1
|
Engelhardt D, Petersen JR, Martyr C, Kuhn-Gale H, Niswander LA. Moderate levels of folic acid benefit outcomes for cilia based neural tube defects. Dev Biol 2025; 520:62-74. [PMID: 39755226 DOI: 10.1016/j.ydbio.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models. We demonstrate that NTD rates in mouse models harboring mutations in cilia genes depend on FA dosage. Cilia mutant mouse models demonstrate reductions in NTD rates when exposed to moderate levels of FA that are not observed at higher fortified levels of FA. This trend continues with a moderate level of FA being beneficial for primary and motile cilia formation. We present a mechanism through which fortified FA levels reduce basal levels of reactive oxygen species (ROS) which in turn reduces ROS-sensitive GTPase activity required for ciliogenesis. Our data indicates that genes involved in cilia formation and function represent a FA sensitive category of mutations and a possible avenue for further reducing NTD and ciliopathy incidences.
Collapse
Affiliation(s)
- David Engelhardt
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Juliette R Petersen
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Cara Martyr
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hannah Kuhn-Gale
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Marquart JP, Nie Q, Gonzalez T, Jelin AC, Broeckel U, Wagner AJ, Reddi HV. Genetics and Genomics of Gastroschisis, Elucidating a Potential Genetic Etiology for the Most Common Abdominal Defect: A Systematic Review. J Dev Biol 2024; 12:34. [PMID: 39728087 PMCID: PMC11727865 DOI: 10.3390/jdb12040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
(1) Background: The exact etiology for gastroschisis, the most common abdominal defect, is yet to be known, despite the rising prevalence of this condition. The leading theory suggests an increased familial risk, indicating a possible genetic component possibly in the context of environmental risk factors. This systematic review aims to summarize the studies focused on the identification of a potential genetic etiology for gastroschisis to elucidate the status of the field. (2) Methods: Following the PRISMA-ScR method, Pubmed and Google Scholar were searched, and eligible publications were mined for key data fields such as study aims, cohort demographics, technologies used, and outcomes in terms of genes identified. Data from 14 human studies, with varied cohort sizes from 40 to 1966 individuals for patient vs. healthy controls, respectively, were mined to delineate the technologies evaluated. (3) Results: Our results continue the theory that gastroschisis is likely caused by gene-environment interactions. The 14 studies utilized traditional methodologies that may not be adequate to identify genetic involvement in gastroschisis. (4) Conclusions: The etiology of gastroschisis continues to remain elusive. A combination of omics and epigenetic evaluation studies would help delineate a possible genetic etiology for gastroschisis.
Collapse
Affiliation(s)
- John P. Marquart
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.P.M.); (A.J.W.)
| | - Qian Nie
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (T.G.)
| | - Tessa Gonzalez
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (T.G.)
| | - Angie C. Jelin
- Division of Maternal Fetal Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Ulrich Broeckel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Amy J. Wagner
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.P.M.); (A.J.W.)
| | - Honey V. Reddi
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (T.G.)
| |
Collapse
|
3
|
Yahia A, Li D, Lejerkrans S, Rajagopalan S, Kalnak N, Tammimies K. Whole exome sequencing and polygenic assessment of a Swedish cohort with severe developmental language disorder. Hum Genet 2024; 143:169-183. [PMID: 38300321 PMCID: PMC10881898 DOI: 10.1007/s00439-023-02636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Developmental language disorder (DLD) overlaps clinically, genetically, and pathologically with other neurodevelopmental disorders (NDD), corroborating the concept of the NDD continuum. There is a lack of studies to understand the whole genetic spectrum in individuals with DLD. Previously, we recruited 61 probands with severe DLD from 59 families and examined 59 of them and their families using microarray genotyping with a 6.8% diagnostic yield. Herein, we investigated 53 of those probands using whole exome sequencing (WES). Additionally, we used polygenic risk scores (PRS) to understand the within family enrichment of neurodevelopmental difficulties and examine the associations between the results of language-related tests in the probands and language-related PRS. We identified clinically significant variants in four probands, resulting in a 7.5% (4/53) molecular diagnostic yield. Those variants were in PAK2, MED13, PLCB4, and TNRC6B. We also prioritized additional variants for future studies for their role in DLD, including high-impact variants in PARD3 and DIP2C. PRS did not explain the aggregation of neurodevelopmental difficulties in these families. We did not detect significant associations between the language-related tests and language-related PRS. Our results support using WES as the first-tier genetic test for DLD as it can identify monogenic DLD forms. Large-scale sequencing studies for DLD are needed to identify new genes and investigate the polygenic contribution to the condition.
Collapse
Affiliation(s)
- Ashraf Yahia
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Sanna Lejerkrans
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Shyam Rajagopalan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Nelli Kalnak
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Department of Speech-Language Pathology, Helsingborg Hospital, Helsingborg, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
4
|
Wang X, Yu J, Wang J. Neural Tube Defects and Folate Deficiency: Is DNA Repair Defective? Int J Mol Sci 2023; 24:ijms24032220. [PMID: 36768542 PMCID: PMC9916799 DOI: 10.3390/ijms24032220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Neural tube defects (NTDs) are complex congenital malformations resulting from failure of neural tube closure during embryogenesis, which is affected by the interaction of genetic and environmental factors. It is well known that folate deficiency increases the incidence of NTDs; however, the underlying mechanism remains unclear. Folate deficiency not only causes DNA hypomethylation, but also blocks the synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) and increases uracil misincorporation, resulting in genomic instabilities such as base mismatch, DNA breakage, and even chromosome aberration. DNA repair pathways are essential for ensuring normal DNA synthesis, genomic stability and integrity during embryonic neural development. Genomic instability or lack of DNA repair has been implicated in risk of development of NTDs. Here, we reviewed the relationship between folate deficiency, DNA repair pathways and NTDs so as to reveal the role and significance of DNA repair system in the pathogenesis of NTDs and better understand the pathogenesis of NTDs.
Collapse
|
5
|
Aberrant Gcm1 expression mediates Wnt/β-catenin pathway activation in folate deficiency involved in neural tube defects. Cell Death Dis 2021; 12:234. [PMID: 33664222 PMCID: PMC7933360 DOI: 10.1038/s41419-020-03313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Wnt signaling plays a major role in early neural development. An aberrant activation in Wnt/β-catenin pathway causes defective anteroposterior patterning, which results in neural tube closure defects (NTDs). Changes in folate metabolism may participate in early embryo fate determination. We have identified that folate deficiency activated Wnt/β-catenin pathway by upregulating a chorion-specific transcription factor Gcm1. Specifically, folate deficiency promoted formation of the Gcm1/β-catenin/T-cell factor (TCF4) complex formation to regulate the Wnt targeted gene transactivation through Wnt-responsive elements. Moreover, the transcription factor Nanog upregulated Gcm1 transcription in mESCs under folate deficiency. Lastly, in NTDs mouse models and low-folate NTDs human brain samples, Gcm1 and Wnt/β-catenin targeted genes related to neural tube closure are specifically overexpressed. These results indicated that low-folate level promoted Wnt/β-catenin signaling via activating Gcm1, and thus leaded into aberrant vertebrate neural development.
Collapse
|
6
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
Affiliation(s)
- K S Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - L Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - P Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - C Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M R Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - D-K Kim
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - K Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - M Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - A Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - S Lee
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J Gleeson
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - A C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Ortiz-Cruz G, Aguayo-Gómez A, Luna-Muñoz L, Muñoz-Téllez LA, Mutchinick OM. Myelomeningocele genotype-phenotype correlation findings in cilia, HH, PCP, and WNT signaling pathways. Birth Defects Res 2021; 113:371-381. [PMID: 33470056 DOI: 10.1002/bdr2.1872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is the most severe and frequent type of spina bifida. Its etiology remains poorly understood. The Hedgehog (Hh), Wnt, and planar cell polarity (PCP) signaling pathways are essential for normal tube closure, needing a structural-functional cilium for its adequate function. The present study aimed to investigate the impact of different gene variants (GV) from those pathways on MMC genotype-subphenotype correlations. METHODS The study comprised 500 MMC trios and 500 controls, from 16 Telethon centers of 16 Mexican states. Thirty-four GVs of 29 genes from cilia, Hh, PCP, and Wnt pathways, were analyzed, by an Illumina on design microarray. The total sample (T-MMC) was stratified in High-MMC (H-MMC) when thoracic and Low-MMC (L-MMC) when lumbar-sacral vertebrae affected. STATA/SE-12.1 and PLINK software were used for allelic association, TDT, and gene-gene interaction (GGI) analyses, considering p value <.01 as statistically significant differences (SSD). RESULTS Association analysis showed SSD for COBL-rs10230120, DVL2-rs2074216, PLCB4-rs6077510 GVs in T-MMC and L-MMC, and VANGL2-rs120886448 in T-MMC and H-MMC, and INVS-rs7024375 exclusively in L-MMC. TDT assay showed SSD preferential transmissions of C2CD3-rs826058 in H-MMC, and LRP5-rs3736228, and BBS2-rs1373 in L-MMC. Statistically significant GGI was observed in four in T-MMC, four completely different in L-MMC, and one in H-MMC. Interestingly, no one repeated in subphenotypes. CONCLUSIONS Our results support an association of GVs in Hh, Wnt, PCP, and cilia pathways, with MMC occurrence location, although further validation is needed. Furthermore, present results show a distinctive panel of gene-variants in H-MMC and LMMC subphenotypes, suggesting a feasible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gabriela Ortiz-Cruz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Adolfo Aguayo-Gómez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Luis A Muñoz-Téllez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|
8
|
Freitas ABD, Francisco RPV, Centofanti SF, Damasceno JG, Chehimi SN, Osmundo-Junior GDS, Kulikowski LD, Brizot MDL. Fetal gastroschisis: Maternal and fetal methylation profile. Prenat Diagn 2021; 41:449-456. [PMID: 33332636 DOI: 10.1002/pd.5881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The purpose of this study was to describe the genomic deoxyribonucleic acid (DNA) methylation profile in fetuses with gastroschisis, determine whether the profile was inherited, and investigate any possible correlations with maternal risk factors. METHOD Genome-wide DNA methylation analysis of 96 blood samples was performed using the Illumina Human Methylation 850K BeadChip. The blood samples were collected as follows: 32 from the umbilical cord of fetuses with gastroschisis, 32 from their respective mothers, 16 from the umbilical cord of fetuses without malformation, and 16 from their respective mothers. RESULTS The differential DNA methylation analysis showed a significant difference between the groups. The enrichment analysis resulted in 12 sites related to T-cell activation (p = 0.0128). The sites with different methylation status contained 10 genes, three of which were related to the beta-2-microglobulin gene. The methylation profile observed in the fetuses with gastroschisis was not inherited from the mothers. In addition, there was no association between maternal urinary tract infection, smoking, and alcohol use and different methylated sites. CONCLUSION We established the methylation profile of gastroschisis fetuses, which differs from that of normal fetuses. The profile was not inherited and did not correlate with maternal risk factors.
Collapse
Affiliation(s)
- Amanda Brasil de Freitas
- Department of Obstetrics and Gynecology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil.,Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | | - Sandra Frankfurt Centofanti
- Department of Obstetrics and Gynecology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Jullian Gabriel Damasceno
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Samar Nasser Chehimi
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Gilmar de Souza Osmundo-Junior
- Department of Obstetrics and Gynecology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Maria de Lourdes Brizot
- Department of Obstetrics and Gynecology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Lee S, Gleeson JG. Closing in on Mechanisms of Open Neural Tube Defects. Trends Neurosci 2020; 43:519-532. [PMID: 32423763 PMCID: PMC7321880 DOI: 10.1016/j.tins.2020.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Neural tube defects (NTDs) represent a failure of the neural plate to complete the developmental transition to a neural tube. NTDs are the most common birth anomaly of the CNS. Following mandatory folic acid fortification of dietary grains, a dramatic reduction in the incidence of NTDs was observed in areas where the policy was implemented, yet the genetic drivers of NTDs in humans, and the mechanisms by which folic acid prevents disease, remain disputed. Here, we discuss current understanding of human NTD genetics, recent advances regarding potential mechanisms by which folic acid might modify risk through effects on the epigenome and transcriptome, and new approaches to study refined phenotypes for a greater appreciation of the developmental and genetic causes of NTDs.
Collapse
Affiliation(s)
- Sangmoon Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92025, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92025, USA.
| |
Collapse
|
10
|
Tian T, Lei Y, Chen Y, Guo Y, Jin L, Finnell RH, Wang L, Ren A. Rare copy number variations of planar cell polarity genes are associated with human neural tube defects. Neurogenetics 2020; 21:217-225. [PMID: 32388773 DOI: 10.1007/s10048-020-00613-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Select single-nucleotide variants in planar cell polarity (PCP) genes are associated with increased risk for neural tube defects (NTDs). However, whether copy number variants (CNVs) in PCP genes contribute to NTDs is unknown. Considering that CNVs are implicated in several human developmental disorders, we hypothesized that CNVs in PCP genes may be causative factors to human NTDs. DNA from umbilical cord tissues of NTD-affected fetuses and parental venous blood samples were collected. We performed a quantitative analysis of copy numbers of all exon regions in the VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3, and PTK7 genes using a CNVplex assay. Quantitative real-time PCR (qPCR) was carried out to confirm the results of CNV analysis. As a result, 16 CNVs were identified among the NTDs. Of these CNVs, 5 loci were identified in 11 NTD probands with CNVs involving DVL2 (exons 1-15), VANGL1 (exons 1-7, exon 8), and VANGL2 (exons 5-8, exons 7 and 8). One CNV (DVL2 exons 1-15) was a duplication and the remaining 15 CNVs were deletions. Eleven CNVs were confirmed by qPCR. One de novo CNV in VANGL1 and one DVL2 were detected from two cases. Compared with unaffected control populations in 1000 Genome, ExAC, MARRVEL, DGV, and dbVar databases, the frequencies of de novo deletion in VANGL1 (1.14%) and de novo duplication in DVL2 (0.57%) were significantly higher in our NTD subjects (p < 0.05). This study demonstrates that de novo CNVs in PCP genes, notably deletions in VANGL1 and gains in DVL2, could contribute to the risk of NTDs.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yunping Lei
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yongyan Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yinnan Guo
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW An update is presented regarding neural tube defects (NTDs) including spina bifida and anencephaly, which are among the most common serious birth defects world-wide. Decades of research suggest that no single factor is responsible for neurulation failure, but rather NTDs arise from a complex interplay of disrupted gene regulatory networks, environmental influences and epigenetic regulation. A comprehensive understanding of these dynamics is critical to advance NTD research and prevention. RECENT FINDINGS Next-generation sequencing has ushered in a new era of genomic insight toward NTD pathophysiology, implicating novel gene associations with human NTD risk. Ongoing research is moving from a candidate gene approach toward genome-wide, systems-based investigations that are starting to uncover genetic and epigenetic complexities that underlie NTD manifestation. SUMMARY Neural tube closure is critical for the formation of the human brain and spinal cord. Broader, more all-inclusive perspectives are emerging to identify the genetic determinants of human NTDs.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
12
|
Cheng X, Pei P, Yu J, Zhang Q, Li D, Xie X, Wu J, Wang S, Zhang T. F-box protein FBXO30 mediates retinoic acid receptor γ ubiquitination and regulates BMP signaling in neural tube defects. Cell Death Dis 2019; 10:551. [PMID: 31320612 PMCID: PMC6639381 DOI: 10.1038/s41419-019-1783-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Retinoic acid (RA), an active derivative of vitamin A, is critical for the neural system development. During the neural development, the RA/RA receptor (RAR) pathway suppresses BMP signaling-mediated proliferation and differentiation of neural progenitor cells. However, how the stability of RAR is regulated during neural system development and how BMP pathway genes expression in neural tissue from human fetuses affected with neural tube defects (NTDs) remain elusive. Here, we report that FBXO30 acts as an E3 ubiquitin ligase and targets RARγ for ubiquitination and proteasomal degradation. In this way, FBXO30 positively regulates BMP signaling in mammalian cells. Moreover, RA treatment leads to suppression of BMP signaling by reducing the level of FBXO30 in mammalian cells and in mouse embryos with NTDs. In samples from human NTDs with high levels of retinol, downregulation of BMP target genes was observed, along with aberrant FBXO30 levels. Collectively, our results demonstrate that RARγ levels are controlled by FBXO30-mediated ubiquitination and that FBXO30 is a key regulator of BMP signaling. Furthermore, we suggest a novel mechanism by which high-retinol levels affect the level of FBXO30, which antagonizes BMP signaling during early stage development.
Collapse
Affiliation(s)
- Xiyue Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
- Graduate School of Peking Union Medical College, 100730, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Dan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Xiaolu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Science, 100730, Beijing, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
- Graduate School of Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
13
|
Lin Y, Yu J, Wu J, Wang S, Zhang T. Abnormal level of CUL4B-mediated histone H2A ubiquitination causes disruptive HOX gene expression. Epigenetics Chromatin 2019; 12:22. [PMID: 30992047 PMCID: PMC6466687 DOI: 10.1186/s13072-019-0268-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neural tube defects (NTDs) are common birth defects involving the central nervous system. Recent studies on the etiology of human NTDs have raised the possibility that epigenetic regulation could be involved in determining susceptibility to them. Results Here, we show that the H2AK119ub1 E3 ligase CUL4B is required for the activation of retinoic acid (RA)-inducible developmentally critical homeobox (HOX) genes in NT2/D1 embryonal carcinoma cells. RA treatment led to attenuation of H2AK119ub1 due to decrease in CUL4B, further affecting HOX gene regulation. Furthermore, we found that CUL4B interacted directly with RORγ and negatively regulated its transcriptional activity. Interestingly, knockdown of RORγ decreased the expression of HOX genes along with increased H2AK119ub1 occupancy levels, at HOX gene sites in N2/D1 cells. In addition, upregulation of HOX genes was observed along with lower levels of CUL4B-mediated H2AK119ub1 in both mouse and human anencephaly NTD cases. Notably, the expression of HOXA10 genes was negatively correlated with CUL4B levels in human anencephaly NTD cases. Conclusions Our results indicate that abnormal HOX gene expression induced by aberrant CUL4B-mediated H2AK119ub1 levels may be a risk factor for NTDs, and highlight the need for further analysis of genome-wide epigenetic modifications in NTDs. Electronic supplementary material The online version of this article (10.1186/s13072-019-0268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Lin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate Schools of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
14
|
Ross ME, Mason CE, Finnell RH. Genomic approaches to the assessment of human spina bifida risk. Birth Defects Res 2018; 109:120-128. [PMID: 27883265 DOI: 10.1002/bdra.23592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/02/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022]
Abstract
Structural birth defects are a leading cause of mortality and morbidity in children world-wide, affecting as much as 6% of all live births. Among these conditions, neural tube defects (NTDs), including spina bifida and anencephaly, arise from a combination of complex gene and environment interactions that are as yet poorly understood within human populations. Rapid advances in massively parallel DNA sequencing and bioinformatics allow for analyses of the entire genome beyond the 2% of the genomic sequence covering protein coding regions. Efforts to collect and analyze these large datasets hold promise for illuminating gene network variations and eventually epigenetic events that increase individual risk for failure to close the neural tube. In this review, we discuss current challenges for DNA genome sequence analysis of NTD affected populations, and compare experience in the field with other complex genetic disorders for which large datasets are accumulating. The ultimate goal of this research is to find strategies for optimizing conditions that promote healthy birth outcomes for individual couples. Birth Defects Research 109:120-128, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Christopher E Mason
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
15
|
Gao Y, Wang J, Shangguan S, Bao Y, Lu X, Zou J, Dai Y, Liu J, Zhang T. Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects. Cell Mol Neurobiol 2018; 38:605-614. [PMID: 28623428 PMCID: PMC11481969 DOI: 10.1007/s10571-017-0506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 11/29/2022]
Abstract
Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotypic traits and disease susceptibility. Recent studies have documented that the polarity protein partitioning defective 3 homolog (Pard3) plays an essential role in the process of neural tube closure. The aim of this study was to assess the role of PARD3 CNVs in the etiology of human NTDs. Relative quantitative PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to quantitative measurement of CNVs in 25 PARD3 exons in 202 NTD cases and 231 controls from a region of China with a high prevalence of NTDs. The results showed that microduplications ranging from 3 to 4 were evident in coding Exon 21 and Exon 25 in both case and control groups. A novel heterozygous microdeletion spanning 444 bp of Exon 14 was identified in two cases of anencephaly and is absent from all controls analyzed. Expression analyses indicated that this heterozygotic microdeletion showed no tissue specificity and led to defective expression of PARD3. Our study provides further evidence implicating PARD3 in the etiology of NTDs.
Collapse
Affiliation(s)
- Yonghui Gao
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China.
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Jianhua Wang
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Shaofang Shangguan
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yihua Bao
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xiaoli Lu
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jizhen Zou
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yaohua Dai
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Junling Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ting Zhang
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
16
|
Xie Q, Li C, Song X, Wu L, Jiang Q, Qiu Z, Cao H, Yu K, Wan C, Li J, Yang F, Huang Z, Niu B, Jiang Z, Zhang T. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription. Nucleic Acids Res 2017; 45:2472-2489. [PMID: 27924000 PMCID: PMC5389733 DOI: 10.1093/nar/gkw1208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development.
Collapse
Affiliation(s)
- Qiu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Xiaozhen Song
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Qian Jiang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Haiyan Cao
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kaihui Yu
- Department of Pathophysiology, Guangxi Medical University, Guangxi 530021, China
| | - Chunlei Wan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Yang
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Zebing Huang
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | | | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| |
Collapse
|
17
|
Chen X, An Y, Gao Y, Guo L, Rui L, Xie H, Sun M, Lam Hung S, Sheng X, Zou J, Bao Y, Guan H, Niu B, Li Z, Finnell RH, Gusella JF, Wu BL, Zhang T. Rare Deleterious PARD3 Variants in the aPKC-Binding Region are Implicated in the Pathogenesis of Human Cranial Neural Tube Defects Via Disrupting Apical Tight Junction Formation. Hum Mutat 2017; 38:378-389. [PMID: 27925688 DOI: 10.1002/humu.23153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
Increasing evidence that mutation of planar cell polarity (PCP) genes contributes to human cranial neural tube defect (NTD) susceptibility prompted us to hypothesize that rare variants of genes in the core apical-basal polarity (ABP) pathway are risk factors for cranial NTDs. In this study, we screened for rare genomic variation of PARD3 in 138 cranial NTD cases and 274 controls. Overall, the rare deleterious variants of PARD3 were significantly associated with increased risk for cranial NTDs (11/138 vs.7/274, P < 0.05, OR = 3.3). These NTD-specific variants were significantly enriched in the aPKC-binding region (6/138 vs. 0/274, P < 0.01). The East Asian cohort in the ExAC database and another Chinese normal cohort further supported this association. Over-expression analysis in HEK293T and MDCK cells confirmed abnormal aPKC binding or interaction for two PARD3 variants (p.P913Q and p.D783G), resulting in defective tight junction formation via disrupted aPKC binding. Functional analysis in human neural progenitor cells and chick embryos revealed that PARD3 knockdown gave rise to abnormal cell polarity and compromised the polarization process of neuroepithelial tissue. Our studies suggest that rare deleterious variants of PARD3 in the aPKC-binding region contribute to human cranial NTDs, possibly by disrupting apical tight junction formation and subsequent polarization process of the neuroepithelium.
Collapse
Affiliation(s)
- Xiaoli Chen
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yu An
- Children's Hospital of Fudan University and Institutes of Biomedical Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yonghui Gao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.,Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Guo
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Lei Rui
- State Key Laboratories for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hua Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Mei Sun
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Siv Lam Hung
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaoming Sheng
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jizhen Zou
- Department of Pathology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Hongyan Guan
- Department of Integrated Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Department of Biotechnology, Capital Institute of Pediatrics, Beijing, China
| | - Zandong Li
- State Key Laboratories for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Bai-Lin Wu
- Children's Hospital of Fudan University and Institutes of Biomedical Science, Shanghai Medical College of Fudan University, Shanghai, China.,Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
18
|
Wang L, Lin S, Zhang J, Tian T, Jin L, Ren A. Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis. Epigenetics 2017; 12:157-165. [PMID: 28059605 DOI: 10.1080/15592294.2016.1277298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.
Collapse
Affiliation(s)
- Linlin Wang
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Shanshan Lin
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Ji Zhang
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Tian Tian
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Lei Jin
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Aiguo Ren
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| |
Collapse
|
19
|
Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans. G3-GENES GENOMES GENETICS 2016; 6:3307-3316. [PMID: 27543293 PMCID: PMC5068950 DOI: 10.1534/g3.116.033696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC). We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1. DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10) resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans.
Collapse
|
20
|
MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida. Mol Neurobiol 2016; 54:6304-6316. [PMID: 27714636 DOI: 10.1007/s12035-016-0164-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Dishevelled (DVL/Dvl) genes play roles in canonical and noncanonical Wnt signaling, both of which are essential in neural tube closing and are involved in balancing neural progenitor growth and differentiation, or neuroepithelial cell polarity, respectively. In mouse Dvl haploinsufficiency leads to neural tube defects (NTDs), which represent the second most common birth defects. However, DVL genes' genetic contributions in human NTDs are modest. We sought to explore the molecular impact on such genes in human NTDs in a Han Chinese cohort. In 47 cases with NTDs and 61 matched controls, in brain tissues, the DVL1/2 mRNA levels were correlated with the levels of a serine/threonine protein kinase MARK2, and in 20 cases with lumbosacral spina bifida, the mRNA levels of DVL1 and MARK2 were significantly decreased; by contrast, only an intronic rare variant was found. Moreover, in an extended population, we found merely three novel rare missense variants in 1 % of individuals with NTDs. In cell-based assays, Mark2 depletion indeed reduces Dvl gene expression and interrupts neural stem cell (NSCs) growth and differentiation, which are likely to be mediated through a decrease in class IIa HDAC phosphorylation and reduced H3K4ac and H3K27ac occupancies at the Dvl1/2 promoters. Finally, the detections of folate concentration in human brain tissue and NSCs and MEF cells indicates that folate deficiency contributes to the observed decreases in Mark2 and Dvl1 expression. Our present study raises a potential common pathogenicity mechanism in human lumbosacral spina bifida about DVL genes rather than their genetic pathogenic role.
Collapse
|
21
|
Francesca LC, Claudia R, Molinario C, Annamaria M, Chiara F, Natalia C, Emanuele A, Valentina P, Giovanni N, Costantino R, Eugenio S, Fiorella G. Variants in TNIP1, a regulator of the NF-kB pathway, found in two patients with neural tube defects. Childs Nerv Syst 2016; 32:1061-7. [PMID: 27125519 DOI: 10.1007/s00381-016-3087-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Neural tube defects (NTDs) occur in 1:1000 births. The etiology is complex, with the influence of environmental and genetic factors. Environmental factors, such as folate deficiency, diabetes, or hypoxia strongly contribute to the occurrence of NTD. Also, there is a strong genetic contribution to NTD, as highlighted by the number of genes so far identified in several different developmental pathways usually altered in NTD. Each gene identified so far accounts for a small percentage of all NTD cases, indicating a very high heterogeneity. METHODS Exome sequencing was performed in seven sporadic patients with severe mielomeningocele. Novel coding variants shared by two or more patients were selected for further analysis. RESULTS We identified in two unrelated patients two different variants in TNIP1, a gene not previously involved in NTD whose main role is downregulation of the NF-kB pathway. One variant, c.1089T>G (p.Phe363Leu), is de novo, whereas the c.1781C>T (p.Pro594Leu) is absent in the mother, but could not be tested in the father, as he was unavailable. The latter variant is a very rare variant in the ExAC database. CONCLUSIONS These findings suggest that TNIP1 is a new potential predisposing gene to spina bifida (SB) and its pathway needs to be investigated in human NTD in order to confirm its role and to plan appropriate counseling to families.
Collapse
Affiliation(s)
- La Carpia Francesca
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia, NY, USA
| | - Rendeli Claudia
- Istituto di Pediatria, Università Cattolica del Sacro Cuore "A. Gemelli", Rome, Italy
| | - Clelia Molinario
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy
| | - Milillo Annamaria
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy
| | - Farroni Chiara
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy
| | - Cannelli Natalia
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy
| | - Ausili Emanuele
- Istituto di Pediatria, Università Cattolica del Sacro Cuore "A. Gemelli", Rome, Italy
| | - Paolucci Valentina
- Istituto di Pediatria, Università Cattolica del Sacro Cuore "A. Gemelli", Rome, Italy
| | - Neri Giovanni
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy
| | - Romagnoli Costantino
- Istituto di Pediatria, Università Cattolica del Sacro Cuore "A. Gemelli", Rome, Italy
| | - Sangiorgi Eugenio
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy
| | - Gurrieri Fiorella
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore "A. Gemelli", L.go Francesco Vito 1, 00168, Rome, Italy.
| |
Collapse
|
22
|
Hang XY, Shang AJ, Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis. Neural Regen Res 2016; 11:1333-8. [PMID: 27651783 PMCID: PMC5020834 DOI: 10.4103/1673-5374.189200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.
Collapse
|
23
|
Bai B, Zhang Q, Liu X, Miao C, Shangguan S, Bao Y, Guo J, Wang L, Zhang T, Li H. Different epigenetic alterations are associated with abnormal IGF2/Igf2 upregulation in neural tube defects. PLoS One 2014; 9:e113308. [PMID: 25423083 PMCID: PMC4244157 DOI: 10.1371/journal.pone.0113308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
The methylation status of DNA methylation regions (DMRs) of the imprinted gene IGF2/Igf2 is associated with neural tube defects (NTDs), which are caused by a failure of the neural tube to fold and close and are the second-most common birth defect; however, the characterization of the expression level of IGF2/Igf2 in neural tissue from human fetuses affected with NTDs remains elusive. More importantly, whether abnormal chromatin structure also influences IGF2/Igf2 expression in NTDs is unclear. Here, we investigated the transcriptional activity of IGF2/Igf2 in normal and NTD spinal cord tissues, the methylation status of different DMRs, and the chromatin structure of the promoter. Our data indicated that in NTD samples from both human fetuses and retinoic acid (RA)-treated mouse fetuses, the expression level of IGF2/Igf2 was upregulated 6.41-fold and 1.84-fold, respectively, compared to controls. H19 DMR1, but not IGF2 DMR0, was hypermethylated in human NTD samples. In NTD mice, h19 DMR1 was stable, whereas the chromatin structure around the promoter of Igf2 might be loosened, which was displayed by higher H3K4 acetylation and lower H3K27 trimethylation. Therefore, the data revealed that IGF2/Igf2 expression can be ectopically up-regulated by dual epigenetic factors in NTDs. In detail, the upregulation of IGF2/Igf2 is likely controlled by hypermethylation of H19 DMR1 in human NTDs, however, in acute external RA-induced NTD mice it is potentially determined by more open chromatin structure.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaozhen Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chunyue Miao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- * E-mail:
| |
Collapse
|
24
|
Wilde JJ, Petersen JR, Niswander L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet 2014; 48:583-611. [PMID: 25292356 DOI: 10.1146/annurev-genet-120213-092208] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and adhere to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado 80045;
| | | | | |
Collapse
|
25
|
Apkon SD, Grady R, Hart S, Lee A, McNalley T, Niswander L, Petersen J, Remley S, Rotenstein D, Shurtleff H, Warner M, Walker WO. Advances in the care of children with spina bifida. Adv Pediatr 2014; 61:33-74. [PMID: 25037124 DOI: 10.1016/j.yapd.2014.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Susan D Apkon
- Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Rehabilitation Medicine, Seattle Children's Hospital, 4800 Sand Point Way Northeast, M/S OB-8414, Seattle, WA 98105, USA.
| | - Richard Grady
- Section of Pediatric Urology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Solveig Hart
- Rehabilitation Services, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Amy Lee
- Pediatric Neurosurgery, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, M/S W7729, PO Box 5371, Seattle, WA 98105, USA
| | - Thomas McNalley
- Rehabilitation Medicine, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, M/S OB-8404, Seattle, WA 98105, USA
| | - Lee Niswander
- Department of Pediatrics, Children's Hospital Colorado, Howard Hughes Medical Institute, University of Colorado School of Medicine, Mail Stop 8133, Building RC1 South, Room L18-12106, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Juliette Petersen
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Mail Stop 8133, Building RC1 South, L18-12400D, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Sheridan Remley
- Rehabilitation Services, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Deborah Rotenstein
- Pediatric Endocrinology, Endocrine Division, Pediatric Alliance, 1789 South Braddock Avenue, Suite 294, Pittsburgh, PA 15218, USA
| | - Hillary Shurtleff
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA; Department of Child Psychiatry, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Molly Warner
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA; Neuropsychology Consult Service, Department of Psychiatry, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - William O Walker
- Division of Developmental Medicine, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way Northeast, M/S OC.9.940, Seattle, WA 98105, USA
| |
Collapse
|
26
|
Golzio C, Katsanis N. Genetic architecture of reciprocal CNVs. Curr Opin Genet Dev 2013; 23:240-8. [PMID: 23747035 DOI: 10.1016/j.gde.2013.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Copy number variants (CNVs) represent a frequent type of lesion in human genetic disorders that typically affects numerous genes simultaneously. This has raised the challenge of understanding which genes within a CNV drive clinical phenotypes. Although CNVs can arise by multiple mechanisms, a subset is driven by local genomic architecture permissive to recombination events that can lead to both deletions and duplications. Phenotypic analyses of patients with such reciprocal CNVs have revealed instances in which the phenotype is either identical or mirrored; strikingly, molecular studies have shown that such phenotypes are often driven by reciprocal dosage defects of the same transcript. Here we explore how these observations can help the dissection of CNVs and inform the genetic architecture of CNV-induced disorders.
Collapse
Affiliation(s)
- Christelle Golzio
- Center for Human Disease Modeling, Duke University, Durham 27710, USA
| | | |
Collapse
|