1
|
Samir S, Elshereef AA, Alva V, Hahn J, Dubnau D, Galperin MY, Selim KA. ComFB, a new widespread family of c-di-NMP receptor proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622515. [PMID: 39574629 PMCID: PMC11581024 DOI: 10.1101/2024.11.10.622515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cyclic dimeric GMP (c-di-GMP) is a widespread bacterial second messenger that controls a variety of cellular functions, including protein and polysaccharide secretion, motility, cell division, cell development, and biofilm formation, and contributes to the virulence of some important bacterial pathogens. While the genes for diguanylate cyclases and c-di-GMP hydrolases (active or mutated) can be easily identified in microbial genomes, the list of c-di-GMP receptor domains is quite limited, and only two of them, PliZ and MshEN, are found across multiple bacterial phyla. Recently, a new c-di-GMP receptor protein, named CdgR or ComFB, has been identified in cyanobacteria and shown to regulate their cell size and, more recently, natural competence. Sequence and structural analysis indicated that CdgR is part of a widespread ComFB protein family, named after the "late competence development protein ComFB" from Bacillus subtilis. This prompted the suggestion that ComFB and ComFB-like proteins could also be c-di-GMP receptors. Indeed, we revealed that ComFB proteins from Gram-positive B. subtilis and Thermoanaerobacter brockii were able to bind c-di-GMP with high-affinity. The ability to bind c-di-GMP was also demonstrated for the ComFB proteins from clinically relevant Gram-negative bacteria Vibrio cholerae and Treponema denticola. These observations indicate that the ComFB family serves as yet another widespread family of bacterial c-di-GMP receptors. Incidentally, some ComFB proteins were also capable of c-di-AMP binding, identifying them as a unique family of c-di-NMP receptor proteins. The overexpression of comFB in B. subtilis, combined with an elevated concentration of c-di-GMP, suppressed motility, attesting to the biological relevance of ComFB as a c-di-GMP binding protein.
Collapse
Affiliation(s)
- Sherihan Samir
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Abdalla A. Elshereef
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Germany
| | - Jeanette Hahn
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, New Jersey, USA
| | - David Dubnau
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, New Jersey, USA
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Khaled A. Selim
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Institute of Phototroph Microbiology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
3
|
Frenzel E, Legebeke J, van Stralen A, van Kranenburg R, Kuipers OP. In vivo selection of sfGFP variants with improved and reliable functionality in industrially important thermophilic bacteria. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:8. [PMID: 29371884 PMCID: PMC5771013 DOI: 10.1186/s13068-017-1008-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Fluorescent reporter proteins (FP) have become an indispensable tool for the optimization of microbial cell factories and in synthetic biology per se. The applicability of the currently available FPs is, however, constrained by species-dependent performance and misfolding at elevated temperatures. To obtain functional reporters for thermophilic, biotechnologically important bacteria such as Parageobacillus thermoglucosidasius, an in vivo screening approach based on a mutational library of superfolder GFP was applied. RESULTS Flow cytometry-based benchmarking of a set of GFPs, sfGFPs and species-specific codon-optimized variants revealed that none of the proteins was satisfyingly detectable in P. thermoglucosidasius at its optimal growth temperature of 60 °C. An undirected mutagenesis approach coupled to fluorescence-activated cell sorting allowed the isolation of sfGFP variants that were extremely well expressed in the chassis background at 60 °C. Notably, a few nucleotide substitutions, including silent mutations, significantly improved the functionality and brightness. The best mutant sfGFP(N39D/A179A) showed an 885-fold enhanced mean fluorescence intensity (MFI) at 60 °C and is the most reliable reporter protein with respect to cell-to-cell variation and signal intensity reported so far. The in vitro spectral and thermostability properties were unaltered as compared to the parental sfGFP protein, strongly indicating that the combination of the amino acid exchange and an altered translation or folding speed, or protection from degradation, contribute to the strongly improved in vivo performance. Furthermore, sfGFP(N39D/A179A) and the newly developed cyan and yellow derivatives were successfully used for labeling several industrially relevant thermophilic bacilli, thus proving their broad applicability. CONCLUSIONS This study illustrates the power of in vivo isolation of thermostable proteins to obtain reporters for highly efficient fluorescence labeling. Successful expression in a variety of thermophilic bacteria proved that the novel FPs are highly suitable for imaging and flow cytometry-based studies. This enables a reliable cell tracking and single-cell-based real-time monitoring of biological processes that are of industrial and biotechnological interest.
Collapse
Affiliation(s)
- Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jelmer Legebeke
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Atze van Stralen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkselsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Abstract
Lactococcus lactis is one of the most commonly used lactic acid bacteria in the dairy industry. Activation of competence for natural DNA transformation in this species would greatly improve the selection of novel strains with desired genetic traits. Here, we investigated the activation of natural transformation in L. lactis subsp. cremoris KW2, a strain of plant origin whose genome encodes the master competence regulator ComX and the complete set of proteins usually required for natural transformation. In the absence of knowledge about competence regulation in this species, we constitutively overproduced ComX in a reporter strain of late competence phase activation and showed, by transcriptomic analyses, a ComX-dependent induction of all key competence genes. We further demonstrated that natural DNA transformation is functional in this strain and requires the competence DNA uptake machinery. Since constitutive ComX overproduction is unstable, we alternatively expressed comX under the control of an endogenous xylose-inducible promoter. This regulated system was used to successfully inactivate the adaptor protein MecA and subunits of the Clp proteolytic complex, which were previously shown to be involved in ComX degradation in streptococci. In the presence of a small amount of ComX, the deletion of mecA, clpC, or clpP genes markedly increased the activation of the late competence phase and transformability. Altogether, our results report the functionality of natural DNA transformation in L. lactis and pave the way for the identification of signaling mechanisms that trigger the competence state in this species.IMPORTANCE Lactococcus lactis is a lactic acid bacterium of major importance, which is used as a starter species for milk fermentation, a host for heterologous protein production, and a delivery platform for therapeutic molecules. Here, we report the functionality of natural transformation in L. lactis subsp. cremoris KW2 by the overproduction of the master competence regulator ComX. The developed procedure enables a flexible approach to modify the chromosome with single point mutation, sequence insertion, or sequence replacement. These results represent an important step for the genetic engineering of L. lactis that will facilitate the design of strains optimized for industrial applications. This will also help to discover natural regulatory mechanisms controlling competence in the genus Lactococcus.
Collapse
|
5
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
6
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
7
|
Fagerlund A, Granum PE, Håvarstein LS. Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 2014; 94:557-79. [PMID: 25155269 DOI: 10.1111/mmi.12767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 01/17/2023]
Abstract
Staphylococcus aureus is a major human pathogen. Hospital infections caused by methicillin-resistant strains (MRSA), which have acquired resistance to a broad spectrum of antibiotics through horizontal gene transfer (HGT), are of particular concern. In S. aureus, virulence and antibiotic resistance genes are often encoded on mobile genetic elements that are disseminated by HGT. Conjugation and phage transduction have long been known to mediate HGT in this species, but it is unclear whether natural genetic transformation contributes significantly to the process. Recently, it was reported that expression of the alternative sigma factor SigH induces the competent state in S. aureus. The transformation efficiency obtained, however, was extremely low, indicating that the optimal conditions for competence development had not been found. We therefore used transcriptome sequencing to determine whether the full set of genes known to be required for competence in other naturally transformable bacteria is part of the SigH regulon. Our results show that several essential competence genes are not controlled by SigH. This presumably explains the low transformation efficiency previously reported, and demonstrates that additional regulating mechanisms must be involved. We found that one such mechanism involves ComK1, a transcriptional activator that acts synergistically with SigH.
Collapse
Affiliation(s)
- Annette Fagerlund
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
8
|
Su F, Xu P. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci Rep 2014; 4:3926. [PMID: 24473268 PMCID: PMC3905273 DOI: 10.1038/srep03926] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 11/16/2022] Open
Abstract
Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.
Collapse
Affiliation(s)
- Fei Su
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|