1
|
Amandy FV, Neri GLL, Manzano JAH, Go AD, Macabeo APG. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review. Curr Drug Targets 2024; 25:620-634. [PMID: 38859782 DOI: 10.2174/0113894501306302240526160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.
Collapse
Affiliation(s)
- Franklin V Amandy
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Gabriel L L Neri
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Joe A H Manzano
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Adrian D Go
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Allan P G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| |
Collapse
|
2
|
Caefer DM, Phan NQ, Liddle JC, Balsbaugh JL, O'Shea JP, Tzingounis AV, Schwartz D. The Okur-Chung Neurodevelopmental Syndrome Mutation CK2 K198R Leads to a Rewiring of Kinase Specificity. Front Mol Biosci 2022; 9:850661. [PMID: 35517865 PMCID: PMC9062000 DOI: 10.3389/fmolb.2022.850661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of protein kinase CK2. The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a complete loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.
Collapse
Affiliation(s)
- Danielle M Caefer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Nhat Q Phan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jennifer C Liddle
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Jeremy L Balsbaugh
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Joseph P O'Shea
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
3
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
4
|
Mitochondrial remodelling-a vicious cycle in diabetic complications. Mol Biol Rep 2021; 48:4721-4731. [PMID: 34023988 DOI: 10.1007/s11033-021-06408-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) is a chronic, metabolic condition characterized by excessive blood glucose that causes perturbations in physiological functioning of almost all the organs of human body. This devastating metabolic disease has its implications in cognitive decline, heart damage, renal, retinal and neuronal complications that severely affects quality of life and associated with decreased life expectancy. Mitochondria possess adaptive mechanisms to meet the cellular energy demand and combat cellular stress. In recent years mitochondrial homeostasis has been point of focus where several mechanisms regulating mitochondrial health and function are evaluated. Mitochondrial dynamics plays crucial role in maintaining healthy mitochondria in cell under physiological as well as stress condition. Mitochondrial dynamics and corresponding regulating mechanisms have been implicated in progression of metabolic disorders including diabetes and its complications. In current review we have discussed about role of mitochondrial dynamics under physiological and pathological conditions. Also, modulation of mitochondrial fission and fusion in diabetic complications are described. The available literature supports mitochondrial remodelling as reliable target for diabetic complications.
Collapse
|
5
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
6
|
Schmitt DL, Mehta S, Zhang J. Illuminating the kinome: Visualizing real-time kinase activity in biological systems using genetically encoded fluorescent protein-based biosensors. Curr Opin Chem Biol 2020; 54:63-69. [PMID: 31911398 PMCID: PMC7131877 DOI: 10.1016/j.cbpa.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
Genetically encoded fluorescent protein-based kinase biosensors are a central tool for illumination of the kinome. The adaptability and versatility of biosensors have allowed for spatiotemporal observation of real-time kinase activity in living cells and organisms. In this review, we highlight various types of kinase biosensors, along with their burgeoning applications in complex biological systems. Specifically, we focus on kinase activity reporters used in neuronal systems and whole animal settings. Genetically encoded kinase biosensors are key for elucidation of the spatiotemporal regulation of protein kinases, with broader applications beyond the Petri dish.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Corwin T, Woodsmith J, Apelt F, Fontaine JF, Meierhofer D, Helmuth J, Grossmann A, Andrade-Navarro MA, Ballif BA, Stelzl U. Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate. Cell Syst 2019; 5:128-139.e4. [PMID: 28837810 DOI: 10.1016/j.cels.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated a set of linear kinase motifs and assigned ∼1,300 known human pY sites to specific NRTKs. Furthermore, experimentally defined pY sites for each individual kinase were shown to cluster within the yeast interactome network irrespective of linear motif information. We therefore applied a network inference approach to predict kinase-substrate relationships for more than 3,500 human proteins, providing a resource to advance our understanding of kinase biology.
Collapse
Affiliation(s)
- Thomas Corwin
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Jonathan Woodsmith
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany; Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | - Federico Apelt
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Jean-Fred Fontaine
- Genomics and Computational Biology, Kernel Press UG, 55128 Mainz, Germany; Faculty of Biology, Johannes Gutenberg University Mainz and Institute of Molecular Biology, 55128 Mainz, Germany
| | - David Meierhofer
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Johannes Helmuth
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Arndt Grossmann
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Ulrich Stelzl
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany; Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
8
|
Lubner JM, Balsbaugh JL, Church GM, Chou MF, Schwartz D. Characterizing Protein Kinase Substrate Specificity Using the Proteomic Peptide Library (ProPeL) Approach. ACTA ACUST UNITED AC 2019; 10:e38. [PMID: 29927115 DOI: 10.1002/cpch.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Characterizing protein kinase substrate specificity motifs represents a powerful step in elucidating kinase-signaling cascades. The protocol described here uses a bacterial system to evaluate kinase specificity motifs in vivo, without the need for radioactive ATP. The human kinase of interest is cloned into a heterologous bacterial expression vector and allowed to phosphorylate E. coli proteins in vivo, consistent with its endogenous substrate preferences. The cells are lysed, and the bacterial proteins are digested into peptides and phosphoenriched using bulk TiO2 . The pooled phosphopeptides are identified by tandem mass spectrometry, and bioinformatically analyzed using the pLogo visualization tool. The ProPeL approach allows for detailed characterization of wildtype kinase specificity motifs, identification of specificity drift due to kinase mutations, and evaluation of kinase residue structure-function relationships. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Joshua M Lubner
- University of Connecticut, Department of Physiology and Neurobiology, Storrs, Connecticut
| | - Jeremy L Balsbaugh
- University of Connecticut, Proteomics & Metabolomics Facility, Center for Open Research Resources & Equipment, Storrs, Connecticut
| | - George M Church
- Harvard Medical School, Department of Genetics, Boston, Massachusetts and Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Michael F Chou
- Harvard Medical School, Department of Genetics, Boston, Massachusetts and Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Daniel Schwartz
- University of Connecticut, Department of Physiology and Neurobiology, Storrs, Connecticut
| |
Collapse
|
9
|
Barber KW, Miller CJ, Jun JW, Lou HJ, Turk BE, Rinehart J. Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library. Biochemistry 2018; 57:4717-4725. [PMID: 29920078 DOI: 10.1021/acs.biochem.8b00410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human proteome encodes >500 protein kinases and hundreds of thousands of potential phosphorylation sites. However, the identification of kinase-substrate pairs remains an active area of research because the relationships between individual kinases and these phosphorylation sites remain largely unknown. Many techniques have been established to discover kinase substrates but are often technically challenging to perform. Moreover, these methods frequently rely on substrate reagent pools that do not reflect human protein sequences or are biased by human cell line protein expression profiles. Here, we describe a new approach called SERIOHL-KILR (serine-oriented human library-kinase library reactions) to profile kinase substrate specificity and to identify candidate substrates for serine kinases. Using a purified library of >100000 serine-oriented human peptides expressed heterologously in Escherichia coli, we perform in vitro kinase reactions to identify phosphorylated human peptide sequences by liquid chromatography and tandem mass spectrometry. We compare our results for protein kinase A to those of a well-established positional scanning peptide library method, certifying that SERIOHL-KILR can identify the same predominant motif elements as traditional techniques. We then interrogate a small panel of cancer-associated PKCβ mutants using our profiling protocol and observe a shift in substrate specificity likely attributable to the loss of key polar contacts between the kinase and its substrates. Overall, we demonstrate that SERIOHL-KILR can rapidly identify candidate kinase substrates that can be directly mapped to human sequences for pathway analysis. Because this technique can be adapted for various kinase studies, we believe that SERIOHL-KILR will have many new victims in the future.
Collapse
Affiliation(s)
- Karl W Barber
- Department of Cellular & Molecular Physiology , Yale University , New Haven , Connecticut 06520 , United States.,Systems Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Chad J Miller
- Department of Pharmacology , Yale University , New Haven , Connecticut 06520 , United States
| | - Jay W Jun
- Division of Nutritional Sciences , Cornell University , Ithaca , New York 14850 , United States.,The Cancer Systems Biology Consortium Research Center , Yale University , West Haven , Connecticut 06516 , United States
| | - Hua Jane Lou
- Department of Pharmacology , Yale University , New Haven , Connecticut 06520 , United States
| | - Benjamin E Turk
- Department of Pharmacology , Yale University , New Haven , Connecticut 06520 , United States
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology , Yale University , New Haven , Connecticut 06520 , United States.,Systems Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,The Cancer Systems Biology Consortium Research Center , Yale University , West Haven , Connecticut 06516 , United States
| |
Collapse
|
10
|
Wang T, Bemis G, Hanzelka B, Zuccola H, Wynn M, Moody CS, Green J, Locher C, Liu A, Gao H, Xu Y, Wang S, Wang J, Bennani YL, Thomson JA, Müh U. Mtb PKNA/PKNB Dual Inhibition Provides Selectivity Advantages for Inhibitor Design To Minimize Host Kinase Interactions. ACS Med Chem Lett 2017; 8:1224-1229. [PMID: 29259738 DOI: 10.1021/acsmedchemlett.7b00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/28/2017] [Indexed: 11/28/2022] Open
Abstract
Drug resistant tuberculosis (TB) infections are on the rise and antibiotics that inhibit Mycobacterium tuberculosis through a novel mechanism could be an important component of evolving TB therapy. Protein kinase A (PknA) and protein kinase B (PknB) are both essential serine-threonine kinases in M. tuberculosis. Given the extensive knowledge base in kinase inhibition, these enzymes present an interesting opportunity for antimycobacterial drug discovery. This study focused on targeting both PknA and PknB while improving the selectivity window over related mammalian kinases. Compounds achieved potent inhibition (Ki ≈ 5 nM) of both PknA and PknB. A binding pocket unique to mycobacterial kinases was identified. Substitutions that filled this pocket resulted in a 100-fold differential against a broad selection of mammalian kinases. Reducing lipophilicity improved antimycobacterial activity with the most potent compounds achieving minimum inhibitory concentrations ranging from 3 to 5 μM (1-2 μg/mL) against the H37Ra isolate of M. tuberculosis.
Collapse
Affiliation(s)
- Tiansheng Wang
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Guy Bemis
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Brian Hanzelka
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Harmon Zuccola
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Michael Wynn
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Cameron Stuver Moody
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Jeremy Green
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Christopher Locher
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Aixiang Liu
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong New Area, Shanghai 201203, China
| | - Hongwu Gao
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong New Area, Shanghai 201203, China
| | - Yuzhou Xu
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong New Area, Shanghai 201203, China
| | - Shaohui Wang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong New Area, Shanghai 201203, China
| | - Jie Wang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong New Area, Shanghai 201203, China
| | - Youssef L. Bennani
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - John A. Thomson
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Ute Müh
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
11
|
Ssp2 Binding Activates the Smk1 Mitogen-Activated Protein Kinase. Mol Cell Biol 2017; 37:MCB.00607-16. [PMID: 28223369 DOI: 10.1128/mcb.00607-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 01/20/2023] Open
Abstract
Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that couples spore morphogenesis to the completion of chromosome segregation. Similar to other MAPKs, Smk1 is controlled by phosphorylation of a threonine (T) and a tyrosine (Y) in its activation loop. However, it is not activated by a dual-specificity MAPK kinase. Instead, T207 in Smk1's activation loop is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase (Cak1), and Y209 is autophosphorylated in an intramolecular reaction that requires the meiosis-specific protein Ssp2. In this study, we show that Smk1 is catalytically inert unless it is bound by Ssp2. While Ssp2 binding activates Smk1 by a mechanism that is independent of activation loop phosphorylation, binding also triggers autophosphorylation of Y209 in Smk1, which, along with Cak1-mediated phosphorylation of T207, further activates the kinase. Autophosphorylation of Smk1 on Y209 also appears to modify the specificity of the MAPK by suppressing Y kinase and enhancing S/T kinase activity. We also found that the phosphoconsensus motif preference of Ssp2/Smk1 is more extensive than that of other characterized MAPKs. This study therefore defines a novel mechanism of MAPK activation requiring binding of an activator and also shows that MAPKs can be diversified to recognize unique phosphorylation motifs.
Collapse
|
12
|
Lubner JM, Dodge-Kafka KL, Carlson CR, Church GM, Chou MF, Schwartz D. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity. FEBS Lett 2017; 591:459-467. [PMID: 28100013 DOI: 10.1002/1873-3468.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/22/2022]
Abstract
The PKAL205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKAWT and PKAL205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKAL205R loss-of-function signaling. Through these results, we suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.
Collapse
Affiliation(s)
- Joshua M Lubner
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Kimberly L Dodge-Kafka
- Pat and Jim Calhoun Center for Cardiology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Cathrine R Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Michael F Chou
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Sugiyama N, Ishihama Y. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques. J Pharm Biomed Anal 2016; 130:264-272. [DOI: 10.1016/j.jpba.2016.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023]
|
14
|
Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, Mo J, Zheng Y, Wan D, Cai X, Cao Y, Xiao W, Ye L, Tu E, Lin Z, Wen J, Lu X, He J, Peng Y, Su J, Zhang H, Zhao Y, Lin M, Zhang Z. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy 2016; 11:1308-25. [PMID: 26083323 DOI: 10.1080/15548627.2015.1060386] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that the phosphorylation and dephosphorylation of ULK1 and ATG13 are related to autophagy activity. Although ATG16L1 is absolutely required for autophagy induction by affecting the formation of autophagosomes, the post-translational modification of ATG16L1 remains elusive. Here, we explored the regulatory mechanism and role of ATG16L1 phosphorylation for autophagy induction in cardiomyocytes. We showed that ATG16L1 was a phosphoprotein, because phosphorylation of ATG16L1 was detected in rat cardiomyocytes during hypoxia/reoxygenation (H/R). We not only demonstrated that CSNK2 (casein kinase 2) phosphorylated ATG16L1, but also identified the highly conserved Ser139 as the critical phosphorylation residue for CSNK2. We further established that ATG16L1 associated with the ATG12-ATG5 complex in a Ser139 phosphorylation-dependent manner. In agreement with this finding, CSNK2 inhibitor disrupted the ATG12-ATG5-ATG16L1 complex. Importantly, phosphorylation of ATG16L1 on Ser139 was responsible for H/R-induced autophagy in cardiomyocytes, which protects cardiomyocytes from apoptosis. Conversely, we determined that wild-type PPP1 (protein phosphatase 1), but not the inactive mutant, associated with ATG16L1 and antagonized CSNK2-mediated phosphorylation of ATG16L1. Interestingly, one RVxF consensus site for PPP1 binding in the C-terminal tail of ATG16L1 was identified; mutation of this site disrupted its association with ATG16L1. Notably, CSNK2 also associated with PPP1, but ATG16L1 depletion impaired the interaction between CSNK2 and PPP1. Collectively, these data identify ATG16L1 as a bona fide physiological CSNK2 and PPP1 substrate, which reveals a novel molecular link from CSNK2 to activation of the autophagy-specific ATG12-ATG5-ATG16L1 complex and autophagy induction.
Collapse
Affiliation(s)
- Huiwen Song
- a Department of Cardiology ; Affiliated Baoan Hospital of Southern Medical University ; Shenzhen , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Helou YA, Salomon AR. Protein networks and activation of lymphocytes. Curr Opin Immunol 2015; 33:78-85. [PMID: 25687331 DOI: 10.1016/j.coi.2015.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The signal transduction pathways initiated by lymphocyte activation play a critical role in regulating host immunity. High-resolution mass spectrometry has accelerated the investigation of these complex and dynamic pathways by enabling the qualitative and quantitative investigation of thousands of proteins and phosphoproteins simultaneously. In addition, the unbiased and wide-scale identification of protein-protein interaction networks and protein kinase substrates in lymphocyte signaling pathways can be achieved by mass spectrometry-based approaches. Critically, the integration of these discovery-driven strategies with single-cell analysis using mass cytometry can facilitate the understanding of complex signaling phenotypes in distinct immunophenotypes.
Collapse
Affiliation(s)
- Ynes A Helou
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
16
|
Fortuin S, Tomazella GG, Nagaraj N, Sampson SL, Gey van Pittius NC, Soares NC, Wiker HG, de Souza GA, Warren RM. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog. Front Microbiol 2015; 6:6. [PMID: 25713560 PMCID: PMC4322841 DOI: 10.3389/fmicb.2015.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/04/2015] [Indexed: 11/29/2022] Open
Abstract
Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.
Collapse
Affiliation(s)
- Suereta Fortuin
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Gisele G Tomazella
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway
| | | | - Samantha L Sampson
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Nicolaas C Gey van Pittius
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Nelson C Soares
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway
| | - Gustavo A de Souza
- Norway Proteomics Core Facility, Department of Immunology, Oslo University Oslo, Norway
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| |
Collapse
|
17
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; High-Throughput Biology Center, Institute for Basic Biomedical Sciences, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
18
|
Imamura H, Sugiyama N, Wakabayashi M, Ishihama Y. Large-Scale Identification of Phosphorylation Sites for Profiling Protein Kinase Selectivity. J Proteome Res 2014; 13:3410-9. [DOI: 10.1021/pr500319y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Haruna Imamura
- Graduate
School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoyuki Sugiyama
- Graduate
School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaki Wakabayashi
- Graduate
School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Oh MH, Wang X, Kim SY, Wu X, Clouse SD, Huber SC. The Carboxy-terminus of BAK1 regulates kinase activity and is required for normal growth of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:16. [PMID: 24550926 PMCID: PMC3912384 DOI: 10.3389/fpls.2014.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/14/2014] [Indexed: 05/09/2023]
Abstract
Binding of brassinolide to the brassinosteroid-insenstive 1(BRI1) receptor kinase promotes interaction with its co-receptor, BRI1-associated receptor kinase 1 (BAK1). Juxtaposition of the kinase domains that occurs then allows reciprocal transphosphorylation and activation of both kinases, but details of that process are not entirely clear. In the present study we show that the carboxy (C)-terminal polypeptide of BAK1 may play a role. First, we demonstrate that the C-terminal domain is a strong inhibitor of the transphosphorylation activity of the recombinant BAK1 cytoplasmic domain protein. However, recombinant BAK1 lacking the C-terminal domain is unable to transactivate the peptide kinase activity of BRI1 in vitro. Thus, the C-terminal domain may play both a positive and negative role. Interestingly, a synthetic peptide corresponding to the full C-terminal domain (residues 576-615 of BAK1) interacted with recombinant BRI1 in vitro, and that interaction was enhanced by phosphorylation at the Tyr-610 site. Expression of a BAK1 C-terminal domain truncation (designated BAK1-ΔCT-Flag) in transgenic Arabidopsis plants lacking endogenous bak1 and its functional paralog, bkk1, produced plants that were wild type in appearance but much smaller than plants expressing full-length BAK1-Flag. The reduction in growth may be attributed to a partial inhibition of BR signaling in vivo as reflected in root growth assays but other factors are likely involved as well. Our working model is that in vivo, the inhibitory action of the C-terminal domain of BAK1 is relieved by binding to BRI1. However, that interaction is not essential for BR signaling, but other aspects of cellular signaling are impacted when the C-terminal domain is truncated and result in inhibition of growth. These results increase the molecular understanding of the C-terminal domain of BAK1 as a regulator of kinase activity that may serve as a model for other receptor kinases.
Collapse
Affiliation(s)
- Man-Ho Oh
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National UniversityDaejeon, South Korea
| | - Xuejun Wang
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Sang Yeol Kim
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Xia Wu
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- Department of Genome Sciences, University of WashingtonSeattle, WA, USA
| | - Steven D. Clouse
- Department of Horticultural Science, NC State UniversityRaleigh, NC, USA
| | - Steven C. Huber
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- United States Department of Agriculture, Agricultural Research ServiceUrbana, IL, USA
- *Correspondence: Steven C. Huber, Department of Plant Biology, University of Illinois, 1201 West Gregory Drive, 197 ERML, Urbana, IL 61801, USA e-mail:
| |
Collapse
|
20
|
pLogo: a probabilistic approach to visualizing sequence motifs. Nat Methods 2013; 10:1211-2. [PMID: 24097270 DOI: 10.1038/nmeth.2646] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Methods for visualizing protein or nucleic acid motifs have traditionally relied upon residue frequencies to graphically scale character heights. We describe the pLogo, a motif visualization in which residue heights are scaled relative to their statistical significance. A pLogo generation tool is publicly available at http://plogo.uconn.edu/ and supports real-time conditional probability calculations and visualizations.
Collapse
|
21
|
Trinh TB, Xiao Q, Pei D. Profiling the substrate specificity of protein kinases by on-bead screening of peptide libraries. Biochemistry 2013; 52:5645-55. [PMID: 23848432 DOI: 10.1021/bi4008947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A robust, high-throughput method has been developed to screen one-bead-one-compound peptide libraries to systematically profile the sequence specificity of protein kinases. Its ability to provide individual sequences of the preferred substrates permits the identification of sequence contextual effects and nonpermissive residues. Application of the library method to kinases Pim1, MKK6, and Csk revealed that Pim1 and Csk are highly active toward peptide substrates and recognize specific sequence motifs, whereas MKK6 has little activity or sequence selectivity against peptide substrates. Pim1 recognizes peptide substrates of the consensus RXR(H/R)X(S/T); it accepts essentially any amino acid at the S/T-2 and S/T+1 positions, but strongly disfavors acidic residues (Asp or Glu) at the S/T-2 position and a proline residue at the S/T+1 position. The selected Csk substrates show strong sequence covariance and fall into two classes with the consensus sequences of (D/E)EPIYϕXϕ and (D/E)(E/D)S(E/D/I)YϕXϕ (where X is any amino acid and ϕ is a hydrophobic amino acid). Database searches and in vitro kinase assays identified phosphatase PTP-PEST as a Pim1 substrate and phosphatase SHP-1 as a potential Csk substrate. Our results demonstrate that the sequence specificity of protein kinases is defined not only by favorable interactions between permissive residue(s) on the substrate and their cognate binding site(s) on the kinase but also by repulsive interactions between the kinase and nonpermissive residue(s).
Collapse
Affiliation(s)
- Thi B Trinh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|