1
|
Liu J, Sun Z, Cao S, Dai H, Zhang Z, Luo J, Wang X. Desmoglein-2 was a novel cancer-associated fibroblasts-related biomarker for oral squamous cell carcinoma. BMC Oral Health 2025; 25:102. [PMID: 39833796 PMCID: PMC11744874 DOI: 10.1186/s12903-024-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer with alarmingly high morbidity. The cancer-associated fibroblasts (CAFs) play a pivotal role in tumor development, while their specific mechanisms in OSCC remains largely unclear. Our object is to explore a CAFs-related biomarker in OSCC. METHODS Single-cell RNA sequencing (ScRNA-seq) analysis was used to pinpoint CAF clusters in OSCC samples. Differentially expressed genes and Cox regression analyses were used to identify candidate genes, and their functions were evaluated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The prognostic performance of the identified biomarker was evaluated using receiver operating characteristic analysis. The qPCR and western blot were used to assess gene expression. The hub gene related immune characteristics were analyzed in independent cohorts, and gene expression differences between different immunotherapy response groups were investigated using Pearson correlation analysis. RESULTS Desmoglein-2 (DSG2) was identified as a CAFs-related biomarker in OSCC exhibiting elevated expression compared to controls and being associated with poor prognosis. Enrichment analyses revealed that DSG2 was involved in signal transduction pathways like focal adhesion. The Area Under Curve values of DSG2 in predicting prognosis exceeded 0.6 in both training-set and validation-set. Furthermore, patients with low DSG2 expression were more likely to benefit from immunotherapy than those DSG2 highly expressed patients. CONCLUSION Our study identified DSG2 as a reliable CAFs-related prognostic biomarker in OSCC, providing a new reference for the mechanistic understanding and target therapy of this malignancy.
Collapse
Affiliation(s)
- Jin Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Zhonghao Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Shihui Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Hao Dai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Ze Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| | - Jingtao Luo
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| |
Collapse
|
2
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Chen L, Liu Y, Xu Y, Afify SM, Gao A, Du J, Liu B, Fu X, Liu Y, Yan T, Zhu Z, Seno M. Up-regulation of Dsg2 confered stem cells with malignancy through wnt/β-catenin signaling pathway. Exp Cell Res 2023; 422:113416. [PMID: 36375513 DOI: 10.1016/j.yexcr.2022.113416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/10/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
In the previous study, we originally developed cancer stem cells (CSCs) models from mouse induced pluripotent stem cells (miPSCs) by culturing miPSCs in the conditioned medium of cancer cell lines, which mimiced as carcinoma microenvironment. However, the molecular mechanism of conversion in detail remains to be uncovered. Microarray analysis of the CSCs models in this study revealed Dsg2, one of the members of the desmosomal cadherin family, was up-regulated when compared with the original miPSCs. Moreover, the expression of key factors in Wnt/β-catenin signaling pathway were also found up-regulated in one of the CSCs models, named miPS-LLCcm. An autocrine loop was implied between Dsg2 and Wnt/β-catenin signaling pathway when miPSCs were treated with Wnt/β-catenin signaling pathway activators, Wnt3a and CHIR99021, and when the CSCs model were treated with inhibitors, IWR-1 and IWP-2. Furthermore, the ability of proliferation and self-renewal in the CSCs model was markedly decreased in vitro and in vivo when Dsg2 gene was knocked down by shRNA. Our results showed that the Wnt/β-catenin signaling pathway is activated by the up-regulation of Dsg2 expresssion during the conversion of miPSCs into CSCs implying a potential mechanism of the tranformation of stem cells into malignant phenotype.
Collapse
Affiliation(s)
- Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, PR China
| | - Yanxia Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, PR China; Department of Pathology, Jiangyin People's Hospital, Affiliated Jiangyin Hospital of the Southeast University Medical College, Jiangyin, 214400, PR China
| | - Yanning Xu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, PR China; Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan; Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Said M Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan; Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia 32511, Egypt
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Juan Du
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan; Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Bingbing Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, PR China
| | - Xiaoying Fu
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan; Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Yixin Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, PR China
| | - Ting Yan
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan; Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan; Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Institute of Academic & Research, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Yin L, Li Q, Mrdenovic S, Chu GCY, Wu BJ, Bu H, Duan P, Kim J, You S, Lewis MS, Liang G, Wang R, Zhau HE, Chung LWK. KRT13 promotes stemness and drives metastasis in breast cancer through a plakoglobin/c-Myc signaling pathway. Breast Cancer Res 2022; 24:7. [PMID: 35078507 PMCID: PMC8788068 DOI: 10.1186/s13058-022-01502-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background Keratins (KRTs) are intermediate filament proteins that interact with multiple regulatory proteins to initiate signaling cascades. Keratin 13 (KRT13) plays an important role in breast cancer progression and metastasis. The objective of this study is to elucidate the mechanism by which KRT13 promotes breast cancer growth and metastasis.
Methods The function and mechanisms of KRT13 in breast cancer progression and metastasis were assessed by overexpression and knockdown followed by examination of altered behaviors in breast cancer cells and in xenograft tumor formation in mouse mammary fat pad. Human breast cancer specimens were examined by immunohistochemistry and multiplexed quantum dot labeling analysis to correlate KRT13 expression to breast cancer progression and metastasis. Results KRT13-overexpressing MCF7 cells displayed increased proliferation, invasion, migration and in vivo tumor growth and metastasis to bone and lung. Conversely, KRT13 knockdown inhibited the aggressive behaviors of HCC1954 cells. At the molecular level, KRT13 directly interacted with plakoglobin (PG, γ-catenin) to form complexes with desmoplakin (DSP). This complex interfered with PG expression and nuclear translocation and abrogated PG-mediated suppression of c-Myc expression, while the KRT13/PG/c-Myc signaling pathway increased epithelial to mesenchymal transition and stem cell-like phenotype. KRT13 expression in 58 human breast cancer tissues was up-regulated especially at the invasive front and in metastatic specimens (12/18) (p < 0.05). KRT13 up-regulation in primary breast cancer was associated with decreased overall patient survival. Conclusions This study reveals that KRT13 promotes breast cancer cell growth and metastasis via a plakoglobin/c-Myc pathway. Our findings reveal a potential novel pathway for therapeutic targeting of breast cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01502-6.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Stefan Mrdenovic
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Gina Chia-Yi Chu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Boyang Jason Wu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Duan
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| |
Collapse
|
5
|
Aoki M, Koga K, Miyazaki M, Hamasaki M, Koshikawa N, Oyama M, Kozuka-Hata H, Seiki M, Toole BP, Nabeshima K. CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer 2019; 19:912. [PMID: 31510956 PMCID: PMC6739984 DOI: 10.1186/s12885-019-6127-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Interaction between cancer cells and fibroblasts mediated by extracellular matrix metalloproteinase inducer (emmprin, CD147) is important in the invasion and proliferation of cancer cells. However, the exact mechanism of emmprin mediated stimulation of matrix metalloprotease-2 (MMP-2) production from fibroblasts has not been elucidated. Our previous studies using an inhibitory peptide against emmprin suggested the presence of a molecule on the cell membrane which forms a complex with emmprin. Here we show that CD73 expressed on fibroblasts interacts with emmprin and is a required factor for MMP-2 production in co-cultures of sarcoma cells with fibroblasts. Methods CD73 along with CD99 was identified by mass spectrometry analysis as an emmprin interacting molecule from a co-culture of cancer cells (epithelioid sarcoma cell line FU-EPS-1) and fibroblasts (immortalized fibroblasts cell line ST353i). MMP-2 production was measured by immunoblot and ELISA. The formation of complexes of CD73 with emmprin was confirmed by immunoprecipitation, and their co-localization in tumor cells and fibroblasts was shown by fluorescent immunostaining and proximity ligation assays. Results Stimulated MMP-2 production in co-culture of cancer cells and fibroblasts was completely suppressed by siRNA knockdown of CD73, but not by CD99 knockdown. MMP-2 production was not suppressed by CD73-specific enzyme inhibitor (APCP). However, MMP-2 production was decreased by CD73 neutralizing antibodies, suggesting that CD73-mediated suppression of MMP-2 production is non-enzymatic. In human epithelioid sarcoma tissues, emmprin was immunohistochemically detected to be mainly expressed in tumor cells, and CD73 was expressed in fibroblasts and tumor cells: emmprin and CD73 were co-localized predominantly on tumor cells. Conclusion This study provides a novel insight into the role of CD73 in emmprin-mediated regulation of MMP-2 production.
Collapse
Affiliation(s)
- M Aoki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - K Koga
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Miyazaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Hamasaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - N Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - B P Toole
- Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - K Nabeshima
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
6
|
Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks. Int J Mol Sci 2019; 20:ijms20030621. [PMID: 30709038 PMCID: PMC6387112 DOI: 10.3390/ijms20030621] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm² (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 ± 100 and 14,559 ± 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 × 10⁸ ± 0.2 and 1.75 × 10⁸ ± 0.08 infectious particles of ONCOS-401 per cm² of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.
Collapse
|
7
|
Chen L, Liu X, Zhang J, Liu Y, Gao A, Xu Y, Lin Y, Du Q, Zhu Z, Hu Y, Liu Y. Characterization of desmoglein 2 expression in ovarian serous tumors and its prognostic significance in high-grade serous carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4977-4986. [PMID: 31949574 PMCID: PMC6962919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 06/10/2023]
Abstract
Desmogleins (Dsgs) are major members of the desmosomal cadherins that are critically involved in cell-cell adhesion and the maintenance of normal tissue architecture in epithelia. DSG2 is the most ubiquitous desmosomal cadherin; however, abnormal expression of DSG2 has been detected in several types of cancer with controversial results. So far, little is known about DSG2 expression in ovarian serous tumor (OST) and its associations with survival and clinicopathologic data. In this study, mRNA and protein expression of DSG2 was detected in 33 cases of nonfixed samples and 92 cases of paraffin-embedded OST specimens (including benign, borderline, low-grade, and high-grade) by using qRT-PCR and immunohistochemistry, respectively. DSG2 expression was then measured in 162 cases of high-grade serous carcinoma (HGSC) by immunohistochemistry, and the expression levels were correlated with clinicopathologic and prognostic data. As the results, DSG2 could be readily detected in benign tumor with relative weak expression at the mRNA level and showed weak but complete staining at the cell-cell borders. This was similar to the expression pattern in the normal fallopian epithelial tissue. However, the expression tendency of DSG2 at the mRNA and protein level was inconsistent in borderline and malignant OST. In addition, we found that a low DSG2 expression was associated with poor prognosis (P < 0.05) and high mitosis (P = 0.0042) of HGSC. Thus, DSG2 may be involved in the progression of ovarian cancer and plays a different role in different OST. Moreover, a low DSG2 expression was associated with poor prognosis of HGSC.
Collapse
Affiliation(s)
- Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Xinxin Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Jin Zhang
- Department of Genetics and Cell Biology, College of Life Science, Nankai UniversityTianjin, China
| | - Yanxia Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Science, Nankai UniversityTianjin, China
| | - Yanning Xu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Yang Lin
- Department of Oncology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Qiuyue Du
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai UniversityTianjin, China
| | - Yuanjing Hu
- Department of Oncology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Yixin Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| |
Collapse
|
8
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Prognostic significance of stem cell-related marker expression and its correlation with histologic subtypes in lung adenocarcinoma. Oncotarget 2018; 7:42502-42512. [PMID: 27285762 PMCID: PMC5173151 DOI: 10.18632/oncotarget.9894] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of tumor cells that exhibit stem cell-like properties and contribute in treatment failure. To clarify the expression and prognostic significance of several CSC markers in non-small cell lung cancer, we retrospectively analyzed 368 patients with adenocarcinoma (n = 226) or squamous cell carcinoma (n = 142). We correlated the expression of six CSC markers – CD133, CD44, aldehyde dehydrogenase 1 (ALDH1), sex determining region Y-box 2 (SOX2), octamer binding transcription factor 4 (OCT4), and Nanog – with clinicopathologic and molecular variables and survival outcomes. In adenocarcinoma, CD133, ALDH1 and CD44 expression was associated with low pathologic stage and absence of lymphovascular invasion, while Nanog expression correlated with high histologic grade, lymphatic invasion and increased expression of Snail-1, a transcription factor associated with epithelial-mesenchymal transition. CSC marker expression was also associated with histologic subtypes in adenocarcinoma. Multivariate analysis showed that high Nanog expression was an independent factor associated with a poor prognosis in adenocarcinoma. CSC markers had no prognostic value in squamous cell carcinoma. These results suggest that Nanog is an independent negative prognostic factor that may be associated with epithelial-mesenchymal transition in lung adenocarcinoma.
Collapse
|
10
|
Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma. PLoS One 2016; 11:e0162916. [PMID: 27627801 PMCID: PMC5023141 DOI: 10.1371/journal.pone.0162916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023] Open
Abstract
Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible limitations to use VPA in cancer therapy.
Collapse
|
11
|
Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T. Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS One 2014; 9:e85439. [PMID: 24454867 PMCID: PMC3893211 DOI: 10.1371/journal.pone.0085439] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Junya Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
12
|
Detection of the Hematopoietic Stem and Progenitor Cell Marker CD133 during Angiogenesis in Three-Dimensional Collagen Gel Culture. Stem Cells Int 2013; 2013:927403. [PMID: 23864867 PMCID: PMC3706061 DOI: 10.1155/2013/927403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/09/2013] [Accepted: 06/03/2013] [Indexed: 01/23/2023] Open
Abstract
We detected the hematopoietic stem and progenitor cell marker CD133 using immunogold labeling during angiogenesis in a three-dimensional collagen gel culture. CD133-positive cells were present in capillary tubes newly formed from aortic explants in vitro. The CD133-positive cell population had the capacity to form capillary tubes. Lovastatin strongly inhibited cell migration from aortic explants and caused the degradation of the capillary tubes. The present study provides insight into the function of CD133 during angiogenesis as well as an explanation for the antiangiogenic effect of statins.
Collapse
|