1
|
Zhang C, Wang J, Niu Z, Zhang K, Wang C, Wang S, Hou S, Yu D, Lin N. Identification of a nomogram predicting overall survival based on ADAP2-related apoptosis genes in gliomas. Int Immunopharmacol 2024; 142:113084. [PMID: 39243555 DOI: 10.1016/j.intimp.2024.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Apoptosis continues to be a pivotal area of investigation in glioma research. ADAP2 mediates the malignant progression of gliomas through the inhibition of apoptosis and predicts the overall survival(OS) of glioma patients based on prognostic modeling of the apoptotic gene set. METHODS The study encompassed 686 glioma patients, with 413 allocated to the training group and 273 to the validation group. Differential expression of ADAP2 across various glioma subtypes was assessed through bioinformatics analysis and Western blotting. The correlation between ADAP2 and apoptosis was examined using Gene Set Enrichment Analysis (GSEA). Multivariate Cox regression analysis and LASSO dimension reduction analysis were employed to identify apoptosis-related genes with prognostic significance in glioma patients and to construct a nomogram. Biological functions and mechanisms associated with risk scores were explored via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA analyses, with validation through Western blotting, flow cytometry, and AM/PI staining. RESULTS ADAP2 was found to be enriched in more aggressive glioma subtypes and was closely linked to glioma cell apoptosis, modulating this process via the NF-κB and P53 signaling pathway. A nomogram for OS in glioma patients was constructed using thirteen apoptosis-related genes. Additionally, ROC curves, calibration curves, and C-indices confirmed the robust applicability of the nomogram. CONCLUSION ADAP2 functions as a prognostic biomarker for glioma patients, regulating glioma cell apoptosis through the NF-κB and P53 signaling pathway. Moreover, prognostic models based on apoptosis-related genes can accurately predict OS for glioma patients at 1, 2, 3, 5, and 10 years.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Jiajun Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Zihui Niu
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Kang Zhang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Chengcheng Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Shuai Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Dong Yu
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China.
| | - Ning Lin
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China.
| |
Collapse
|
2
|
Pacot L, Girish M, Knight S, Spurlock G, Varghese V, Ye M, Thomas N, Pasmant E, Upadhyaya M. Correlation between large rearrangements and patient phenotypes in NF1 deletion syndrome: an update and review. BMC Med Genomics 2024; 17:73. [PMID: 38448973 PMCID: PMC10919053 DOI: 10.1186/s12920-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
About 5-10% of neurofibromatosis type 1 (NF1) patients exhibit large genomic germline deletions that remove the NF1 gene and its flanking regions. The most frequent NF1 large deletion is 1.4 Mb, resulting from homologous recombination between two low copy repeats. This "type-1" deletion is associated with a severe clinical phenotype in NF1 patients, with several phenotypic manifestations including learning disability, a much earlier development of cutaneous neurofibromas, an increased tumour risk, and cardiovascular malformations. NF1 adjacent co-deleted genes could act as modifier loci for the specific clinical manifestations observed in deleted NF1 patients. Furthermore, other genetic modifiers (such as CNVs) not located at the NF1 locus could also modulate the phenotype observed in patients with large deletions. In this study, we analysed 22 NF1 deletion patients by genome-wide array-CGH with the aim (1) to correlate deletion length to observed phenotypic features and their severity in NF1 deletion syndrome, and (2) to identify whether the deletion phenotype could also be modulated by copy number variations elsewhere in the genome. We then review the role of co-deleted genes in the 1.4 Mb interval of type-1 deletions, and their possible implication in the main clinical features observed in this high-risk group of NF1 patients.
Collapse
Affiliation(s)
- Laurence Pacot
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Milind Girish
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Samantha Knight
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vinod Varghese
- All Wales Medical Genomics Service, Cardiff, Great Britain
| | - Manuela Ye
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Nick Thomas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eric Pasmant
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France.
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France.
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Institute of Medical Genetics, Cardiff University, Heath Park, CF14 4XN, Cardiff, UK
| |
Collapse
|
3
|
Wang D, Wen X, Xu LL, Chen QX, Yan TX, Xiao HT, Xu XW. Nf1 in heart development: a potential causative gene for congenital heart disease: a narrative review. Physiol Genomics 2023; 55:415-426. [PMID: 37519249 DOI: 10.1152/physiolgenomics.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the Nf1 gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of Nf1 and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between Nf1 and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The Nf1 gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the Nf1 involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.
Collapse
Affiliation(s)
- Dun Wang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Wen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Li-Li Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Qing-Xing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Tian-Xing Yan
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Hai-Tao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue-Wen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Castillo-Lopez E, Pacífico C, Sener-Aydemir A, Hummel K, Nöbauer K, Ricci S, Rivera-Chacon R, Reisinger N, Razzazi-Fazeli E, Zebeli Q, Kreuzer-Redmer S. Diet and phytogenic supplementation substantially modulate the salivary proteome in dairy cows. J Proteomics 2023; 273:104795. [PMID: 36535624 DOI: 10.1016/j.jprot.2022.104795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Phytogenic compounds may influence salivation or salivary properties. However, their effects on the bovine salivary proteome have not been evaluated. We investigated changes in the bovine salivary proteome due to transition from forage to high-concentrate diet, with and without supplementation with a phytogenic feed additive. Eight non-lactating cows were fed forage, then transitioned to a 65% concentrate diet (DM basis) over a week. Cows were control (n = 4, CON) or supplemented with a phytogenic feed additive (n = 4, PHY). Proteomic analysis was conducted using liquid chromatography coupled with mass spectrometry. We identified 1233 proteins; 878 were bovine proteins, 189 corresponded to bacteria, and 166 were plant proteins. Between forage and high-concentrate, 139 proteins were differentially abundant (P < 0.05), with 48 proteins having a log2FC difference > |2|. The salivary proteome reflected shifts in processes involving nutrient utilization, body tissue accretion, and immune response. Between PHY and CON, 195 proteins were differently abundant (P < 0.05), with 37 having a log2FC difference > |2|; 86 proteins were increased by PHY, including proteins involved in smell recognition. Many differentially abundant proteins correlated (r > |0.70|) with salivary bicarbonate, total mucins or pH. Results provide novel insights into the bovine salivary proteome using a non-invasive approach, and the association of specific proteins with major salivary properties influencing rumen homeostasis. SIGNIFICANCE: Phytogenic compounds may stimulate salivation due to their olfactory properties, but their effects on the salivary proteome have not been investigated. We investigated the effect of high-concentrate diets and supplementation with a phytogenic additive on the salivary proteome of cows. We show that analysis of cows' saliva can be a non-invasive approach to detect effects occurring not only in the gut, but also systemically including indications for gut health and immune response. Thus, results provide unique insights into the bovine salivary proteome, and will have a crucial contribution to further understand animal response in terms of nutrient utilization and immune activity due to the change from forage to a high-energy diet. Additionally, our findings reveal changes due to supplementation with a phytogenic feed additive with regard to health and olfactory stimulation. Furthermore, findings suggest an association between salivary proteins and other components like bicarbonate content.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria.
| | - Cátia Pacífico
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Karin Hummel
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Katharina Nöbauer
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Sara Ricci
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | | | - Ebrahim Razzazi-Fazeli
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Qendrim Zebeli
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Nutrigenomics Unit, Vienna, Austria.
| |
Collapse
|
5
|
Elevated expression of ADAP2 is associated with aggressive behavior of human clear-cell renal cell carcinoma and poor patient survival. Clin Genitourin Cancer 2022; 21:e78-e91. [PMID: 36127253 DOI: 10.1016/j.clgc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common and lethal cancer of the adult kidney. ADAP2 is a GTPase-activating protein was upregulated in clear cell renal cell carcinoma. The role of ADAP2 in ccRCC progression is unknown. METHODS ADAP2 expression in ccRCC cell lines and tissues was examined via real-time PCR, Western blot and IHC. MTS, colony formation and transwell assay to explore the role of ADAP2 in ccRCC. ADAP2 in growth and metastasis of ccRCC were evaluated in vivo through ccRCC xenograft tumor growth, lung metastatic mice model. The prognostic role of ADAP2 was evaluated by survival analysis. RESULTS ADAP2 mRNA was expressed at significantly higher levels in 23 pairs of ccRCC tissues than in normal kidney tissues (P < 0.01). Immunohistochemical analysis of 298 ccRCC tissues revealed elevated ADAP2 expression as an independent unfavorable prognostic factor for the overall survival (P = 0.0042) and progression-free survival (P = 0.0232) of patients. The KaplanMeier survival curve showed that patients with a higher expression of ADAP2 showed a significantly lower overall survival rate and disease-free survival rate. Moreover, high expression of ADAP2 at the mRNA level was associated with a worse prognosis for overall survival (P = 0.0083) in The Cancer Genome Atlas (TCGA) cohort. In vivo and in vitro functional study showed that overexpression of ADAP2 promotes ccRCC cell proliferation and metastasis ability, whereas knockdown of ADAP2 inhibited cell proliferation, colony formation, migration and invasion. CONCLUSION ADAP2 is a novel prognostic marker and could promotes tumor progression in ccRCC.
Collapse
|
6
|
Ding FP, Tian JY, Wu J, Han DF, Zhao D. Identification of key genes as predictive biomarkers for osteosarcoma metastasis using translational bioinformatics. Cancer Cell Int 2021; 21:640. [PMID: 34856991 PMCID: PMC8638136 DOI: 10.1186/s12935-021-02308-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background Osteosarcoma (OS) metastasis is the most common cause of cancer-related mortality, however, no sufficient clinical biomarkers have been identified. In this study, we identified five genes to help predict metastasis at diagnosis. Methods We performed weighted gene co-expression network analysis (WGCNA) to identify the most relevant gene modules associated with OS metastasis. An important machine learning algorithm, the support vector machine (SVM), was employed to predict key genes for classifying the OS metastasis phenotype. Finally, we investigated the clinical significance of key genes and their enriched pathways. Results Eighteen modules were identified in WGCNA, among which the pink, red, brown, blue, and turquoise modules demonstrated good preservation. In the five modules, the brown and red modules were highly correlated with OS metastasis. Genes in the two modules closely interacted in protein–protein interaction networks and were therefore chosen for further analysis. Genes in the two modules were primarily enriched in the biological processes associated with tumorigenesis and development. Furthermore, 65 differentially expressed genes were identified as common hub genes in both WGCNA and protein–protein interaction networks. SVM classifiers with the maximum area under the curve were based on 30 and 15 genes in the brown and red modules, respectively. The clinical significance of the 45 hub genes was analyzed. Of the 45 genes, 17 were found to be significantly correlated with survival time. Finally, 5/17 genes, including ADAP2 (P = 0.0094), LCP2 (P = 0.013), ARHGAP25 (P = 0.0049), CD53 (P = 0.016), and TLR7 (P = 0.04) were significantly correlated with the metastatic phenotype. In vitro verification, western blotting, wound healing analyses, transwell invasion assays, proliferation assays, and colony formation assays indicated that ARHGAP25 promoted OS cell migration, invasion, proliferation, and epithelial–mesenchymal transition. Conclusion We identified five genes, namely ADAP2, LCP2, ARHGAP25, CD53, and TLR7, as candidate biomarkers for the prediction of OS metastasis; ARHGAP25 inhibits MG63 OS cell growth, migration, and invasion in vitro, indicating that ARHGAP25 can serve as a promising specific and prognostic biomarker for OS metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02308-w.
Collapse
Affiliation(s)
- Fu-Peng Ding
- Department of Orthopedics Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jia-Yi Tian
- Department of Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, 130000, China
| | - Jing Wu
- Department of General Practice, The First Hospital of Jilin University, Changchun, 130000, China
| | - Dong-Feng Han
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Ding Zhao
- Department of Orthopedics Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Sun J, Xu H, Qi M, Zhang C, Shi J. Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray. Mol Med Rep 2019; 20:3075-3084. [PMID: 31432118 PMCID: PMC6755242 DOI: 10.3892/mmr.2019.10543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most malignant tumors in children and young adults. To better understand the underlying mechanism, five related datasets deposited in the Gene Expression Omnibus were included in the present study. The Bioconductor ‘limma’ package was used to identify differentially expressed genes (DEGs) and the ‘Weighted Gene Co-expression Network Analysis’ package was used to construct a weighted gene co-expression network to identify key modules and hub genes, associated with OS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes overrepresentation analyses were used for functional annotation. The results indicated that 1,405 genes were dysregulated in OS, including 927 upregulated and 478 downregulated genes, when the cut off value was set at a ≥2 fold-change and an adjusted P-value of P<0.01 was used. Functional annotation of DEGs indicated that these genes were involved in the extracellular matrix (ECM) and that they function in several processes, including biological adhesion, ECM organization, cell migration and leukocyte migration. These findings suggested that dysregulation of the ECM shaped the tumor microenvironment and modulated the OS hallmark. Genes assigned to the yellow module were positively associated with OS and could contribute to the development of OS. In conclusion, the present study has identified several key genes that are potentially druggable genes or therapeutics targets in OS. Functional annotations revealed that the dysregulation of the ECM may contribute to OS development and, therefore, provided new insights to improve our understanding of the mechanisms underlying OS.
Collapse
Affiliation(s)
- Junkui Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongen Xu
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Muge Qi
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Chi Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
8
|
Pertesi M, Ekdahl L, Palm A, Johnsson E, Järvstråt L, Wihlborg AK, Nilsson B. Essential genes shape cancer genomes through linear limitation of homozygous deletions. Commun Biol 2019; 2:262. [PMID: 31341961 PMCID: PMC6642121 DOI: 10.1038/s42003-019-0517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
The landscape of somatic acquired deletions in cancer cells is shaped by positive and negative selection. Recurrent deletions typically target tumor suppressor, leading to positive selection. Simultaneously, loss of a nearby essential gene can lead to negative selection, and introduce latent vulnerabilities specific to cancer cells. Here we show that, under basic assumptions on positive and negative selection, deletion limitation gives rise to a statistical pattern where the frequency of homozygous deletions decreases approximately linearly between the deletion target gene and the nearest essential genes. Using DNA copy number data from 9,744 human cancer specimens, we demonstrate that linear deletion limitation exists and exposes deletion-limiting genes for seven known deletion targets (CDKN2A, RB1, PTEN, MAP2K4, NF1, SMAD4, and LINC00290). Downstream analysis of pooled CRISPR/Cas9 data provide further evidence of essentiality. Our results provide further insight into how the deletion landscape is shaped and identify potentially targetable vulnerabilities.
Collapse
Affiliation(s)
- Maroulio Pertesi
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
| | - Ludvig Ekdahl
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
| | - Angelica Palm
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
| | - Ellinor Johnsson
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
| | - Linnea Järvstråt
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
| | - Anna-Karin Wihlborg
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
| | - Björn Nilsson
- Hematology and Transfusion Medicine Department of Laboratory Medicine, BMC, SE-221 84 Lund, Sweden
- Broad Institute, 415 Main Street, Cambridge, MA 02142 USA
| |
Collapse
|
9
|
Ferrari L, Scuvera G, Tucci A, Bianchessi D, Rusconi F, Menni F, Battaglioli E, Milani D, Riva P. Identification of an atypical microdeletion generating the RNF135-SUZ12 chimeric gene and causing a position effect in an NF1 patient with overgrowth. Hum Genet 2017; 136:1329-1339. [PMID: 28776093 DOI: 10.1007/s00439-017-1832-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/26/2017] [Indexed: 02/02/2023]
Abstract
Neurofibromatosis type I (NF1) microdeletion syndrome, which is present in 4-11% of NF1 patients, is associated with a severe phenotype as it is caused by the deletion of NF1 and other genes in the 17q11.2 region. The variable expressivity of the disease makes it challenging to establish genotype-phenotype correlations, which also affects prognosis and counselling. We here describe a 3-year-old NF1 patient with an atypical deletion and a complex phenotype. The patient showed overgrowth, café au lait spots, inguinal freckling, and neurological abnormalities. The extent of the deletion was determined by means of array comparative genomic hybridisation, and its breakpoints were isolated by means of long-range polymerase chain reaction. Sequence analysis of the deletion junction fragment revealed the occurrence of an Alu-mediated recombination that led to the generation of a chimeric gene consisting of three exons of RNF135 and eleven exons of SUZ12. Interestingly, the deletion shares a common RNF135-centred region with another deletion described in a non-NF1 patient with overgrowth. In comparison with the normal RNF135 allele, the chimeric transcript was 350-fold over-expressed in peripheral blood, and the ADAP2 gene located upstream of RNF135 was also up-regulated. In line with this, the deletion causes the loss of a chromatin TD boundary, which entails the aberrant adoption of distal cis-acting regulatory elements. These findings suggest that RNF135 haploinsufficiency is related to overgrowth in patients with NF1 microdeletion syndrome and, for the first time, strongly indicate a position effect that warrants further genotype-phenotype correlation studies to investigate the possible existence of previously unknown pathogenic mechanisms.
Collapse
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Giulietta Scuvera
- Dipartimento Donna-Bambino-Neonato, UOSD Pediatria ad Alta Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| | - Arianna Tucci
- Dipartimento Donna-Bambino-Neonato, UOSD Pediatria ad Alta Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| | - Donatella Bianchessi
- Dipartimento di Neuro-Oncologia Molecolare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Rusconi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Francesca Menni
- Dipartimento Donna-Bambino-Neonato, UOSD Pediatria ad Alta Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| | - Elena Battaglioli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Donatella Milani
- Dipartimento Donna-Bambino-Neonato, UOSD Pediatria ad Alta Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy.
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy.
| |
Collapse
|
10
|
Kehrer-Sawatzki H, Mautner VF, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136:349-376. [PMID: 28213670 PMCID: PMC5370280 DOI: 10.1007/s00439-017-1766-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
The most frequent recurring mutations in neurofibromatosis type 1 (NF1) are large deletions encompassing the NF1 gene and its flanking regions (NF1 microdeletions). The majority of these deletions encompass 1.4-Mb and are associated with the loss of 14 protein-coding genes and four microRNA genes. Patients with germline type-1 NF1 microdeletions frequently exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant delay in cognitive development, large hands and feet, hyperflexibility of joints and muscular hypotonia. Such patients also display significantly more cardiovascular anomalies as compared with patients without large deletions and often exhibit increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared with the general NF1 population. Further, an extremely high burden of internal neurofibromas, characterised by >3000 ml tumour volume, is encountered significantly, more frequently, in non-mosaic NF1 microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is 16-26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8-13%). NF1 microdeletion patients, therefore, represent a high-risk group for the development of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition to NF1 further increases the MPNST risk in NF1 microdeletion patients. Here, we summarise current knowledge about genotype-phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotype.
Collapse
Affiliation(s)
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
11
|
Bist P, Kim SSY, Pulloor NK, McCaffrey K, Nair SK, Liu Y, Lin R, Krishnan MN. ArfGAP Domain-Containing Protein 2 (ADAP2) Integrates Upstream and Downstream Modules of RIG-I Signaling and Facilitates Type I Interferon Production. Mol Cell Biol 2017; 37:e00537-16. [PMID: 27956705 PMCID: PMC5335504 DOI: 10.1128/mcb.00537-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 01/15/2023] Open
Abstract
Transcription of type I interferon genes during RNA virus infection requires signal communication between several pattern recognition receptor (PRR)-adaptor complexes located at distinct subcellular membranous compartments and a central cytoplasmic TBK1-interferon regulatory factor 3 (IRF3) kinase-transcription factor module. However, how the cell integrates signal transduction through spatially distinct modules of antiviral signaling pathways is less defined. RIG-I is a major cytosolic PRR involved in the control of several RNA viruses. Here we identify ArfGAP domain-containing protein 2 (ADAP2) as a key novel scaffolding protein that integrates different modules of the RIG-I pathway, located at distinct subcellular locations, and mediates cellular antiviral type I interferon production. ADAP2 served to bridge the mitochondrial membrane-bound upstream RIG-I adaptor MAVS and the downstream cytosolic complex of NEMO (regulatory subunit of TBK1), TBK1, and IRF3, leading to IRF3 phosphorylation. Furthermore, independently, ADAP2 also functioned as a major orchestrator of the interaction of TBK1 with NEMO and IRF3. Mutational and in vitro cell-free reconstituted RIG-I signaling assay-based analyses identified that the ArfGAP domain of ADAP2 mediates the interferon response. TRAF3 acted as a trigger for ADAP2 to recruit RIG-I pathway component proteins into a single macromolecular complex. This study provides important novel insights into the assembly and integration of different modules of antiviral signaling cascades.
Collapse
Affiliation(s)
- Pradeep Bist
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Susana Soo-Yeon Kim
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Niyas Kudukil Pulloor
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kathleen McCaffrey
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sajith Kumar Nair
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Yiliu Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Rongtuan Lin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Manoj N Krishnan
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
12
|
Salemi LM, Loureiro SO, Schild-Poulter C. Characterization of RanBPM molecular determinants that control its subcellular localization. PLoS One 2015; 10:e0117655. [PMID: 25659156 PMCID: PMC4319831 DOI: 10.1371/journal.pone.0117655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding.
Collapse
Affiliation(s)
- Louisa M. Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sandra O. Loureiro
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Salemi LM, Almawi AW, Lefebvre KJ, Schild-Poulter C. Aggresome formation is regulated by RanBPM through an interaction with HDAC6. Biol Open 2014; 3:418-30. [PMID: 24795145 PMCID: PMC4058076 DOI: 10.1242/bio.20147021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In conditions of proteasomal impairment, the build-up of damaged or misfolded proteins activates a cellular response leading to the recruitment of damaged proteins into perinuclear aggregates called aggresomes. Aggresome formation involves the retrograde transport of cargo proteins along the microtubule network and is dependent on the histone deacetylase HDAC6. Here we show that ionizing radiation (IR) promotes Ran-Binding Protein M (RanBPM) relocalization into discrete perinuclear foci where it co-localizes with aggresome components ubiquitin, dynein and HDAC6, suggesting that the RanBPM perinuclear clusters correspond to aggresomes. RanBPM was also recruited to aggresomes following treatment with the proteasome inhibitor MG132 and the DNA-damaging agent etoposide. Strikingly, aggresome formation by HDAC6 was markedly impaired in RanBPM shRNA cells, but was restored by re-expression of RanBPM. RanBPM was found to interact with HDAC6 and to inhibit its deacetylase activity. This interaction was abrogated by a RanBPM deletion of its LisH/CTLH domain, which also prevented aggresome formation, suggesting that RanBPM promotes aggresome formation through an association with HDAC6. Our results suggest that RanBPM regulates HDAC6 activity and is a central regulator of aggresome formation.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ahmad W Almawi
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Karen J Lefebvre
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Venturin M, Carra S, Gaudenzi G, Brunelli S, Gallo GR, Moncini S, Cotelli F, Riva P. ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome. J Med Genet 2014; 51:436-43. [PMID: 24711647 DOI: 10.1136/jmedgenet-2013-102240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cardiovascular malformations have a higher incidence in patients with NF1 microdeletion syndrome compared to NF1 patients with intragenic mutation, presumably owing to haploinsufficiency of one or more genes included in the deletion interval and involved in heart development. In order to identify which genes could be responsible for cardiovascular malformations in the deleted patients, we carried out expression studies in mouse embryos and functional studies in zebrafish. METHODS AND RESULTS The expression analysis of three candidate genes included in the NF1 deletion interval, ADAP2, SUZ12 and UTP6, performed by in situ hybridisation, showed the expression of ADAP2 murine ortholog in heart during fundamental phases of cardiac morphogenesis. In order to investigate the role of ADAP2 in cardiac development, we performed loss-of-function experiments of zebrafish ADAP2 ortholog, adap2, by injecting two different morpholino oligos (adap2-MO and UTR-adap2-MO). adap2-MOs-injected embryos (morphants) displayed in vivo circulatory and heart shape defects. The molecular characterisation of morphants with cardiac specific markers showed that the injection of adap2-MOs causes defects in heart jogging and looping. Additionally, morphological and molecular analysis of adap2 morphants demonstrated that the loss of adap2 function leads to defective valvulogenesis, suggesting a correlation between ADAP2 haploinsufficiency and the occurrence of valve defects in NF1-microdeleted patients. CONCLUSIONS Overall, our findings indicate that ADAP2 has a role in heart development, and might be a reliable candidate gene for the occurrence of cardiovascular malformations in patients with NF1 microdeletion and, more generally, for the occurrence of a subset of congenital heart defects.
Collapse
Affiliation(s)
- Marco Venturin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Silvia Carra
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Germano Gaudenzi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Silvia Brunelli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano-Bicocca, Monza (MB), Italy
| | | | - Silvia Moncini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|