1
|
Schwarz L, Križanac AM, Schneider H, Falker-Gieske C, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Genetic and genomic analysis of reproduction traits in holstein cattle using SNP chip data and imputed sequence level genotypes. BMC Genomics 2024; 25:880. [PMID: 39300329 DOI: 10.1186/s12864-024-10782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Reproductive performance plays an important role in animal welfare, health and profitability in animal husbandry and breeding. It is well established that there is a negative correlation between performance and reproduction in dairy cattle. This relationship is being increasingly considered in breeding programs. By elucidating the genetic architecture of underlying reproduction traits, it will be possible to make a more detailed contribution to this. Our study followed two approaches to elucidate this area; in a first part, variance components were estimated for 14 different calving and fertility traits, and then genome-wide association studies were performed for 13 reproduction traits on imputed sequence-level genotypes with subsequent enrichment analyses. RESULTS Variance components analyses showed a low to moderate heritability (h2) for the traits analysed, ranging from 0.014 for endometritis up to 0.271 for stillbirth, indicating variable degrees of variation within the reproduction traits. For genome-wide association studies, we were able to detect genome-wide significant association signals for nine out of 13 analysed traits after Bonferroni correction on chromosome 6, 18 and the X chromosome. In total, we detected over 2700 associated SNPs encircling more than 90 different genes using the imputed whole-genome sequence data. Functional associations were reviewed so far known and potential candidate regions in the proximity of reproduction events were hypothesised. CONCLUSION Our results confirm previous findings of other authors in a comprehensive cohort including 13 different traits at the same time. Additionally, we identified new candidate genes involved in dairy cattle reproduction and made initial suggestions regarding their potential impact, with special regard to the X chromosome as a putative information source for further research. This work can make a contribution to reveal the genetic architecture of reproduction traits in context of trait specific interactions.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Ana-Marija Križanac
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| | - Helen Schneider
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | | | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Chetta M, Tarsitano M, Oro M, Rivieccio M, Bukvic N. An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level. J Genet Eng Biotechnol 2022; 20:129. [PMID: 36066672 PMCID: PMC9446605 DOI: 10.1186/s43141-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the "fight" against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness. RESULTS The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus's armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network. CONCLUSIONS Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.
Collapse
Affiliation(s)
- Massimiliano Chetta
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy.
| | - Marina Tarsitano
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Oro
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Rivieccio
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Nenad Bukvic
- AOUC "Policlinico di Bari"-UOC Lab. di Genetica Medica, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
3
|
Mei H, Boom J, El Abdellaoui S, Abdelmohsen K, Munk R, Martindale JL, Kloet S, Kielbasa SM, Sharp TH, Gorospe M, Raz V. Alternative polyadenylation utilization results in ribosome assembly and mRNA translation deficiencies in a model for muscle aging. J Gerontol A Biol Sci Med Sci 2022; 77:1130-1140. [PMID: 35245938 PMCID: PMC9159670 DOI: 10.1093/gerona/glac058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
Aging-associated muscle wasting is regulated by multiple molecular processes, whereby aberrant mRNA processing regulation induces muscle wasting. The poly(A)-binding protein nuclear 1 (PABPN1) regulates polyadenylation site (PAS) utilization, in the absence of PABPN1 the alternative PAS (APA) is utilized. Reduced PABPN1 levels induce muscle wasting where the expression of cellular processes regulating protein homeostasis, the ubiquitin-proteasome system, and translation, are robustly dysregulated. Translation is impacted by mRNA levels, but PABPN1 impact on translation is not fully understood. Here we show that a persistent reduction in PABPN1 levels led to a significant loss of translation efficiency. RNA sequencing of rRNA-depleted libraries from polysome traces revealed reduced mRNA abundance across ribosomal fractions, as well as reduced levels of small RNAs. We show that the abundance of translated mRNAs in the polysomes correlated with PAS switches at the 3'-UTR. Those mRNAs are enriched in cellular processes that are essential for proper muscle function. This study suggests that the effect of PABPN1 on translation efficiency impacts protein homeostasis in aging-associated muscle atrophy.
Collapse
Affiliation(s)
- Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jasper Boom
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden, The Netherlands
| | - Salma El Abdellaoui
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Susan Kloet
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Szymone M Kielbasa
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden The Netherlands
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
4
|
Nair SM, Kumari K, Kumar AP, Raghavan R, Jaiswar AK. The identity and distribution of striped bagrid catfish, Mystus tengara (Hamilton 1822) revealed through integrative taxonomy. Mol Biol Rep 2021; 49:351-361. [PMID: 34724129 DOI: 10.1007/s11033-021-06880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The taxonomic status and geographical distribution of M. tengara are vague. No genetic diversity and phylogenetic study have been done till now to resolve its identity and distribution. In the present study, an integrated taxonomic approach has been applied to clarify the taxonomic status, identity, and distribution of bagrid catfish, Mystus tengara. METHODS AND RESULTS Comparative morphometric evaluation of M. tengara identified in the present study from distant geographical locations revealed variations of the traits in response to body length and environment, without significant genetic distance. The observed morphometric traits of M. tengara were found to be overlapping with available morphometric traits of M. tengara, M. carcio and M. vittatus. Maximum likelihood and Bayesian phylogenetic analysis based on mitochondrial cytochrome c oxidase (COI) gene also could not resolve their identity, and five paraphyletic clades comprising of M. tengara, M. vittatus, and M. carcio from India, Nepal, and Bangladesh were observed. Morphological and genetic evidence along with comparative evaluation of M. tengara, from its type locality, we consider M. tengara identified in the present study to be true, with its distribution extending from North East India to West Bengal, North India, Central India, Northern peninsular India, and Bangladesh. CONCLUSION The observation of paraphyletic subclades and evaluation of genetic distance between subclades reveals the presence of four cryptic species. Further confirmation on the identity of M. vittatus and M. carcio, by an integrated taxonomic approach based on fresh specimens collected from the type locality, is required.
Collapse
Affiliation(s)
- Sangeetha M Nair
- ICAR- Central Institute of Fisheries Education (CIFE), Versova, Mumbai, Maharashtra, 400061, India.,ICAR- Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Kavita Kumari
- ICAR- Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Annam Pavan Kumar
- ICAR- Central Institute of Fisheries Education (CIFE), Versova, Mumbai, Maharashtra, 400061, India
| | - Rajeev Raghavan
- Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, India
| | - A K Jaiswar
- ICAR- Central Institute of Fisheries Education (CIFE), Versova, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
5
|
Ward T, Tai W, Morton S, Impens F, Van Damme P, Van Haver D, Timmerman E, Venturini G, Zhang K, Jang MY, Willcox JA, Haghighi A, Gelb BD, Chung WK, Goldmuntz E, Porter GA, Lifton RP, Brueckner M, Yost HJ, Bruneau BG, Gorham J, Kim Y, Pereira A, Homsy J, Benson CC, DePalma SR, Varland S, Chen CS, Arnesen T, Gevaert K, Seidman C, Seidman J. Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency. Circ Res 2021; 128:1156-1169. [PMID: 33557580 PMCID: PMC8048381 DOI: 10.1161/circresaha.120.316966] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tarsha Ward
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Warren Tai
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Sarah Morton
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
- Division of Newborn Medicine, Boston Children’s Hospital (S.M.)
| | - Francis Impens
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium (F.I., D.V.H., E.T., K.G.)
- VIB Proteomics Core, B-9000 Ghent, Belgium (F.I., D.V.H., E.T.)
- Biomolecular Medicine (F.I., D.V.H., E.T., K.G.), Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Biochemistry and Microbiology (P.V.D.), Ghent University, B-9000 Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium (F.I., D.V.H., E.T., K.G.)
- VIB Proteomics Core, B-9000 Ghent, Belgium (F.I., D.V.H., E.T.)
- Biomolecular Medicine (F.I., D.V.H., E.T., K.G.), Ghent University, B-9000 Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium (F.I., D.V.H., E.T., K.G.)
- VIB Proteomics Core, B-9000 Ghent, Belgium (F.I., D.V.H., E.T.)
- Biomolecular Medicine (F.I., D.V.H., E.T., K.G.), Ghent University, B-9000 Ghent, Belgium
| | - Gabriela Venturini
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
- University of Sao Paulo (G.V.)
| | - Kehan Zhang
- Biomedical Engineering, Boston University, MA (K.Z., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (K.Z., C.S.C.)
| | - Min Young Jang
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Jon A.L. Willcox
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Alireza Haghighi
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
- Howard Hughes Medical Institute (A.H., C.S.), Harvard Medical School
- Medicine, Brigham and Women’s Hospital (A.H., C.S.)
| | - Bruce D. Gelb
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (B.D.G.)
| | - Wendy K. Chung
- Pediatrics and Medicine, Columbia University Medical Center, New York (W.K.C.)
| | - Elizabeth Goldmuntz
- Cardiology, Children’s Hospital of Philadelphia, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.)
| | | | - Richard P. Lifton
- Genetics, Yale University School of Medicine, New Haven (R.P.L., M.B.)
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York (R.P.L.)
| | - Martina Brueckner
- Genetics, Yale University School of Medicine, New Haven (R.P.L., M.B.)
- Pediatrics, Yale University School of Medicine, New Haven (M.B.)
| | - H. Joseph Yost
- Molecular Medicine Program, University of Utah, Salt Lake City (H.J.Y.)
| | | | - Joshua Gorham
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Yuri Kim
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital (Y.K.)
| | - Alexandre Pereira
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Jason Homsy
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Craig C. Benson
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Steven R. DePalma
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| | - Sylvia Varland
- Biomedicine (S.V., T.A.), University of Bergen, N-5020 Bergen, Norway
- Biological Sciences (S.V., T.A.), University of Bergen, N-5020 Bergen, Norway
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada (S.V.)
| | - Christopher S. Chen
- Biomedical Engineering, Boston University, MA (K.Z., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (K.Z., C.S.C.)
| | - Thomas Arnesen
- Biomedicine (S.V., T.A.), University of Bergen, N-5020 Bergen, Norway
- Biological Sciences (S.V., T.A.), University of Bergen, N-5020 Bergen, Norway
- Surgery, Haukeland University Hospital, N-5021 Bergen, Norway (T.A.)
| | - Kris Gevaert
- Biomolecular Medicine (F.I., D.V.H., E.T., K.G.), Ghent University, B-9000 Ghent, Belgium
| | - Christine Seidman
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
- Howard Hughes Medical Institute (A.H., C.S.), Harvard Medical School
- Medicine, Brigham and Women’s Hospital (A.H., C.S.)
| | - J.G. Seidman
- Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School
| |
Collapse
|
6
|
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast. G3-GENES GENOMES GENETICS 2020; 10:1843-1852. [PMID: 32276960 PMCID: PMC7263679 DOI: 10.1534/g3.120.401164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.
Collapse
|
7
|
The PABPC5/HCG15/ZNF331 Feedback Loop Regulates Vasculogenic Mimicry of Glioma via STAU1-Mediated mRNA Decay. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:216-231. [PMID: 32346611 PMCID: PMC7183103 DOI: 10.1016/j.omto.2020.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Glioma is the most common primary malignancy in the brain, and vasculogenic mimicry (VM) is one of the blood supply methods. Here we investigated the possibility that lncRNAs regulate the stability of transcription factors through the SMD pathway, which affects proliferation, migration, invasion, and the ability to form VMs in glioma. Expression of PABPC5, HCG15, and ZNF331 was detected by real-time qPCR or western blot in glioma. Cell Counting Kit-8, Transwell assays, and in vitro VM tube formation were used to investigate PABPC5, HCG15, and ZNF331 function in cell proliferation, migration, invasion, and VM, respectively. ChIP assays were used to ascertain the interaction betweenZNF331 and LAMC2 or PABPC5. PABPC5 and HCG15 were highly expressed in glioma cells. ZNF331 was lowly expressed. PABPC5 bound HCG15 to increase its stability. Knockdown HCG15 reduced the degradation of ZNF331 mRNA by the SMD pathway. ZNF331 inhibited transcription through binding to the promoter region of LAMC2 and PABPC5 and inhibited the ability to form VMs in glioma cells. The PABPC5/HCG15/ZNF331 feedback loop plays an important role in regulating VM formation in glioma and provides new targets for glioma treatment.
Collapse
|
8
|
Sommerkamp P, Altamura S, Renders S, Narr A, Ladel L, Zeisberger P, Eiben PL, Fawaz M, Rieger MA, Cabezas-Wallscheid N, Trumpp A. Differential Alternative Polyadenylation Landscapes Mediate Hematopoietic Stem Cell Activation and Regulate Glutamine Metabolism. Cell Stem Cell 2020; 26:722-738.e7. [PMID: 32229311 DOI: 10.1016/j.stem.2020.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Alternative polyadenylation (APA) is emerging as an important regulatory mechanism of RNA and protein isoform expression by controlling 3' untranslated region (3'-UTR) composition. The relevance of APA in stem cell hierarchies remains elusive. Here, we first demonstrate the requirement of the APA regulator Pabpn1 for hematopoietic stem cell (HSC) function. We then determine the genome-wide APA landscape (APAome) of HSCs and progenitors by performing low-input 3' sequencing paired with bioinformatic pipelines. This reveals transcriptome-wide dynamic APA patterns and an overall shortening of 3'-UTRs during differentiation and upon homeostatic or stress-induced transition from quiescence to proliferation. Specifically, we show that APA regulates activation-induced Glutaminase (Gls) isoform switching by Nudt21. This adaptation of the glutamine metabolism by increasing the GAC:KGA isoform ratio fuels versatile metabolic pathways necessary for HSC self-renewal and proper stress response. Our study establishes APA as a critical regulatory layer orchestrating HSC self-renewal, behavior, and commitment.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Narr
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Paula Leonie Eiben
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Malak Fawaz
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, 60596 Frankfurt, Germany
| | - Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Banerjee A, Vest KE, Pavlath GK, Corbett AH. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Nucleic Acids Res 2017; 45:10706-10725. [PMID: 28977530 PMCID: PMC5737383 DOI: 10.1093/nar/gkx786] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/27/2017] [Indexed: 01/01/2023] Open
Abstract
The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Katherine E Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Raz V, Dickson G, 't Hoen PAC. Dysfunctional transcripts are formed by alternative polyadenylation in OPMD. Oncotarget 2017; 8:73516-73528. [PMID: 29088723 PMCID: PMC5650278 DOI: 10.18632/oncotarget.20640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Post-transcription mRNA processing in the 3’-untranslated region (UTR) of transcripts alters mRNA landscape. Alternative polyadenylation (APA) utilization in the 3’-UTR often leads to shorter 3’-UTR affecting mRNA stability, a process that is regulated by PABPN1. In skeletal muscles PABPN1 levels reduce with age and a greater decrease in found in Oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant myopathy caused by expansion mutation in PABPN1. In OPMD models a shift from distal to proximal polyadenylation site utilization in the 3’-UTR, and PABPN1 was shown to play a prominent role in APA. Whether PABPN1-mediated APA transcripts are functional is not fully understood. We investigate nuclear export and translation efficiency of transcripts in OPMD models. We focused on autophagy-regulated genes (ATGs) with APA utilization in cell models with reduced functional PABPN1. We provide evidence that ATGs transcripts from distal PAS retain in the nucleus and thus have reduced translation efficiency in cells with reduced PABPN1. In contrast, transcripts from proximal PAS showed a higher cytoplasmic abundance but a reduced occupancy in the ribosome. We therefore suggest that in reduced PABPN1 levels ATG transcripts from APA may not effectively translate to proteins. In those conditions we found constitutive autophagosome fusion and reduced autophagy flux. Augmentation of PABPN1 restored autophagosome fusion, suggesting that PABPN1-mediated APA plays a role in autophagy in OPMD and in aging muscles.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - George Dickson
- School of Biological Science, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
11
|
Domingues MN, Sforça ML, Soprano AS, Lee J, de Souza TDACB, Cassago A, Portugal RV, de Mattos Zeri AC, Murakami MT, Sadanandom A, de Oliveira PSL, Benedetti CE. Structure and Mechanism of Dimer-Monomer Transition of a Plant Poly(A)-Binding Protein upon RNA Interaction: Insights into Its Poly(A) Tail Assembly. J Mol Biol 2015; 427:2491-2506. [PMID: 26013164 DOI: 10.1016/j.jmb.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022]
Abstract
Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer-monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the β2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors.
Collapse
Affiliation(s)
- Mariane Noronha Domingues
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Mauricio Luis Sforça
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Adriana Santos Soprano
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Jack Lee
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham DH1, United Kingdom
| | | | - Alexandre Cassago
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Rodrigo Villares Portugal
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Ana Carolina de Mattos Zeri
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Mario Tyago Murakami
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham DH1, United Kingdom
| | | | - Celso Eduardo Benedetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil.
| |
Collapse
|
12
|
Raz Y, Raz V. Oculopharyngeal muscular dystrophy as a paradigm for muscle aging. Front Aging Neurosci 2014; 6:317. [PMID: 25426070 PMCID: PMC4226162 DOI: 10.3389/fnagi.2014.00317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Symptoms in late-onset neuromuscular disorders initiate only from midlife onward and progress with age. These disorders are primarily determined by identified hereditable mutations, but their late-onset symptom manifestation is not fully understood. Here, we review recent research developments on the late-onset autosomal dominant oculopharyngeal muscular dystrophy (OPMD). OPMD is caused by an expansion mutation in the gene encoding for poly-adenylate RNA binding protein1 (PABPN1). The molecular pathogenesis for the disease is still poorly understood. Despite a ubiquitous expression of PABPN1, symptoms in OPMD are limited to skeletal muscles. We discuss recent studies showing that PABPN1 levels in skeletal muscles are lower compared with other tissues, and specifically in skeletal muscles, PABPN1 expression declines from midlife onward. In OPMD, aggregation of expanded PABPN1 causes an additional decline in the level of the functional protein, which is associated with severe muscle weakness in OPMD. Reduced PABNPN1 expression in muscle cell culture causes myogenic defects, suggesting that PABPN1 loss-of-function causes muscle weakness in OPMD and in the elderly. Molecular signatures of OPMD muscles are similar to those of normal muscle aging, although expression trends progress faster in OPMD. We discuss a working hypothesis that aging-associated factors trigger late-onset symptoms in OPMD, and contribute to accelerated muscle weakness in OPMD. We focus on the pharyngeal and eyelid muscles, which are often affected in OPMD patients. We suggest that muscle weakness in OPMD is a paradigm for muscle aging.
Collapse
Affiliation(s)
- Yotam Raz
- Department of Human Genetics, Leiden University Medical Center , Leiden , Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
13
|
Eliseeva IA, Lyabin DN, Ovchinnikov LP. Poly(A)-binding proteins: structure, domain organization, and activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1377-91. [PMID: 24490729 DOI: 10.1134/s0006297913130014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
14
|
Kasim M, Benko E, Winkelmann A, Mrowka R, Staudacher JJ, Persson PB, Scholz H, Meier JC, Fähling M. Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia. J Biol Chem 2014; 289:26973-26988. [PMID: 25124043 DOI: 10.1074/jbc.m114.579391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, whereas additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pulldown experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease.
Collapse
Affiliation(s)
- Mumtaz Kasim
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Edgar Benko
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Aline Winkelmann
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, D-13125 Berlin, and
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie, Universitätsklinikum Jena, D-07743 Jena, Germany
| | - Jonas J Staudacher
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Pontus B Persson
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Jochen C Meier
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, D-13125 Berlin, and
| | - Michael Fähling
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin,.
| |
Collapse
|
15
|
Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, Yildirim MA, Rodriguez A, Bartel DP. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 2014; 53:1031-1043. [PMID: 24631284 DOI: 10.1016/j.molcel.2014.02.013] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 12/24/2022]
Abstract
MicroRNA (miRNA) regulation clearly impacts animal development, but the extent to which development-with its resulting diversity of cellular contexts-impacts miRNA regulation is unclear. Here, we compared cohorts of genes repressed by the same miRNAs in different cell lines and tissues and found that target repertoires were largely unaffected, with secondary effects explaining most of the differential responses detected. Outliers resulting from differential direct targeting were often attributable to alternative 3' UTR isoform usage that modulated the presence of miRNA sites. More inclusive examination of alternative 3' UTR isoforms revealed that they influence ∼10% of predicted targets when comparing any two cell types. Indeed, considering alternative 3' UTR isoform usage improved prediction of targeting efficacy significantly beyond the improvements observed when considering constitutive isoform usage. Thus, although miRNA targeting is remarkably consistent in different cell types, considering the 3' UTR landscape helps predict targeting efficacy and explain differential regulation that is observed.
Collapse
Affiliation(s)
- Jin-Wu Nam
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Life Science, College of Natural Science and Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Olivia S Rissland
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Koppstein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV, Irapuato, Guanajuato 36824, México
| | - Calvin H Jan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vikram Agarwal
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Muhammed A Yildirim
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antony Rodriguez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
17
|
Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Mol Cell Biol 2013; 33:4718-31. [PMID: 24081329 DOI: 10.1128/mcb.00887-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 3' end of most eukaryotic transcripts is decorated by poly(A)-binding proteins (PABPs), which influence the fate of mRNAs throughout gene expression. However, despite the fact that multiple PABPs coexist in the nuclei of most eukaryotes, how functional interplay between these nuclear PABPs controls gene expression remains unclear. By characterizing the ortholog of the Nab2/ZC3H14 zinc finger PABP in Schizosaccharomyces pombe, we show here that the two major fission yeast nuclear PABPs, Pab2 and Nab2, have opposing roles in posttranscriptional gene regulation. Notably, we find that Nab2 functions in gene-specific regulation in a manner opposite to that of Pab2. By studying the ribosomal-protein-coding gene rpl30-2, which is negatively regulated by Pab2 via a nuclear pre-mRNA decay pathway that depends on the nuclear exosome subunit Rrp6, we show that Nab2 promotes rpl30-2 expression by acting at the level of the unspliced pre-mRNA. Our data support a model in which Nab2 impedes Pab2/Rrp6-mediated decay by competing with Pab2 for polyadenylated transcripts in the nucleus. The opposing roles of Pab2 and Nab2 reveal that interplay between nuclear PABPs can influence gene regulation.
Collapse
|
18
|
Akef A, Zhang H, Masuda S, Palazzo AF. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus 2013; 4:326-40. [PMID: 23934081 PMCID: PMC3810340 DOI: 10.4161/nucl.26052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In vertebrates, the majority of mRNAs that encode secreted, membrane-bound or mitochondrial proteins contain RNA elements that activate an alternative mRNA nuclear export (ALREX) pathway. Here we demonstrate that mRNAs containing ALREX-promoting elements are trafficked through nuclear speckles. Although ALREX-promoting elements enhance nuclear speckle localization, additional features within the mRNA largely drive this process. Depletion of two TREX-associated RNA helicases, UAP56 and its paralog URH49, or inhibition of the TREX-associated nuclear transport factor, TAP, not only inhibits ALREX, but also appears to trap these mRNAs in nuclear speckles. mRNAs that contain ALREX-promoting elements associate with UAP56 in vivo. Finally, we demonstrate that mRNAs lacking a poly(A)-tail are not efficiently exported by the ALREX pathway and show enhanced association with nuclear speckles. Our data suggest that within the speckle, ALREX-promoting elements, in conjunction with the poly(A)-tail, likely stimulate UAP56/URH49 and TAP dependent steps that lead to the eventual egress of the export-competent mRNP from these structures.
Collapse
Affiliation(s)
- Abdalla Akef
- Department of Biochemistry; University of Toronto; Toronto, ON Canada; Division of Integrated Life Science; Graduate School of Biostudies; Kyoto University; Kyoto, Japan
| | | | | | | |
Collapse
|
19
|
Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013; 280:4230-50. [PMID: 23601051 DOI: 10.1111/febs.12294] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
The polyadenosine RNA binding protein polyadenylate-binding nuclear protein 1 (PABPN1) plays key roles in post-transcriptional processing of RNA. Although PABPN1 is ubiquitously expressed and presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene causes the disease oculopharyngeal muscular dystrophy (OPMD), in which a limited set of skeletal muscles are affected. A major goal in the field of OPMD research is to understand why mutation of a ubiquitously expressed gene leads to a muscle-specific disease. PABPN1 plays a well-documented role in controlling the poly(A) tail length of RNA transcripts but new functions are emerging through studies that exploit a variety of unbiased screens as well as model organisms. This review addresses (a) the molecular function of PABPN1 incorporating recent findings that reveal novel cellular functions for PABPN1 and (b) the approaches that are being used to understand the molecular defects that stem from expression of mutant PABPN1. The long-term goal in this field of research is to understand the key molecular functions of PABPN1 in muscle as well as the mechanisms that underlie the pathological consequences of mutant PABPN1. Armed with this information, researchers can seek to develop therapeutic approaches to enhance the quality of life for patients afflicted with OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
20
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|