1
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Candido S, Tomasello B, Lavoro A, Falzone L, Gattuso G, Russo A, Paratore S, McCubrey JA, Libra M. Bioinformatic analysis of the LCN2-SLC22A17-MMP9 network in cancer: The role of DNA methylation in the modulation of tumor microenvironment. Front Cell Dev Biol 2022; 10:945586. [PMID: 36211450 PMCID: PMC9532607 DOI: 10.3389/fcell.2022.945586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several features of cancer cells such as proliferation, invasion, metastatic spreading, and drug resistance are affected by their interaction with several tumor microenvironment (TME) components, including neutrophil gelatinase-associated lipocalin (NGAL), solute carrier family 22 member 17 (SLC22A17), and matrix metallopeptidase 9 (MMP9). These molecules play a key role in tumor growth, invasion, and iron-dependent metabolism of cancer cells. However, the precise epigenetic mechanisms underlying the gene regulation of Lipocalin 2 (LCN2), SLC22A17, and MMP9 in cancer still remain unclear. To this purpose, computational analysis was performed on TCGA and GTEx datasets to evaluate the expression and DNA methylation status of LCN2, SLC22A17, and MMP9 genes in different tumor types. Correlation analysis between gene/isoforms expression and DNA methylation levels of LCN2, SLC22A17, and MMP9 was performed to investigate the role of DNA methylation in the modulation of these genes. Protein network analysis was carried out using reverse phase protein arrays (RPPA) data to identify protein-protein interactions of the LCN2-SLC22A17-MMP9 network. Furthermore, survival analysis was performed according to gene expression and DNA methylation levels. Our results demonstrated that LCN2 and MMP9 were mainly upregulated in most tumor types, whereas SLC22A17 was largely downregulated, representing a specific hallmark signature for all gastrointestinal tumors. Notably, the expression of LCN2, SLC22A17, and MMP9 genes was negatively affected by promoter methylation. Conversely, intragenic hypermethylation was associated with the overexpression of SLC22A17 and MMP9 genes. Protein network analysis highlighted the role of the LCN2-SLC22A17-MMP9 network in TME by the interaction with fibronectin 1 and claudin 7, especially in rectal tumors. Moreover, the impact of expression and methylation status of LCN2, SLC22A17, and MMP9 on overall survival and progression free interval was tumor type-dependent. Overall, our analyses provide a detailed overview of the expression and methylation status of LCN2, SLC22A17, and MMP9 in all TCGA tumors, indicating that the LCN2-SLC22A17-MMP9 network was strictly regulated by DNA methylation within TME. Our findings pave the way for the identification of novel DNA methylation hotspots with diagnostic and prognostic values and suitable for epi-drug targeting.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Russo
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - Sabrina Paratore
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Xing Y, Ruan G, Ni H, Qin H, Chen S, Gu X, Shang J, Zhou Y, Tao X, Zheng L. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front Immunol 2021; 12:624725. [PMID: 34084160 PMCID: PMC8167795 DOI: 10.3389/fimmu.2021.624725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Clinical Relevance of NGAL/MMP-9 Pathway in Patients with Endometrial Cancer. DISEASE MARKERS 2017; 2017:6589262. [PMID: 29089666 PMCID: PMC5635290 DOI: 10.1155/2017/6589262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/21/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
The objectives of the study were to assess the relationship between the serum levels of MMP-9 and NGAL and the clinical staging and histopathological grade of the tumor. Lipocalin-2/NGAL and MMP-9 concentrations were quantified in serum by multiplex fluorescent bead-based immunoassays (Luminex Corporation, Austin, TX, USA). The AUC values for NGAL and MMP-9 were 0.9 and 0.78, respectively. The diagnostic potential of NGAL and MMP-9 in differentiating high-stage (FIGO III and IV) and low-stage (FIGO I and II) cancer and predicting the cell differentiation grade (G1 versus G3) on the basis of the analyses of AUC values was determined to be 0.91 and 0.79 for NGAL and 0.82 and 0.84 for MMP-9, respectively. Multifactorial logistic regression analysis in the final method revealed that NGAL and MMP-9 variables were independent of the endometrial cancer risk. OR values for NGAL and MMP-9 were 1.23 (95% CI 1.421-3.27; p = 0.034) and 1.09 (95% CI: 1.38-4.12; p = 0.026), respectively. The NGAL/MMP-9 complex may be useful in the assessment of tumor stage before surgical treatment.
Collapse
|
5
|
Osaki T, Sunden Y, Sugiyama A, Azuma K, Murahata Y, Tsuka T, Ito N, Imagawa T, Okamoto Y. Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression. J Vet Sci 2017; 17:385-90. [PMID: 26726024 PMCID: PMC5037307 DOI: 10.4142/jvs.2016.17.3.385] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
Canine mammary gland tumors (CMGTs), which are the most common neoplasms in sexually intact female dogs, have been suggested as a model for studying human breast cancer because of several similarities, including relative age of onset, risk factors, incidence, histological and molecular features, biological behavior, metastatic pattern, and responses to therapy. In the present study, we established a new cell line, the SNP cell line, from a CMGT. A tumor formed in each NOD.CB17-Prkdcscid/J mouse at the site of subcutaneous SNP cell injection. SNP cells are characterized by proliferation in a tubulopapillary pattern and are vimentin positive. Moreover, we examined miRNA expression in the cultured cells and found that the expression values of miRNA-143 and miRNA-138a showed the greatest increase and decrease, respectively, of all miRNAs observed, indicating that these miRNAs might play a significant role in the malignancy of SNP cells. Overall, the results of this study indicate that SNP cells might serve as a model for future genetic analysis and clinical treatments of human breast tumors.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuji Sunden
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Akihiko Sugiyama
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kazuo Azuma
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yusuke Murahata
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Takeshi Tsuka
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tomohiro Imagawa
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
6
|
Sha HH, Wang DD, Chen D, Liu SW, Wang Z, Yan DL, Dong SC, Feng JF. MiR-138: A promising therapeutic target for cancer. Tumour Biol 2017; 39:1010428317697575. [PMID: 28378633 DOI: 10.1177/1010428317697575] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs which regulate gene expressions at post-transcriptional level by binding to the 3'-untranslated region of target messenger RNAs. Growing evidences highlight their pivotal roles in various biological processes of human cancers. Among them, miR-138, generating from two primary transcripts, pri-miR-138-1 and pri-miR-138-2, expresses aberrantly in different cancers and is extensively studied in cancer network. Importantly, studies have shown that miR-138 acts as a tumor suppressor by targeting many target genes, which are related to proliferation, apoptosis, invasion, and migration. Additionally, some researches also discover that miR-138 can sensitize tumors to chemotherapies. In this review, we summarize the expression of miR-138 on regulatory mechanisms and tumor biological processes, which will establish molecular basis on the usage of miR-138 in clinical applications in the future.
Collapse
Affiliation(s)
- Huan-Huan Sha
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dan-Dan Wang
- 2 The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Dan Chen
- 3 Research Center of Clinical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Si-Wen Liu
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- 2 The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Da-Li Yan
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shu-Chen Dong
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front Immunol 2017; 8:339. [PMID: 28424688 PMCID: PMC5371613 DOI: 10.3389/fimmu.2017.00339] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
While mesenchymal stem cells (MSCs)-based therapy appears to be promising, there are concerns regarding possible side effects related to the unwanted suppression of antimicrobial immunity leading to an increased risk of infection. Conversely, recent data show that MSCs exert strong antimicrobial effects through indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and proteins (AMPs). In fact, MSCs have been reported to increase bacterial clearance in preclinical models of sepsis, acute respiratory distress syndrome, and cystic fibrosis-related infections. This article reviews the current evidence regarding the direct antimicrobial effector function of MSCs, focusing mainly on the role of MSCs-derived AMPs. The strategies that might modulate the expression and secretion of these AMPs, leading to enhanced antimicrobial effect, are highlighted. Furthermore, studies evaluating the presence of AMPs in the cargo of extracellular vesicles (EVs) are underlined as perspective opportunities to develop new drug delivery tools. The antimicrobial potential of MSCs-derived EVs can also be heightened through cell conditioning and/or drug loading. Finally, improving the pharmacokinetics and delivery, in addition to deciphering the multi-target drug status of AMPs, should synergistically lead to key advances against infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
8
|
Hogendorf P, Durczyński A, Skulimowski A, Kumor A, Poznańska G, Strzelczyk J. Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentration in urine is superior to CA19-9 and Ca 125 in differentiation of pancreatic mass: Preliminary report. Cancer Biomark 2017; 16:537-43. [PMID: 27002756 DOI: 10.3233/cbm-160595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Currently pancreatic cancer is the fourth leading cause of cancer-related death worldwide. Because of its late manifestation and consequent dismal prognosis, there is an urgent need to develop highly sensitive and specific marker. Neutrophil Gelatinase-Associated Lipocalin (NGAL) recently emerged as a protein playing an important role in carcinogenesis of various neoplasms. OBJECTIVE Our aim was to assess the potential of urine and bile concentration of NGAL in differentiating pancreatic adenocarcinoma from chronic pancreatitis. METHODS Forty-two patients operated on due to pancreatobiliary lesions were enrolled in this study. All enrolled patients had eGFR within reference range. Levels of CEA, CA 125 and Ca19-9 were assessed using standard laboratory protocols. A sample of urine was collected prior to the surgery. Intraoperatively a 5 ml sample of bile was collected directly from the common bile duct. Bile and urine levels of NGAL were measured using a ELISA kit. After standard pathological examination of specimens obtained during surgery, patients were divided into 2 groups: 21 patients with pancreatic adenocarcinoma and 15 patients with focal chronic pancreatitis. RESULTS NGAL concentration in bile in patients with PDAC vs CP was 75.72 ± 16.05 ng/mL vs 62.62 ± 18.6 ng/mL respectively (p= 0,011). NGAL concentration in urine was 43.26 ± 21.21 ng/mL vs 17.96 ± 14.58 ng/mL (p= 0.002) respectively. In order to compare these markers with routinely used ones, ROC curve was built for Ca125 to establish cutoff point and in case of CA19-9 clinically used cutoff (≥ 37U/mL) was applied. Sensitivity and specificity for NGALurine with cutoff value of 27 ng/mL was 80.95% and 80% respectively, while these values for NGALbile were 71.43% and 80% respectively. Ca19-9 measured in plasma with clinically used cutoff value had sensitivity of 71.43% and specificity of 73.33%. Sensitivity and specificity for Ca 125 measured in plasma with cutoff value of 13 U/mL were 85.71% and 66.67% respectively. CONCLUSIONS In conclusion, NGAL in urine and bile are remarkably accurate in differentiating pancreatic mass due to chronic pancreatitis from pancreatic adenocarcinoma. Therefore, NGAL concentrations in bile and urine should be further investigated in order to assess their usefulness in early pancreatic adenocarcinoma diagnosis.
Collapse
Affiliation(s)
- Piotr Hogendorf
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - Adam Durczyński
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | | | - Anna Kumor
- Department of Pulmonology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Grażyna Poznańska
- Department of Anesthesiology and Intensive Care, Medical University of Lodz, Lodz, Poland
| | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front Immunol 2017. [PMID: 28424688 DOI: 10.3389/fimmu.2017.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
While mesenchymal stem cells (MSCs)-based therapy appears to be promising, there are concerns regarding possible side effects related to the unwanted suppression of antimicrobial immunity leading to an increased risk of infection. Conversely, recent data show that MSCs exert strong antimicrobial effects through indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and proteins (AMPs). In fact, MSCs have been reported to increase bacterial clearance in preclinical models of sepsis, acute respiratory distress syndrome, and cystic fibrosis-related infections. This article reviews the current evidence regarding the direct antimicrobial effector function of MSCs, focusing mainly on the role of MSCs-derived AMPs. The strategies that might modulate the expression and secretion of these AMPs, leading to enhanced antimicrobial effect, are highlighted. Furthermore, studies evaluating the presence of AMPs in the cargo of extracellular vesicles (EVs) are underlined as perspective opportunities to develop new drug delivery tools. The antimicrobial potential of MSCs-derived EVs can also be heightened through cell conditioning and/or drug loading. Finally, improving the pharmacokinetics and delivery, in addition to deciphering the multi-target drug status of AMPs, should synergistically lead to key advances against infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
10
|
Cristóbal I, Torrejón B, González-Alonso P, Manso R, Rojo F, García-Foncillas J. Downregulation of miR-138 as a Contributing Mechanism to Lcn-2 Overexpression in Colorectal Cancer with Liver Metastasis. World J Surg 2016; 40:1021-2. [PMID: 26316117 DOI: 10.1007/s00268-015-3241-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain.
| | - Blanca Torrejón
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain
| | - Paula González-Alonso
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", 28040, Madrid, Spain
| | - Rebeca Manso
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", 28040, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", 28040, Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Yamada Y, Miyamoto T, Kashima H, Kobara H, Asaka R, Ando H, Higuchi S, Ida K, Shiozawa T. Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant. Free Radic Res 2016; 50:414-25. [PMID: 26729415 DOI: 10.3109/10715762.2015.1134795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ovarian clear cell carcinoma (CCC) arises from ovarian endometriosis. Intra-cystic fluid contains abundant amounts of free iron, which causes persistent oxidative stress, a factor that has been suggested to induce malignant transformation. However, the mechanisms linking oxidative stress and carcinogenesis in CCC currently remain unclear. Lipocalin 2 (LCN2), a multifunctional secretory protein, functions as an iron transporter as well as an antioxidant. Therefore, we herein examined the roles of LCN2 in the regulation of intracellular iron concentrations, oxidative stress, DNA damage, and antioxidative functions using LCN2-overexpressing (ES2), and LCN2-silenced (RMG-1) CCC cell lines. The results of calcein staining indicated that the up-regulated expression of LCN2 correlated with increases in intracellular iron concentrations. However, a DCFH-DA assay and 8OHdG staining revealed that LCN2 reduced intracellular levels of reactive oxygen species and DNA damage. Furthermore, the expression of LCN2 suppressed hydrogen peroxide-induced apoptosis and prolonged cell survival, suggesting an antioxidative role for LCN2. The expression of mRNAs and proteins for various oxidative stress-catalyzing enzymes, such as heme oxygenase (HO), superoxide dismutase (SOD), and glutathione peroxidase, was not affected by LCN2, whereas the intracellular concentration of the potent antioxidant, glutathione (GSH), was increased by LCN2. Furthermore, the expression of xCT, a cystine transporter protein, and CD44 variant 8-10 (CD44v), a stem cell marker, was up-regulated by LCN2. Although LCN2 increased intracellular iron concentrations, LCN2-induced GSH may catalyze and override oxidative stress via CD44v and xCT, and subsequently enhance the survival of CCC cells in oxidative stress-rich endometriosis.
Collapse
Affiliation(s)
- Yasushi Yamada
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tsutomu Miyamoto
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Hiroyasu Kashima
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Hisanori Kobara
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Ryoichi Asaka
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Hirofumi Ando
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Shotaro Higuchi
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Koichi Ida
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tanri Shiozawa
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| |
Collapse
|
12
|
Tanaka K, Kawano M, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, Tsumura H. Tumor suppressive microRNA-138 inhibits metastatic potential via the targeting of focal adhesion kinase in Ewing's sarcoma cells. Int J Oncol 2016; 48:1135-44. [PMID: 26782922 DOI: 10.3892/ijo.2016.3317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/14/2015] [Indexed: 11/05/2022] Open
Abstract
Short non-coding RNAs, called microRNAs (miRNAs), regulate cell biology by affecting the expression of target genes. However, we know little about the miRNAs regulating the growth and progression of Ewing's sarcoma (ES). To identify possible oncogenic factors in ES, we used a microarray-based approach to profile the changes in the expression of miRNAs and the downstream mRNAs in five ES cell lines. One miRNA, miR‑138, was significantly downregulated, whereas the expression of focal adhesion kinase (FAK) was significantly upregulated in all tested ES cells. When miR‑138 was transfected into ES cell lines, the expression of FAK in these cells was greatly suppressed and inhibited the proliferation and mobility of ES cells. Overexpression of miR‑138 in vitro resulted in further inhibition of the cell cycle at the G1 phase and in the induction of anoikis, in a dose- and time-dependent manner. Moreover, miR‑138 overexpression in ES cells significantly suppressed the number of distant metastases in vivo. The data in the present study demonstrates for the first time a novel mechanism that regulates the expression of FAK via miR‑138 in ES cells.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Masashi Miyazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Shinichi Ikeda
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| |
Collapse
|
13
|
Wei J, Nduom EK, Kong LY, Hashimoto Y, Xu S, Gabrusiewicz K, Ling X, Huang N, Qiao W, Zhou S, Ivan C, Fuller GN, Gilbert MR, Overwijk W, Calin GA, Heimberger AB. MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro Oncol 2015; 18:639-48. [PMID: 26658052 DOI: 10.1093/neuonc/nov292] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antibody therapeutic targeting of the immune checkpoints cytotoxic T-lymphocyte-associated molecule 4 (CTLA-4) and programmed cell death 1 (PD-1) has demonstrated marked tumor regression in clinical trials. MicroRNAs (miRNAs) can modulate multiple gene transcripts including possibly more than one immune checkpoint and could be exploited as immune therapeutics. METHODS Using online miRNA targeting prediction algorithms, we searched for miRNAs that were predicted to target both PD-1 and CTLA-4. MiR-138 emerged as a leading candidate. The effects of miR-138 on CTLA-4 and PD-1 expression and function in T cells were determined and the therapeutic effect of intravenous administration of miR-138 was investigated in both immune-competent and -incompetent murine models of GL261 glioma. RESULTS Target binding algorithms predicted that miR-138 could bind the 3' untranslated regions of CTLA-4 and PD-1, which was confirmed with luciferase expression assays. Transfection of human CD4+ T cells with miR-138 suppressed expression of CTLA-4, PD-1, and Forkhead box protein 3 (FoxP3) in transfected human CD4+ T cells. In vivo miR-138 treatment of GL261 gliomas in immune-competent mice demonstrated marked tumor regression, a 43% increase in median survival time (P = .011), and an associated decrease in intratumoral FoxP3+ regulatory T cells, CTLA-4, and PD-1 expression. This treatment effect was lost in nude immune-incompetent mice and with depletion of CD4+ or CD8+ T cells, and miR-138 had no suppressive effect on glioma cells when treated directly at physiological in vivo doses. CONCLUSIONS MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints which may have rapid translational potential as a novel immunotherapeutic agent.
Collapse
Affiliation(s)
- Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Edjah K Nduom
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Shuo Xu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Neal Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Wei Qiao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Shouhao Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Cristina Ivan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Greg N Fuller
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Mark R Gilbert
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Willem Overwijk
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - George A Calin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.W., E.K.N., L.-Y.K., Y.H., S.X., K.G., X.L., N.H., A.B.H.); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.Q., S.Z.); Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas (C.I.); Departments of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.N.F.); Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (M.R.G.); Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.O.); Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.A.C.); Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China (S.X.)
| |
Collapse
|
14
|
Maier H, Aigner F. Upregulation of Neutrophil Gelatinase-Associated Lipocalin in Colorectal Cancer Predicts Poor Patient Survival: Reply. World J Surg 2015; 40:1023. [PMID: 26546183 DOI: 10.1007/s00268-015-3309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Herbert Maier
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Felix Aigner
- General, Visceral and Transplantation Surgery, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| |
Collapse
|
15
|
Muñoz-Rodríguez JL, Vrba L, Futscher BW, Hu C, Komenaka IK, Meza-Montenegro MM, Gutierrez-Millan LE, Daneri-Navarro A, Thompson PA, Martinez ME. Differentially expressed microRNAs in postpartum breast cancer in Hispanic women. PLoS One 2015; 10:e0124340. [PMID: 25875827 PMCID: PMC4395255 DOI: 10.1371/journal.pone.0124340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers.
Collapse
Affiliation(s)
- José L. Muñoz-Rodríguez
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America
| | - Lukas Vrba
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States of America
| | - Bernard W. Futscher
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, The Mel & Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, United States of America
| | - Ian K. Komenaka
- Department of Surgery, Maricopa Medical Center, Phoenix, AZ, United States of America
| | | | | | - Adrian Daneri-Navarro
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Patricia A. Thompson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States of America
| | - Maria Elena Martinez
- Department of Family & Preventive Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
16
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
17
|
Gayral M, Jo S, Hanoun N, Vignolle-Vidoni A, Lulka H, Delpu Y, Meulle A, Dufresne M, Humeau M, Rieu MCD, Bournet B, Sèlves J, Guimbaud R, Carrère N, Buscail L, Torrisani J, Cordelier P. MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20:11199-209. [PMID: 25170204 PMCID: PMC4145758 DOI: 10.3748/wjg.v20.i32.11199] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/06/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Despite tremendous efforts from scientists and clinicians worldwide, pancreatic adenocarcinoma (PDAC) remains a deadly disease due to the lack of early diagnostic tools and reliable therapeutic approaches. Consequently, a majority of patients (80%) display an advanced disease that results in a low resection rate leading to an overall median survival of less than 6 months. Accordingly, robust markers for the early diagnosis and prognosis of pancreatic cancer, or markers indicative of survival and/or metastatic disease are desperately needed to help alleviate the dismal prognosis of this cancer. In addition, the discovery of new therapeutic targets is mandatory to design effective treatments. In this review, we will highlight the translational studies demonstrating that microRNAs may soon translate into clinical applications as long-awaited screening tools and therapeutic targets for PDAC.
Collapse
|
18
|
Lippi G, Meschi T, Nouvenne A, Mattiuzzi C, Borghi L. Neutrophil gelatinase-associated lipocalin in cancer. Adv Clin Chem 2014; 64:179-219. [PMID: 24938019 DOI: 10.1016/b978-0-12-800263-6.00004-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), also known as lipocalin-2, is a 178-amino acid protein which exists in three molecular forms, including a 25-kDa monomer, a 45-kDa homodimer, and a 135-kDa heterodimer complexed with matrix metalloproteinase 9 (MMP-9). Polymorphonuclear neutrophils and tubular cells of the kidney are the most representative cellular sources. As such, NGAL is now considered the biochemical gold standard for early diagnosis of acute kidney injury. Recent evidence suggests, however, that ectopic or enhanced expression of NGAL may occur in many other pathologic conditions including cancer. Several epidemiologic studies, as reviewed in this chapter, showed that a variety of malignant tumors consistently overexpressed NGAL with increased concentration in blood, urine, and other biologic fluids. In addition, NGAL was frequently associated with tumor size, stage, and invasiveness. These features thus make it a potential biomarker for malignancy. A number of experimental studies also demonstrated that the ability to bind MMP-9, to scavenge iron into cancer cells along with the effect on subcellular localization of transmembrane proteins such as cadherins and catenins, confers this protein the potential to enhance can cer aggressiveness and makes it an appealing target of future anticancer research.
Collapse
|
19
|
Jiping Z, Ming F, Lixiang W, Xiuming L, Yuqun S, Han Y, Zhifang L, Yundong S, Shili L, Chunyan C, Jihui J. MicroRNA-212 inhibits proliferation of gastric cancer by directly repressing retinoblastoma binding protein 2. J Cell Biochem 2014; 114:2666-72. [PMID: 23794145 DOI: 10.1002/jcb.24613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/11/2013] [Indexed: 01/02/2023]
Abstract
Retinoblastoma binding protein 2 (RBP2), a newly found histone demethylase, is overexpressed in gastric cancer. We examined the upstream regulatory mechanism of RBP2 at the microRNA (miRNA) level and the role in gastric carcinogenesis. We used bioinformatics to predict that microRNA-212 (miR-212) might be a direct upstream regulator of RBP2 and verified the regulation in gastric epithelial-derived cell lines. Overexpression of miR-212 significantly inhibited the expression levels of RBP2, whereas knockdown of miR-212 promoted RBP2 expression. Furthermore, we identified the putative miR-212 targeting sequence in the RBP2 3' UTR by luciferase assay. MiR-212 inhibited the colony formation ability of cells by repressing RBP2 expression and increasing that of P21(CIP1) and P27(kip1), both critical in cell cycle arrest. In addition, the expression of RBP2 and miR-212 in tumor tissue and matched normal tissue from 18 patients further supported the results in vivo. MiR-212 directly regulates the expression of RBP2 and inhibits cell growth in gastric cancer, which may provide new clues to treatment.
Collapse
Affiliation(s)
- Zeng Jiping
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, Shandong University School of Medicine, Jinan, China; Department of Biochemistry, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Impact of tumour epithelial subtype on circulating microRNAs in breast cancer patients. PLoS One 2014; 9:e90605. [PMID: 24626163 PMCID: PMC3953120 DOI: 10.1371/journal.pone.0090605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
While a range of miRNAs have been shown to be dysregulated in the circulation of patients with breast cancer, little is known about the relationship between circulating levels and tumour characteristics. The aim of this study was to analyse alterations in circulating miRNA expression during tumour progression in a murine model of breast cancer, and to detemine the clinical relevance of identified miRNAs at both tissue and circulating level in patient samples. Athymic nude mice received a subcutaneous or mammary fat pad injection of MDA-MB-231 cells. Blood sampling was performed at weeks 1, 3 and 6 following tumour induction, and microRNA extracted. MicroRNA microArray analysis was performed comparing samples harvested at week 1 to those collected at week 6 from the same animals. Significantly altered miRNAs were validated across all murine samples by RQ-PCR (n = 45). Three miRNAs of interest were then quantified in the circulation(n = 166) and tissue (n = 100) of breast cancer patients and healthy control individuals. MicroArray-based analysis of murine blood samples revealed levels of 77 circulating microRNAs to be changed during disease progression, with 44 demonstrating changes >2-fold. Validation across all samples revealed miR-138 to be significantly elevated in the circulation of animals during disease development, with miR-191 and miR-106a levels significantly decreased. Analysis of patient tissue and blood samples revealed miR-138 to be significantly up-regulated in the circulation of patients with breast cancer, with no change observed in the tissue setting. While not significantly changed overall in breast cancer patients compared to controls, circulating miR-106a and miR-191 were significantly decreased in patients with basal breast cancer. In tissue, both miRNAs were significantly elevated in breast cancer compared to normal breast tissue. The data demonstrates an impact of tumour epithelial subtype on circulating levels of miRNAs, and highlights divergent miRNA profiles between tissue and blood samples from breast cancer patients.
Collapse
|
21
|
Liao CJ, Li PT, Lee YC, Li SH, Chu ST. Lipocalin 2 induces the epithelial–mesenchymal transition in stressed endometrial epithelial cells: possible correlation with endometriosis development in a mouse model. Reproduction 2014; 147:179-87. [DOI: 10.1530/rep-13-0236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipocalin 2 (LCN2) is an induced stressor that promotes the epithelial–mesenchymal transition (EMT). We previously demonstrated that the development of endometriosis in mice correlates with the secretion of LCN2 in the uterus. Here, we sought to clarify the relationship between LCN2 and EMT in endometrial epithelial cells and to determine whether LCN2 plays a role in endometriosis. Antibodies that functionally inhibit LCN2 slowed the growth of ectopic endometrial tissue in a mouse model of endometriosis, suggesting that LCN2 promotes the formation of endometriotic lesions. Using nutrient deprivation as a stressor, LCN2 expression was induced in cultured primary endometrial epithelial cells. As LCN2 levels increased, the cells transitioned from a round to a spindle-like morphology and dispersed. Immunochemical analyses revealed decreased levels of cytokeratin and increased levels of fibronectin in these endometrial cells, adhesive changes that correlate with induction of cell migration and invasion.Lcn2knockdown also indicated that LCN2 promotes EMT and migration of endometrial epithelial cells. Our results suggest that stressful cellular microenvironments cause uterine tissues to secrete LCN2 and that this results in EMT of endometrial epithelial cells, which may correlate with the development of ectopic endometriosis. These findings shed light on the role of LCN2 in the pathology of endometrial disorders.
Collapse
|
22
|
Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta 2013; 35:23-9. [PMID: 24239158 DOI: 10.1016/j.placenta.2013.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Preeclampsia is a pregnancy-specific syndrome characterized by high blood pressure and proteinuria, which has a pathophysiology of insufficient placental blood perfusion. MicroRNA-126 (miR-126), an angiogenesis-related miRNA, has been proved to play a significant role in endothelial cells response to ischemia in vitro and in vivo. However, whether miR-126 has therapeutic potential in vasculogenesis of preeclampsia placenta remains uncertain. In this study, we focused our attention on this unsolved problem. First, we established the preeclampsia animal model and over-expressed miR-126 in vivo using a specific agomir. Then we described the effects of miR-126 on placental vasculogenesis in preeclampsia rats, including the evaluation of placental blood perfusion using microbubbles-assisted contrast-enhanced ultrasonography (CEUS), placental histology, immunohistochemistry and pregnancy outcome. Finally, we investigated the possible target gene and pathway that miR-126 modulates. Together, our results showed that preeclampsia animal with over-expressed miR-126 had higher pup weight, placenta weight and proportion of live pups. Quantification of uteroplacental perfusion by CEUS and CD34 staining of placental tissue revealed that blood volume and microvessel density increased in miR-126 treated group. MiR-126 was related to PIK3R2 down-regulation and Akt activation within placenta, which had impacts on vascularization of placenta. Therefore, miR-126 may be an efficient gene therapy to promote angiogenesis and blood perfusion in preeclampsia placenta.
Collapse
|