1
|
Yin L, Wang Y, Xiang S, Xu K, Wang B, Jia AQ. Tyramine, one quorum sensing inhibitor, reduces pathogenicity and restores tetracycline susceptibility in Burkholderia cenocepacia. Biochem Pharmacol 2023; 218:115906. [PMID: 37951366 DOI: 10.1016/j.bcp.2023.115906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.
Collapse
Affiliation(s)
- Lujun Yin
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yingjie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shiliang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Kaizhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
2
|
Current Advances in the Concept of Quorum Sensing-Based Prevention of Spoilage of Fish Products by Pseudomonads. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial spoilage of fish is attributed to quorum sensing (QS)-based activities. QS is a communication process between the cells in which microorganisms secrete and sense the specific chemicals (autoinductors, AIs) that regulate proteolysis, lipolysis, and biofilm formation. These activities change the organoleptic characteristics and reduce the safety of the products. Although the microbial community of fish is diverse and may consist of a range of bacterial strains, the deterioration of fish-based products is attributed to the growth and activity of Pseudomonas spp. This work summarizes recent advancements to assess the influence of QS mechanisms on seafood spoilage by Pseudomonas spp. The quorum sensing inhibition (QSI) in the context of fish preservation has also been discussed. Detailed recognition of this phenomenon is crucial in establishing effective strategies to prevent the premature deterioration of fish-based products.
Collapse
|
3
|
Manos J. Current and Emerging Therapies to Combat Cystic Fibrosis Lung Infections. Microorganisms 2021; 9:1874. [PMID: 34576767 PMCID: PMC8466233 DOI: 10.3390/microorganisms9091874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The ultimate aim of any antimicrobial treatment is a better infection outcome for the patient. Here, we review the current state of treatment for bacterial infections in cystic fibrosis (CF) lung while also investigating potential new treatments being developed to see how they may change the dynamics of antimicrobial therapy. Treatment with antibiotics coupled with regular physical therapy has been shown to reduce exacerbations and may eradicate some strains. Therapies such as hypertonic saline and inhaled PulmozymeTM (DNase-I) improve mucus clearance, while modifier drugs, singly and more successfully in combination, re-open certain mutant forms of the cystic fibrosis transmembrane conductance regulator (CFTR) to enable ion passage. No current method, however, completely eradicates infection, mainly due to bacterial survival within biofilm aggregates. Lung transplants increase lifespan, but reinfection is a continuing problem. CFTR modifiers normalise ion transport for the affected mutations, but there is conflicting evidence on bacterial clearance. Emerging treatments combine antibiotics with novel compounds including quorum-sensing inhibitors, antioxidants, and enzymes, or with bacteriophages, aiming to disrupt the biofilm matrix and improve antibiotic access. Other treatments involve bacteriophages that target, infect and kill bacteria. These novel therapeutic approaches are showing good promise in vitro, and a few have made the leap to in vivo testing.
Collapse
Affiliation(s)
- Jim Manos
- Infection, Immunity and Inflammation, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
4
|
Myszka K, Tomaś N, Wolko Ł, Szwengiel A, Grygier A, Nuc K, Majcher M. In situ approaches show the limitation of the spoilage potential of Juniperus phoenicea L. essential oil against cold-tolerant Pseudomonas fluorescens KM24. Appl Microbiol Biotechnol 2021; 105:4255-4268. [PMID: 33988734 PMCID: PMC8140959 DOI: 10.1007/s00253-021-11338-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022]
Abstract
Abstract The present study aimed to elucidate the effect of subinhibitory concentrations (sub-MICs) of juniper essential oil (EO), α-pinene, and sabinene on the quorum-sensing (QS)–mediated proteolytic and lipolytic properties of Pseudomonas fluorescens KM24. These activities were verified under in situ conditions, in which sub-MICs of the agents altered the morphology of KM24 cells. RNA-Seq studies revealed key coding sequences (CDSs)/genes related to QS and the proteolytic/lipolytic activities of pseudomonads. In this work, all the examined agents decreased autoinducer synthesis and influenced the mRNA expression of the encoding acyltransferase genes lptA, lptD, and plsB. The highest reduction on the 3rd and 5th days of cultivation was observed for the genes lptD (−5.5 and −5.61, respectively) and lptA (−3.5 and −4.0, respectively) following treatment with EO. Inhibition of the lptA, lptD, and plsB genes by singular constituents of EO was on average, from −0.4 to −0.7. At 5 days of cultivation the profile of AHLs of the reference P. fluorescens KM24 strain consisted of 3-oxo-C14-HSL, 3-oxo-C6-HSL, C4-HSL, and N-[(RS)-3-hydroxybutyryl]-HSL, the concentrations of which were 0.570, 0.018, 3.744, and 0.554 μg ml−1, respectively. Independent of the incubation time, EO, α-pinene, and sabinene also suppressed the protease genes prlC (−1.5, −0.5, and −0.5, respectively) and ctpB (−1.5, −0.7, and −0.4, respectively). Lipolysis and transcription of the lipA/lipB genes were downregulated by the agents on average from −0.3 to −0.6. α-Pinene- and sabinene-rich juniper EO acts as an anti-quorum-sensing agent and can repress the spoilage phenotype of pseudomonads. Key points: Juniper EO, α-pinene, sabinene exhibited anti-QS potential toward KM24. RNA-Seq revealed key CDSs/genes related to QS/proteolytic/lipolytic activities of KM24. Agents at sub-MIC levels influenced the mRNA expression of QS/lipase/protease genes.
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11338-3.
Collapse
Affiliation(s)
- Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60,627, Poznan, Poland.
| | - Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60,627, Poznan, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, PL-60-632, Poznan, Poland
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, PL-60-624, Poznan, Poland
| | - Anna Grygier
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, PL-60-624, Poznan, Poland
| | - Katarzyna Nuc
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, PL-60-632, Poznan, Poland
| | - Małgorzata Majcher
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, PL-60-624, Poznan, Poland
| |
Collapse
|
5
|
McAvoy AC, Jaiyesimi O, Threatt PH, Seladi T, Goldberg JB, da Silva RR, Garg N. Differences in Cystic Fibrosis-Associated Burkholderia spp. Bacteria Metabolomes after Exposure to the Antibiotic Trimethoprim. ACS Infect Dis 2020; 6:1154-1168. [PMID: 32212725 DOI: 10.1021/acsinfecdis.9b00513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Burkholderia cepacia complex is a group of closely related bacterial species with large genomes that infect immunocompromised individuals and those living with cystic fibrosis. Some of these species are found more frequently and cause more severe disease than others, yet metabolomic differences between these have not been described. Furthermore, our understanding of how these species respond to antibiotics is limited. We investigated the metabolomics differences between three most prevalent Burkholderia spp. associated with cystic fibrosis: B. cenocepacia, B. multivorans, and B. dolosa in the presence and absence of the antibiotic trimethoprim. Using a combination of supervised and unsupervised metabolomics data visualization and analysis tools, we describe the overall differences between strains of the same species and between species. Specifically, we report, for the first time, the role of the pyomelanin pathway in the metabolism of trimethoprim. We also report differences in the detection of known secondary metabolites such as fragin, ornibactin, and N-acylhomoserine lactones and their analogs in closely related strains. Furthermore, we highlight the potential for the discovery of new secondary metabolites in clinical strains of Burkholderia spp. The metabolomics differences described in this study highlight the personalized nature of closely related Burkholderia strains.
Collapse
Affiliation(s)
- Andrew C. McAvoy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Olakunle Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Paxton H. Threatt
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Tyler Seladi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University School of Medicine, 1510 Clifton Road NE, Suite 3009, Atlanta, Georgia 30322, United States
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia 30322, United States
| | - Ricardo R. da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café - Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University School of Medicine, 1510 Clifton Road NE, Suite 3009, Atlanta, Georgia 30322, United States
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
7
|
Disruption of Quorum Sensing and Virulence in Burkholderia cenocepacia by a Structural Analogue of the cis-2-Dodecenoic Acid Signal. Appl Environ Microbiol 2019; 85:AEM.00105-19. [PMID: 30770405 DOI: 10.1128/aem.00105-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Quorum sensing (QS) signals are widely used by bacterial pathogens to control biological functions and virulence in response to changes in cell population densities. Burkholderia cenocepacia employs a molecular mechanism in which the cis-2-dodecenoic acid (named Burkholderia diffusible signal factor [BDSF]) QS system regulates N-acyl homoserine lactone (AHL) signal production and virulence by modulating intracellular levels of cyclic diguanosine monophosphate (c-di-GMP). Thus, inhibition of BDSF signaling may offer a non-antibiotic-based therapeutic strategy against BDSF-regulated bacterial infections. In this study, we report the synthesis of small-molecule mimics of the BDSF signal and evaluate their ability to inhibit BDSF QS signaling in B. cenocepacia A novel structural analogue of BDSF, 14-Me-C16:Δ2 (cis-14-methylpentadec-2-enoic acid), was observed to inhibit BDSF production and impair BDSF-regulated phenotypes in B. cenocepacia, including motility, biofilm formation, and virulence, while it did not inhibit the growth rate of this pathogen. 14-Me-C16:Δ2 also reduced AHL signal production. Genetic and biochemical analyses showed that 14-Me-C16:Δ2 inhibited the production of the BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Notably, 14-Me-C16:Δ2 attenuated BDSF-regulated phenotypes in various Burkholderia species. These findings suggest that 14-Me-C16:Δ2 could potentially be developed as a new therapeutic agent against pathogenic Burkholderia species by interfering with their QS signaling.IMPORTANCE Burkholderia cenocepacia is an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing (QS) systems, including the cis-2-dodecenoic acid (BDSF) system and N-acyl homoserine lactone (AHL) system, to regulate virulence. In this study, we have designed and identified an unsaturated fatty acid compound (cis-14-methylpentadec-2-enoic acid [14-Me-C16:Δ2]) that is capable of interfering with B. cenocepacia QS signaling and virulence. We demonstrate that 14-Me-C16:Δ2 reduced BDSF and AHL signal production in B. cenocepacia It also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that 14-Me-C16:Δ2 could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent.
Collapse
|
8
|
Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS, Waters CM, Cooper VS, Neiditch MB. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biol 2019; 17:e3000123. [PMID: 30716063 PMCID: PMC6361424 DOI: 10.1371/journal.pbio.3000123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.
Collapse
Affiliation(s)
- Evan J. Waldron
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas L. Fernandez
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily Sileo
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daigo Inoyama
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Buroni S, Scoffone VC, Fumagalli M, Makarov V, Cagnone M, Trespidi G, De Rossi E, Forneris F, Riccardi G, Chiarelli LR. Investigating the Mechanism of Action of Diketopiperazines Inhibitors of the Burkholderia cenocepacia Quorum Sensing Synthase CepI: A Site-Directed Mutagenesis Study. Front Pharmacol 2018; 9:836. [PMID: 30108505 PMCID: PMC6079302 DOI: 10.3389/fphar.2018.00836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022] Open
Abstract
Quorum sensing (QS) is a bacterial intercellular communication process which controls the production of major virulence factors, such as proteases, siderophores, and toxins, as well as biofilm formation. Since the inhibition of this pathway reduces bacterial virulence, QS is considered a valuable candidate drug target, particularly for the treatment of opportunistic infections, such as those caused by Burkholderia cenocepacia in cystic fibrosis patients. Diketopiperazine inhibitors of the acyl homoserine lactone synthase CepI have been recently described. These compounds are able to impair the ability of B. cenocepacia to produce proteases, siderophores, and to form biofilm, being also active in a Caenorhabditis elegans infection model. However, the precise mechanism of action of the compounds, as well as their effect on the cell metabolism, fundamental for candidate drug optimization, are still not completely defined. Here, we performed a proteomic analysis of B. cenocepacia cells treated with one of these inhibitors, and compared it with a cepI deleted strain. Our results demonstrate that the effects of the compound are similar to the deletion of cepI, clearly confirming that these molecules function as inhibitors of the acyl homoserine lactone synthase. Moreover, to deepen our knowledge about the binding mechanisms of the compound to CepI, we exploited previously published in silico structural insights about this enzyme structure and validated different candidate binding pockets on the enzyme surface using site-directed mutagenesis and biochemical analyses. Our experiments identified a region near the predicted S-adenosylmethionine binding site critically involved in interactions with the inhibitor. These results could be useful for future structure-based optimization of these CepI inhibitors.
Collapse
Affiliation(s)
- Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Viola C Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Edda De Rossi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Cui C, Yang C, Song S, Fu S, Sun X, Yang L, He F, Zhang LH, Zhang Y, Deng Y. A novel two-component system modulates quorum sensing and pathogenicity in Burkholderia cenocepacia. Mol Microbiol 2018; 108:32-44. [PMID: 29363827 DOI: 10.1111/mmi.13915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 01/01/2023]
Abstract
Quorum sensing (QS) is widely utilized by bacterial pathogens to regulate biological functions and pathogenicity. Recent evidence has shown that QS is subject to regulatory cascades, especially two-component systems that often respond to environmental stimulation. At least two different types of QS systems regulate pathogenesis in Burkholderia cenocepacia. However, it remains unclear how this bacterial pathogen controls these QS systems. Here, we demonstrate a novel two-component system RqpSR (Regulating Quorum sensing and Pathogenicity), which plays an important role in modulating QS and pathogenesis in B. cenocepacia. We demonstrate strong protein-protein binding affinity between RqpS and RqpR. Mutations in rqpS and rqpR exerted overlapping effects on B. cenocepacia transcriptomes and phenotypes, including motility, biofilm formation and virulence. In trans expression of rqpR rescued the defective phenotypes in the rqpS mutant. RqpR controls target gene expression by direct binding to DNA promoters, including the cis-2-dodecenoic acid (BDSF) and N-acylhomoserine lactone (AHL) signal synthase gene promoters. These findings suggest that the RqpSR system strongly modulates physiology by forming a complicated hierarchy with QS systems. This type of two-component system appears to be widely distributed and coexists with the BDSF QS system in various bacterial species.
Collapse
Affiliation(s)
- Chaoyu Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chunxi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihao Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuna Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiuyun Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Fei He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yinyue Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Slachmuylders L, Van Acker H, Brackman G, Sass A, Van Nieuwerburgh F, Coenye T. Elucidation of the mechanism behind the potentiating activity of baicalin against Burkholderia cenocepacia biofilms. PLoS One 2018; 13:e0190533. [PMID: 29293658 PMCID: PMC5749847 DOI: 10.1371/journal.pone.0190533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 11/19/2022] Open
Abstract
Reduced antimicrobial susceptibility due to resistance and tolerance has become a serious threat to human health. An approach to overcome this reduced susceptibility is the use of antibiotic adjuvants, also known as potentiators. These are compounds that have little or no antibacterial effect on their own but increase the susceptibility of bacterial cells towards antimicrobial agents. Baicalin hydrate, previously described as a quorum sensing inhibitor, is such a potentiator that increases the susceptibility of Burkholderia cenocepacia J2315 biofilms towards tobramycin. The goal of the present study is to elucidate the molecular mechanisms behind the potentiating activity of baicalin hydrate and related flavonoids. We first determined the effect of multiple flavonoids on susceptibility of B. cenocepacia J2315 towards tobramycin. Increased antibiotic susceptibility was most pronounced in combination with apigenin 7-O-glucoside and baicalin hydrate. For baicalin hydrate, also other B. cepacia complex strains and other antibiotics were tested. The potentiating effect was only observed for aminoglycosides and was both strain- and aminoglycoside-dependent. Subsequently, gene expression was compared between baicalin hydrate treated and untreated cells, in the presence and absence of tobramycin. This revealed that baicalin hydrate affected cellular respiration, resulting in increased reactive oxygen species production in the presence of tobramycin. We subsequently showed that baicalin hydrate has an impact on oxidative stress via several pathways including oxidative phosphorylation, glucarate metabolism and by modulating biosynthesis of putrescine. Furthermore, our data strongly suggest that the influence of baicalin hydrate on oxidative stress is unrelated to quorum sensing. Our data indicate that the potentiating effect of baicalin hydrate is due to modulating the oxidative stress response, which in turn leads to increased tobramycin-mediated killing.
Collapse
Affiliation(s)
- Lisa Slachmuylders
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
12
|
Sass A, Kiekens S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7:15665. [PMID: 29142288 PMCID: PMC5688073 DOI: 10.1038/s41598-017-15818-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Small RNAs play a regulatory role in many central metabolic processes of bacteria, as well as in developmental processes such as biofilm formation. Small RNAs of Burkholderia cenocepacia, an opportunistic pathogenic beta-proteobacterium, are to date not well characterised. To address that, we performed genome-wide transcriptome structure analysis of biofilm grown B. cenocepacia J2315. 41 unannotated short transcripts were identified in intergenic regions of the B. cenocepacia genome. 15 of these short transcripts, highly abundant in biofilms, widely conserved in Burkholderia sp. and without known function, were selected for in-depth analysis. Expression profiling showed that most of these sRNAs are more abundant in biofilms than in planktonic cultures. Many are also highly abundant in cells grown in minimal media, suggesting they are involved in adaptation to nutrient limitation and growth arrest. Their computationally predicted targets include a high proportion of genes involved in carbon metabolism. Expression and target genes of one sRNA suggest a potential role in regulating iron homoeostasis. The strategy used for this study to detect sRNAs expressed in B. cenocepacia biofilms has successfully identified sRNAs with a regulatory function.
Collapse
Affiliation(s)
- Andrea Sass
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sanne Kiekens
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa. Infect Immun 2017; 85:IAI.00765-16. [PMID: 28348057 DOI: 10.1128/iai.00765-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species.
Collapse
|
14
|
Alagarasan G, Aswathy KS, Madhaiyan M. Shoot the Message, Not the Messenger-Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules. FRONTIERS IN PLANT SCIENCE 2017; 8:556. [PMID: 28446917 PMCID: PMC5388769 DOI: 10.3389/fpls.2017.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology.
Collapse
Affiliation(s)
- Ganesh Alagarasan
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi VishwavidyalayaRaipur, India
| | - Kumar S. Aswathy
- Department of Agricultural Microbiology, Tamilnadu Agricultural UniversityCoimbatore, India
| | - Munusamy Madhaiyan
- Biomaterials and Biocatalyst, Temasek Lifesciences Laboratory, National University of SingaporeSingapore, Singapore
| |
Collapse
|
15
|
Dow J. Diffusible signal factor-dependent quorum sensing in pathogenic bacteria and its exploitation for disease control. J Appl Microbiol 2016; 122:2-11. [DOI: 10.1111/jam.13307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Affiliation(s)
- J.M. Dow
- School of Microbiology; University College Cork; Cork Ireland
| |
Collapse
|
16
|
Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo. Sci Rep 2016; 6:32487. [PMID: 27580679 PMCID: PMC5007513 DOI: 10.1038/srep32487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia.
Collapse
|
17
|
Van Acker H, Gielis J, Acke M, Cools F, Cos P, Coenye T. The Role of Reactive Oxygen Species in Antibiotic-Induced Cell Death in Burkholderia cepacia Complex Bacteria. PLoS One 2016; 11:e0159837. [PMID: 27438061 PMCID: PMC4954720 DOI: 10.1371/journal.pone.0159837] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
It was recently proposed that bactericidal antibiotics, besides through specific drug-target interactions, kill bacteria by a common mechanism involving the production of reactive oxygen species (ROS). However, this mechanism involving the production of hydroxyl radicals has become the subject of a lot of debate. Since the contribution of ROS to antibiotic mediated killing most likely depends on the conditions, differences in experimental procedures are expected to be at the basis of the conflicting results. In the present study different methods (ROS specific stainings, gene-expression analyses, electron paramagnetic resonance, genetic and phenotypic experiments, detection of protein carbonylation and DNA oxidation) to measure the production of ROS upon antibiotic treatment in Burkholderia cepacia complex (Bcc) bacteria were compared. Different classes of antibiotics (tobramycin, ciprofloxacin, meropenem) were included, and both planktonic and biofilm cultures were studied. Our results indicate that some of the methods investigated were not sensitive enough to measure antibiotic induced production of ROS, including the spectrophotometric detection of protein carbonylation. Secondly, other methods were found to be useful only in specific conditions. For example, an increase in the expression of OxyR was measured in Burkholderia cenocepacia K56-2 after treatment with ciprofloxacin or meropenem (both in biofilms and planktonic cultures) but not after treatment with tobramycin. In addition results vary with the experimental conditions and the species tested. Nevertheless our data strongly suggest that ROS contribute to antibiotic mediated killing in Bcc species and that enhancing ROS production or interfering with the protection against ROS may form a novel strategy to improve antibiotic treatment.
Collapse
Affiliation(s)
- Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jan Gielis
- Department of Thoracic Surgery, Antwerp Surgical Training and Anatomy Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Marloes Acke
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Freya Cools
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
18
|
Spadaro F, Scoffone VC, Chiarelli LR, Fumagalli M, Buroni S, Riccardi G, Forneris F. The Crystal Structure of Burkholderia cenocepacia DfsA Provides Insights into Substrate Recognition and Quorum Sensing Fatty Acid Biosynthesis. Biochemistry 2016; 55:3241-50. [PMID: 27198181 DOI: 10.1021/acs.biochem.6b00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell-cell communication system is involved in different processes that are important for bacterial virulence, such as biofilm formation and protease and siderophore production. Targeting the enzymes involved in this process represents a promising therapeutic approach. With the aim of finding effective quorum sensing inhibitors, we have determined the three-dimensional structure of B. cenocepacia diffusible factor synthase A, DfsA. This bifunctional crotonase (dehydratase/thioesterase) produces the characteristic quorum sensing molecule of B. cenocepacia, cis-2-dodecenoic acid or BDSF, starting from 3-hydroxydodecanoyl-acyl carrier protein. Unexpectedly, the crystal structure revealed the presence of a lipid molecule in the catalytic site of the enzyme, which was identified as dodecanoic acid. Our biochemical characterization shows that DfsA is able to use dodecanoyl-acyl carrier protein as a substrate, demonstrating that dodecanoic acid, the product of this reaction, is released very slowly from the DfsA active site, therefore acting as a DfsA inhibitor. This molecule shows an unprecedented conformational arrangement inside the DfsA active site. In contrast with previous hypotheses, our data illustrate how DfsA and closely related homologous enzymes can recognize long hydrophobic substrates without large conformational changes or assistance by additional regulator molecules. The elucidation of the substrate binding mode in DfsA provides the starting point for structure-based drug discovery studies targeting B. cenocepacia quorum sensing-assisted virulence.
Collapse
Affiliation(s)
- Francesca Spadaro
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| | - Viola C Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Via Ferrata 9/A, 27100 Pavia, Italy
| |
Collapse
|
19
|
Moriarty TF, Kuehl R, Coenye T, Metsemakers WJ, Morgenstern M, Schwarz EM, Riool M, Zaat SA, Khana N, Kates SL, Richards RG. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016; 1:89-99. [PMID: 28461934 PMCID: PMC5367564 DOI: 10.1302/2058-5241.1.000037] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orthopaedic and trauma device-related infection (ODRI) remains one of the major complications in modern trauma and orthopaedic surgery.Despite best practice in medical and surgical management, neither prophylaxis nor treatment of ODRI is effective in all cases, leading to infections that negatively impact clinical outcome and significantly increase healthcare expenditure.The following review summarises the microbiological profile of modern ODRI, the impact antibiotic resistance has on treatment outcomes, and some of the principles and weaknesses of the current systemic and local antibiotic delivery strategies.The emerging novel strategies aimed at preventing or treating ODRI will be reviewed. Particular attention will be paid to the potential for clinical impact in the coming decades, when such interventions are likely to be critically important.The review focuses on this problem from an interdisciplinary perspective, including basic science innovations and best practice in infectious disease. Cite this article: Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016;1:89-99. DOI: 10.1302/2058-5241.1.000037.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina Khana
- University Hospital of Basel, Switzerland
| | | | | |
Collapse
|
20
|
Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A, Alvarez-Lorenzo C, Coenye T. Dressings Loaded with Cyclodextrin-Hamamelitannin Complexes Increase Staphylococcus aureus Susceptibility Toward Antibiotics Both in Single as well as in Mixed Biofilm Communities. Macromol Biosci 2016; 16:859-69. [PMID: 26891369 DOI: 10.1002/mabi.201500437] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Indexed: 01/16/2023]
Abstract
Bacteria reside within biofilms at the infection site, making them extremely difficult to eradicate with conventional wound care products. Bacteria use quorum sensing (QS) systems to regulate biofilm formation, and QS inhibitors (QSIs) have been proposed as promising antibiofilm agents. Despite this, few antimicrobial therapies that interfere with QS exist. Nontoxic hydroxypropyl-β-cyclodextrin-functionalized cellulose gauzes releasing a burst of the antibiotic vancomycin and the QSI hamamelitannin are developed, followed by a sustained release of both. The gauzes affect QS and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro model of chronic wound infection and can be considered as candidates to be used to prevent wound infection as well as treat infected wounds.
Collapse
Affiliation(s)
- Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Maria José Garcia-Fernandez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Joke Lenoir
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laurens De Meyer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jean-Paul Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections. Antibiotics (Basel) 2016; 5:antibiotics5010003. [PMID: 27025518 PMCID: PMC4810405 DOI: 10.3390/antibiotics5010003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/27/2015] [Accepted: 12/30/2015] [Indexed: 11/17/2022] Open
Abstract
Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.
Collapse
|
22
|
Bacterial Adaptation during Chronic Respiratory Infections. Pathogens 2015; 4:66-89. [PMID: 25738646 PMCID: PMC4384073 DOI: 10.3390/pathogens4010066] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/22/2023] Open
Abstract
Chronic lung infections are associated with increased morbidity and mortality for individuals with underlying respiratory conditions such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). The process of chronic colonisation allows pathogens to adapt over time to cope with changing selection pressures, co-infecting species and antimicrobial therapies. These adaptations can occur due to environmental pressures in the lung such as inflammatory responses, hypoxia, nutrient deficiency, osmolarity, low pH and antibiotic therapies. Phenotypic adaptations in bacterial pathogens from acute to chronic infection include, but are not limited to, antibiotic resistance, exopolysaccharide production (mucoidy), loss in motility, formation of small colony variants, increased mutation rate, quorum sensing and altered production of virulence factors associated with chronic infection. The evolution of Pseudomonas aeruginosa during chronic lung infection has been widely studied. More recently, the adaptations that other chronically colonising respiratory pathogens, including Staphylococcus aureus, Burkholderia cepacia complex and Haemophilus influenzae undergo during chronic infection have also been investigated. This review aims to examine the adaptations utilised by different bacterial pathogens to aid in their evolution from acute to chronic pathogens of the immunocompromised lung including CF and COPD.
Collapse
|
23
|
Tavernier S, Coenye T. Quantification of Pseudomonas aeruginosa in multispecies biofilms using PMA-qPCR. PeerJ 2015; 3:e787. [PMID: 25755923 PMCID: PMC4349053 DOI: 10.7717/peerj.787] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
Multispecies biofilms are an important healthcare problem and may lead to persistent infections. These infections are difficult to treat, as cells in a biofilm are highly resistant to antimicrobial agents. While increasingly being recognized as important, the properties of multispecies biofilms remain poorly studied. In order to do so, the quantification of the individual species is needed. The current cultivation-based approaches can lead to an underestimation of the actual cell number and are time-consuming. In the present study we set up a culture-independent approach based on propidium monoazide qPCR (PMA-qPCR) to quantify Pseudomonas aeruginosa in a multispecies biofilm. As a proof of concept, we explored the influence of the combined presence of Staphylococcus aureus, Streptococcus anginosus and Burkholderia cenocepacia on the antimicrobial susceptibility of P. aeruginosa using this PMA-qPCR approach.
Collapse
Affiliation(s)
- Sarah Tavernier
- Laboratory of Pharmaceutical Microbiology, Ghent University , Ghent , Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University , Ghent , Belgium
| |
Collapse
|
24
|
Van Acker H, De Canck E, Van Nieuwerburgh F, Sass A, Deforce D, Nelis HJ, Coenye T. The BCESM genomic region contains a regulator involved in quorum sensing and persistence in Burkholderia cenocepacia J2315. Future Microbiol 2014; 9:845-60. [DOI: 10.2217/fmb.14.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT: Aim: In this study, we investigated the function of BCAM0257-8-9 located in the BCESM region of the Burkholderia cenocepacia J2315 genome. Materials & methods: Differential RNA sequencing was used to determine transcription start sites. The phenotype of overexpression mutants was studied and a transcriptome analysis of the BCAM0258 overexpression mutant was performed. Results: BCAM0257 and BCAM0258 were identified as belonging to an operon, positively regulated by BCAM0259. We found that this operon is involved in persistence and that BCAM0258 functions as a regulator influencing quorum sensing and activating pathways related to iron acquisition and biofilm formation. Overexpression of BCAM0257 increased virulence. Conclusion: The BCESM genomic region contains an operon that contributes to quorum sensing and is involved in persistence, biofilm formation and virulence. BCAM0257-8-9 is found in all sequenced B. cenocepacia ET12 genomes and these results may help explain why infections with strains of the B. cenocepacia ET12 lineage are difficult to treat.
Collapse
Affiliation(s)
- Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Hans J Nelis
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16:1961-81. [PMID: 24592823 DOI: 10.1111/1462-2920.12448] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
Abstract
In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2014; 4:400-9. [PMID: 23799665 PMCID: PMC3714132 DOI: 10.4161/viru.25338] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Deng Y, Lim A, Wang J, Zhou T, Chen S, Lee J, Dong YH, Zhang LH. Cis-2-dodecenoic acid quorum sensing system modulates N-acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia. BMC Microbiol 2013; 13:148. [PMID: 23815566 PMCID: PMC3703271 DOI: 10.1186/1471-2180-13-148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia cenocepacia employs both N-Acyl homoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) quorum sensing (QS) systems in regulation of bacterial virulence. It was shown recently that disruption of BDSF synthase RpfFBc caused a reduction of AHL signal production in B. cenocepacia. However, how BDSF system influences AHL system is still not clear. RESULTS We show here that BDSF system controls AHL system through a novel signaling mechanism. Null mutation of either the BDSF synthase, RpfFBc, or the BDSF receptor, RpfR, caused a substantial down-regulation of AHL signal production in B. cenocepacia strain H111. Genetic and biochemical analyses showed that BDSF system controls AHL signal production through the transcriptional regulation of the AHL synthase gene cepI by modulating the intracellular level of second messenger cyclic di-GMP (c-di-GMP). Furthermore, we show that BDSF and AHL systems have a cumulative role in the regulation of various biological functions, including swarming motility, biofilm formation and virulence factor production, and exogenous addition of either BDSF or AHL signal molecules could only partially rescue the changed phenotypes of the double deletion mutant defective in BDSF and AHL signal production. CONCLUSIONS These results, together with our previous findings, thus depict a molecular mechanism with which BDSF regulates AHL signal production and bacterial virulence through modulating the phosphodiesterase activity of its receptor RpfR to influence the intracellular level of c-di-GMP.
Collapse
Affiliation(s)
- Yinyue Deng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Brackman G, Coenye T. Comment on: Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 2013; 68:2176-7. [PMID: 23615559 DOI: 10.1093/jac/dkt151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|