transmit viruses as well as Aedes and Culex mosquitoes. The only arbovirus known to be consistently transmitted by Anopheles mosquitoes is O’nyong nyong virus (ONNV, genus Alphavirus, family Togaviridae). The interaction of Anopheles mosquitoes with RNA viruses has been relatively unexamined. Results We transcriptionally profiled the African malaria vector, Anopheles coluzzii, infected with ONNV. Mosquitoes were fed on an infectious bloodmeal and were analyzed by Illumina RNAseq at 3 days post-bloodmeal during the primary virus infection of the midgut epithelium, before systemic dissemination. Virus infection triggers transcriptional regulation of just 30 host candidate genes. Most of the regulated candidate genes are novel, without known function. Of the known genes, a significant cluster includes candidates with predicted involvement in carbohydrate metabolism. Two candidate genes encoding leucine-rich repeat immune (LRIM) factors point to possible involvement of immune protein complexes in the mosquito antiviral response. The primary ONNV infection by bloodmeal shares little transcriptional response in common with ONNV infection by intrathoracic injection, nor with midgut infection by the malaria parasites, Plasmodium falciparum or P. berghei. Profiling of A. coluzzii microRNA (miRNA) identified 118 known miRNAs and 182 potential novel miRNA candidates, with just one miRNA regulated by ONNV infection. This miRNA was not regulated by other previously reported treatments, and may be virus specific. Coexpression analysis of miRNA abundance and messenger RNA expression revealed discrete clusters of genes regulated by Imd and JAK/STAT, immune signaling pathways that are protective against ONNV in the primary infection. Conclusions ONNV infection of the A. coluzzii midgut triggers a remarkably limited gene regulation program of mostly novel candidate genes, which likely includes host genes deployed for antiviral defense, as well as genes manipulated by the virus to facilitate infection. Functional dissection of the ONNV-response candidate genes is expected to generate novel insight into the mechanisms of virus-vector interaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4918-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.,Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Adrien Pain
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics Hub (C3BI), USR 3756 IP CNRS, Institut Pasteur, 75017, Paris, France
| | - Eugeni Belda
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.,Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France. .,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Mitri C, Bischoff E, Takashima E, Williams M, Eiglmeier K, Pain A, Guelbeogo WM, Gneme A, Brito-Fravallo E, Holm I, Lavazec C, Sagnon N, Baxter RH, Riehle MM, Vernick KD. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors. PLoS Pathog 2015; 11:e1005306. [PMID: 26633695 PMCID: PMC4669117 DOI: 10.1371/journal.ppat.1005306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022] Open
Abstract
Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with broad specificity a rarity. Anopheles gambiae and Anopheles coluzzii are the primary mosquito vectors of human malaria in West Africa. Both of these closely related species efficiently transmit the disease, although they display ecological differences. Previous work showed that A. coluzzii displays distinct genetic patterns in genes important for mosquito immunity. Here, we use this genetic pattern as a filter to examine a panel of potential immune genes, and show that the genetic pattern is strongly predictive for genes that play a functional role in immunity when tested with malaria parasites.
Collapse
Affiliation(s)
- Christian Mitri
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Eizo Takashima
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Marni Williams
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Karin Eiglmeier
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Adrien Pain
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | | | - Awa Gneme
- Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso
| | - Emma Brito-Fravallo
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Inge Holm
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Catherine Lavazec
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso
| | - Richard H. Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michelle M. Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kenneth D. Vernick
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
- CNRS, Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Mitri C, Markianos K, Guelbeogo WM, Bischoff E, Gneme A, Eiglmeier K, Holm I, Sagnon N, Vernick KD, Riehle MM. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing. Malar J 2015; 14:391. [PMID: 26445487 PMCID: PMC4596459 DOI: 10.1186/s12936-015-0924-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Members of the Anophelesgambiae species complex are primary vectors of human malaria in Africa. It is known that a large haplotype shared between An. gambiae and Anophelescoluzzii by introgression carries point mutations of the voltage-gated sodium channel gene para, including the L1014F kdr mutation associated with insensitivity to pyrethroid insecticides. Carriage of L1014F kdr is also correlated with higher susceptibility to infection with Plasmodium falciparum. However, the genetic mechanism and causative gene(s) underlying the parasite susceptibility phenotype are not known. Methods Mosquitoes from the wild Burkina Faso population were challenged by feeding on natural P. falciparum gametocytes. Oocyst infection phenotypes were determined and were tested for association with SNP genotypes. Candidate genes in the detected locus were prioritized and RNAi-mediated gene silencing was used to functionally test for gene effects on P. falciparum susceptibility. Results A genetic locus, Pfin6, was identified that influences infection levels of P. falciparum in mosquitoes. The locus segregates as a ~3 Mb haplotype carrying 65 predicted genes including the para gene. The haplotype carrying the kdr allele of para is linked to increased parasite infection prevalence, but many single nucleotide polymorphisms on the haplotype are also equally linked to the infection phenotype. Candidate genes in the haplotype were prioritized and functionally tested. Silencing of para did not influence P. falciparum infection, while silencing of a predicted immune gene, serine protease ClipC9, allowed development of significantly increased parasite numbers. Conclusions Genetic variation influencing Plasmodium infection in wild Anopheles is linked to a natural ~3 megabase haplotype on chromosome 2L that carries the kdr allele of the para gene. Evidence suggests that para gene function does not directly influence parasite susceptibility, and the association of kdr with infection may be due to tight linkage of kdr with other gene(s) on the haplotype. Further work will be required to determine if ClipC9 influences the outcome of P. falciparum infection in nature, as well as to confirm the absence of a direct influence by para. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0924-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Kyriacos Markianos
- Program in Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Awa Gneme
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France. .,Department of Microbiology, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Michelle M Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Biophysical analysis of anopheles gambiae leucine-rich repeat proteins APL1A1, APL1B [corrected] and APL1C and their interaction with LRIM1. PLoS One 2015; 10:e0118911. [PMID: 25775123 PMCID: PMC4361550 DOI: 10.1371/journal.pone.0118911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Natural infection of Anopheles gambiae by malaria-causing Plasmodium parasites is significantly influenced by the APL1 genetic locus. The locus contains three closely related leucine-rich repeat (LRR) genes, APL1A, APL1B and APL1C. Multiple studies have reported the participation of APL1A-C in the immune response of A. gambiae to invasion by both rodent and human Plasmodium isolates. APL1C forms a heterodimer with the related LRR protein LRIM1 via a C-terminal coiled-coil domain that is also present in APL1A and APL1B. The LRIM1/APL1C heterodimer protects A. gambiae from infection by binding the complement-like protein TEP1 to form a stable and active immune complex. Here we report solution x-ray scatting data for the LRIM1/APL1C heterodimer, the oligomeric state of LRIM1/APL1 LRR domains in solution and the crystal structure of the APL1B LRR domain. The LRIM1/APL1C heterodimeric complex has a flexible and extended structure in solution. In contrast to the APL1A, APL1C and LRIM1 LRR domains, the APL1B LRR domain is a homodimer. The crystal structure of APL1B-LRR shows that the homodimer is formed by an N-terminal helix that complements for the absence of an N-terminal capping motif in APL1B, which is a unique distinction within the LRIM1/APL1 protein family. Full-length APL1A1 and APL1B form a stable complex with LRIM1. These results support a model in which APL1A1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect A. gambiae from a diverse array of pathogens.
Collapse
|