1
|
Li M, Jin Y, Wu J, Zhao M, Yu K, Yu H. Arbidol, an antiviral drug, identified as a sodium channel blocker with anticonvulsant activity. Br J Pharmacol 2024; 181:4311-4327. [PMID: 38982721 DOI: 10.1111/bph.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Miao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kexin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
2
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Guo QB, Zhan L, Xu HY, Gao ZB, Zheng YM. SCN8A epileptic encephalopathy mutations display a gain-of-function phenotype and divergent sensitivity to antiepileptic drugs. Acta Pharmacol Sin 2022; 43:3139-3148. [PMID: 35902765 PMCID: PMC9712530 DOI: 10.1038/s41401-022-00955-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
De novo missense mutations in SCN8A gene encoding voltage-gated sodium channel NaV1.6 are linked to a severe form of early infantile epileptic encephalopathy named early infantile epileptic encephalopathy type13 (EIEE13). The majority of the patients with EIEE13 does not respond favorably to the antiepileptic drugs (AEDs) in clinic and has a significantly increased risk of death. Although more than 60 EIEE13-associated mutations have been discovered, only few mutations have been functionally analyzed. In this study we investigated the functional influences of mutations N1466T and N1466K, two EIEE13-associated mutations located in the inactivation gate, on sodium channel properties. Sodium currents were recorded from CHO cells expressing the mutant and wide-type (WT) channels using the whole-cell patch-clamp technique. We found that, in comparison with WT channels, both the mutant channels exhibited increased window currents, persistent currents (INaP) and ramp currents, suggesting that N1466T and N1466K were gain-of-function (GoF) mutations. Sodium channel inhibition is one common mechanism of currently available AEDs, in which topiramate (TPM) was effective in controlling seizures of patients carrying either of the two mutations. We found that TPM (100 µM) preferentially inhibited INaP and ramp currents but did not affect transient currents (INaT) mediated by N1466T or N1466K. Among the other 6 sodium channel-inhibiting AEDs tested, phenytoin and carbamazepine displayed greater efficacy than TPM in suppressing both INaP and ramp currents. Functional characterization of mutants N1466T and N1466K is beneficial for understanding the pathogenesis of EIEE13. The divergent effects of sodium channel-inhibiting AEDs on INaP and ramp currents provide insight into the development of therapeutic strategies for the N1466T and N1466K-associated EIEE13.
Collapse
Affiliation(s)
- Qian-Bei Guo
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
| | - Yue-Ming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
4
|
Johnson JP, Focken T, Khakh K, Tari PK, Dube C, Goodchild SJ, Andrez JC, Bankar G, Bogucki D, Burford K, Chang E, Chowdhury S, Dean R, de Boer G, Decker S, Dehnhardt C, Feng M, Gong W, Grimwood M, Hasan A, Hussainkhel A, Jia Q, Lee S, Li J, Lin S, Lindgren A, Lofstrand V, Mezeyova J, Namdari R, Nelkenbrecher K, Shuart NG, Sojo L, Sun S, Taron M, Waldbrook M, Weeratunge D, Wesolowski S, Williams A, Wilson M, Xie Z, Yoo R, Young C, Zenova A, Zhang W, Cutts AJ, Sherrington RP, Pimstone SN, Winquist R, Cohen CJ, Empfield JR. NBI-921352, a first-in-class, Na V1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. eLife 2022; 11:72468. [PMID: 35234610 PMCID: PMC8903829 DOI: 10.7554/elife.72468] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.
Collapse
Affiliation(s)
- J P Johnson
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Thilo Focken
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Kuldip Khakh
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Celine Dube
- In Vivo Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | | | - Girish Bankar
- In Vivo Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - David Bogucki
- Chemistry, Medipure Pharmaceuticals, Burnaby BC, Canada
| | | | - Elaine Chang
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Richard Dean
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Gina de Boer
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Shannon Decker
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Mandy Feng
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Wei Gong
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Abid Hasan
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Qi Jia
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Stephanie Lee
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Jenny Li
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Sophia Lin
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Andrea Lindgren
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Janette Mezeyova
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Rostam Namdari
- Translational Drug Development, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | | | - Luis Sojo
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Shaoyi Sun
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Matthew Taron
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Diana Weeratunge
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Aaron Williams
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Michael Wilson
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Zhiwei Xie
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Rhena Yoo
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Clint Young
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Alla Zenova
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Wei Zhang
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Alison J Cutts
- Scientific Affairs, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | | | | | - Charles J Cohen
- Executive Team, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | |
Collapse
|
5
|
Vera J, Lippmann K. Post-stroke epileptogenesis is associated with altered intrinsic properties of hippocampal pyramidal neurons leading to increased theta resonance. Neurobiol Dis 2021; 156:105425. [PMID: 34119635 DOI: 10.1016/j.nbd.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Brain insults like stroke, trauma or infections often lead to blood-brain barrier-dysfunction (BBBd) frequently resulting into epileptogenesis. Affected patients suffer from seizures and cognitive comorbidities that are potentially linked to altered network oscillations. It has been shown that a hippocampal BBBd in rats leads to in vivo seizures and increased power at theta (3-8 Hz), an important type of network oscillations. However, the underlying cellular mechanisms remain poorly understood. At membrane potentials close to the threshold for action potentials (APs) a subpopulation of CA1 pyramidal cells (PCs) displays intrinsic resonant properties due to an interplay of the muscarine-sensitive K+-current (IM) and the persistent Na+-current (INaP). Such resonant neurons are more excitable and generate more APs when stimulated at theta frequencies, being strong candidates for contributing to hippocampal theta oscillations during epileptogenesis. We tested this hypothesis by characterizing changes in intrinsic properties of hippocampal PCs one week after post-stroke epileptogenesis, a model associated with BBBd, using slice electrophysiology and computer modeling. We find a higher proportion of resonant neurons in BBBd compared to sham animals (47 vs. 29%), accompanied by an increase in their excitability. In contrast, BBBd non-resonant neurons showed a reduced excitability, presented with lower impedance and more positive AP threshold. We identify an increase in IM combined with either a reduction in INaP or an increase in ILeak as possible mechanisms underlying the observed changes. Our results support the hypothesis that a higher proportion of more excitable resonant neurons in the hippocampus contributes to increased theta oscillations and an increased likelihood of seizures in a model of post-stroke epileptogenesis.
Collapse
Affiliation(s)
- Jorge Vera
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristina Lippmann
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
6
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
7
|
Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021; 62:596-614. [PMID: 33580520 DOI: 10.1111/epi.16832] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Földi MC, Pesti K, Zboray K, Toth AV, Hegedűs T, Málnási-Csizmadia A, Lukacs P, Mike A. The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling. Br J Pharmacol 2021; 178:1200-1217. [PMID: 33450052 DOI: 10.1111/bph.15365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. EXPERIMENTAL APPROACH Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. KEY RESULTS We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. CONCLUSIONS AND IMPLICATIONS Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Collapse
Affiliation(s)
- Mátyás C Földi
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Krisztina Pesti
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András Málnási-Csizmadia
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Peter Lukacs
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Arpad Mike
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Abstract
Voltage-gated sodium channels (VGSCs) are foundational to excitable cell function: Their coordinated passage of sodium ions into the cell is critical for the generation and propagation of action potentials throughout the nervous system. The classical paradigm of action potential physiology states that sodium passes through the membrane only transiently (1-2 milliseconds), before the channels inactivate and cease to conduct sodium ions. However, in reality, a small fraction of the total sodium current (1%-2%) remains at steady state despite prolonged depolarization. While this persistent sodium current (INaP) contributes to normal physiological functioning of neurons, accumulating evidence indicates a particularly pathogenic role for an elevated INaP in epilepsy (reviewed previously1). Due to significant advances over the past decade of epilepsy research concerning the importance of INaP in sodium channelopathies, this review seeks to summarize recent evidence and highlight promising novel anti-seizure medication strategies through preferentially targeting INaP.
Collapse
Affiliation(s)
- Eric R. Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
11
|
Recent advances in treatment of epilepsy-related sodium channelopathies. Eur J Paediatr Neurol 2020; 24:123-128. [PMID: 31889633 DOI: 10.1016/j.ejpn.2019.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium channels (VGSCs) play a crucial role in generation of action potentials. Pathogenic variants in the five human brain expressed VGSC genes, SCN1A, SCN2A, SCN3A, SCN8A and SCN1B have been associated with a spectrum of epilepsy phenotypes and neurodevelopmental disorders. In the last decade, next generation sequencing techniques have revolutionized the way we diagnose these channelopathies, which is paving the way towards precision medicine. Knowing the functional effect (Loss-of-function versus Gain-of-function) of a variant is not only important for understanding the underlying pathophysiology, but it is particularly crucial to orient therapeutic decisions. Here we provide a review of the literature dealing with treatment options in epilepsy-related sodium channelopathies, including the current and emerging medications.
Collapse
|
12
|
Wengert ER, Saga AU, Panchal PS, Barker BS, Patel MK. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology 2019; 158:107699. [PMID: 31278928 DOI: 10.1016/j.neuropharm.2019.107699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
SCN8A epileptic encephalopathy is a severe genetic epilepsy syndrome caused by de novo gain-of-function mutations of SCN8A encoding the voltage-gated sodium (Na) channel (VGSC) NaV1.6. Therapeutic management is difficult in many patients, leading to uncontrolled seizures and risk of sudden unexpected death in epilepsy (SUDEP). There is a need to develop novel anticonvulsants that can specifically target aberrant VGSC activity associated with SCN8A gain-of-function mutations. In this study, we investigate the effects of Prax330, a novel VGSC inhibitor, on the biophysical properties of wild-type (WT) NaV1.6 and the patient mutation p.Asn1768Asp (N1768D) in ND7/23 cells. The effects of Prax330 on persistent (INaP) and resurgent (INaR) Na currents and neuronal excitability in subiculum neurons from a knock-in mouse model of the Scn8a-N1768D mutation (Scn8aD/+) were also examined. In ND7/23 cells, Prax330 reduced INaP currents recorded from cells expressing Scn8a-N1768D and hyperpolarized steady-state inactivation curves. Recordings from brain slices demonstrated elevated INaP and INaR in subiculum neurons from Scn8aD/+ mutant mice and abnormally large action potential (AP) burst-firing events in a subset of neurons. Prax330 (1 μM) reduced both INaP and INaR and suppressed AP bursts, with a smaller effect on AP waveforms that had similar morphology to WT neurons. Prax330 (1 μM) also reduced synaptically-evoked APs in Scn8aD/+ subiculum neurons but not in WT neurons. Our results highlight the efficacy of targeting INaP and INaR and inactivation parameters in controlling subiculum excitability and suggest Prax330 as a promising novel therapy for SCN8A epileptic encephalopathy.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Anusha U Saga
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
13
|
Müller P, Draguhn A, Egorov AV. Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem 2018; 146:446-458. [PMID: 29863287 DOI: 10.1111/jnc.14479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Axonal excitability is an important determinant for the accuracy, direction, and velocity of neuronal signaling. The mechanisms underlying spike generation in the axonal initial segment and transmitter release from presynaptic terminals have been intensely studied and revealed a role for several specific ionic conductances, including the persistent sodium current (INaP ). Recent evidence indicates that action potentials can also be generated at remote locations along the axonal fiber, giving rise to ectopic action potentials during physiological states (e.g., fast network oscillations) or in pathological situations (e.g., following demyelination). Here, we investigated how ectopic axonal excitability of mouse hippocampal CA1 pyramidal neurons is regulated by INaP . Recordings of field potentials and intracellular voltage in brain slices revealed that electrically evoked antidromic spikes were readily suppressed by two different blockers of INaP , riluzole and phenytoin. The effect was mediated by a reduction of the probability of ectopic spike generation while latency was unaffected. Interestingly, the contribution of INaP to excitability was much more pronounced in axonal branches heading toward the entorhinal cortex compared with the opposite fiber direction toward fimbria. Thus, excitability of distal CA1 pyramidal cell axons is affected by persistent sodium currents in a direction-selective manner. This mechanism may be of importance for ectopic spike generation in oscillating network states as well as in pathological situations.
Collapse
Affiliation(s)
- Peter Müller
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Zaman T, Helbig I, Božović IB, DeBrosse SD, Bergqvist AC, Wallis K, Medne L, Maver A, Peterlin B, Helbig KL, Zhang X, Goldberg EM. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol 2018; 83:703-717. [PMID: 29466837 DOI: 10.1002/ana.25188] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Voltage-gated sodium (Na+ ) channels underlie action potential generation and propagation and hence are central to the regulation of excitability in the nervous system. Mutations in the genes SCN1A, SCN2A, and SCN8A, encoding the Na+ channel pore-forming (α) subunits Nav1.1, 1.2, and 1.6, respectively, and SCN1B, encoding the accessory subunit β1 , are established causes of genetic epilepsies. SCN3A, encoding Nav1.3, is known to be highly expressed in brain, but has not previously been linked to early infantile epileptic encephalopathy. Here, we describe a cohort of 4 patients with epileptic encephalopathy and heterozygous de novo missense variants in SCN3A (p.Ile875Thr in 2 cases, p.Pro1333Leu, and p.Val1769Ala). METHODS All patients presented with treatment-resistant epilepsy in the first year of life, severe to profound intellectual disability, and in 2 cases (both with the variant p.Ile875Thr), diffuse polymicrogyria. RESULTS Electrophysiological recordings of mutant channels revealed prominent gain of channel function, with a markedly increased amplitude of the slowly inactivating current component, and for 2 of 3 mutants (p.Ile875Thr and p.Pro1333Leu), a leftward shift in the voltage dependence of activation to more hyperpolarized potentials. Gain of function was not observed for Nav1.3 variants known or presumed to be inherited (p.Arg1642Cys and p.Lys1799Gln). The antiseizure medications phenytoin and lacosamide selectively blocked slowly inactivating over transient current in wild-type and mutant Nav1.3 channels. INTERPRETATION These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.
Collapse
Affiliation(s)
- Tariq Zaman
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian Albrecht University, Kiel, Germany.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivana Babić Božović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Suzanne D DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
| | - A Christina Bergqvist
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kimberly Wallis
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katherine L Helbig
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
V-Ghaffari B, Kouhnavard M, Elbasiouny SM. Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditions. PLoS One 2017; 12:e0178244. [PMID: 28591171 PMCID: PMC5462370 DOI: 10.1371/journal.pone.0178244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
Subthreshold oscillations in combination with large-amplitude oscillations generate mixed-mode oscillations (MMOs), which mediate various spatial and temporal cognition and memory processes and behavioral motor tasks. Although many studies have shown that canard theory is a reliable method to investigate the properties underlying the MMOs phenomena, the relationship between the results obtained by applying canard theory and conductance-based models of neurons and their electrophysiological mechanisms are still not well understood. The goal of this study was to apply canard theory to the conductance-based model of pyramidal neurons in layer V of the Entorhinal Cortex to investigate the properties of MMOs under antiepileptic drug conditions (i.e., when persistent sodium current is inhibited). We investigated not only the mathematical properties of MMOs in these neurons, but also the electrophysiological mechanisms that shape spike clustering. Our results show that pyramidal neurons can display two types of MMOs and the magnitude of the slow potassium current determines whether MMOs of type I or type II would emerge. Our results also indicate that slow potassium currents with large time constant have significant impact on generating the MMOs, as opposed to fast inward currents. Our results provide complete characterization of the subthreshold activities in MMOs in pyramidal neurons and provide explanation to experimental studies that showed MMOs of type I or type II in pyramidal neurons under antiepileptic drug conditions.
Collapse
Affiliation(s)
- Babak V-Ghaffari
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science & Mathematics, Wright State University, Dayton, Ohio, United States of America
- * E-mail: (SME); (BV)
| | - M. Kouhnavard
- Malaysia-Japan Int. Inst. of Tech, University Technology Malaysia, Kuala Lumpur, Malaysia
| | - Sherif M. Elbasiouny
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science & Mathematics, Wright State University, Dayton, Ohio, United States of America
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering & Computer Science, Wright State University, Dayton, Ohio, United States of America
- * E-mail: (SME); (BV)
| |
Collapse
|
16
|
Vera J, Alcayaga J, Sanhueza M. Competition between Persistent Na + and Muscarine-Sensitive K + Currents Shapes Perithreshold Resonance and Spike Tuning in CA1 Pyramidal Neurons. Front Cell Neurosci 2017; 11:61. [PMID: 28337126 PMCID: PMC5340745 DOI: 10.3389/fncel.2017.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022] Open
Abstract
Neurons from many brain regions display intrinsic subthreshold theta-resonance, responding preferentially to theta-frequency oscillatory stimuli. Resonance may contribute to selective communication among neurons and to orchestrate brain rhythms. CA1 pyramidal neurons receive theta activity, generating place fields. In these neurons the expression of perithreshold frequency preference is controversial, particularly in the spiking regime, with evidence favoring either non-resonant (integrator-like) or resonant behavior. Perithreshold dynamics depends on the persistent Na+ current INaP developing above −70 mV and the muscarine-sensitive K+ current IM activating above −60 mV. We conducted current and voltage clamp experiments in slices to investigate perithreshold excitability of CA1 neurons under oscillatory stimulation. Around 20% of neurons displayed perithreshold resonance that is expressed in spiking. The remaining neurons (~80%) acted as low-pass filters lacking frequency preference. Paired voltage clamp measurement of INaP and IM showed that perithreshold activation of IM is in general low while INaP is high enough to depolarize neurons toward threshold before resonance expression, explaining the most abundant non-resonant perithreshold behavior. Partial blockade of INaP by pharmacological tools or dynamic clamp changed non-resonant to resonant behavior. Furthermore, shifting IM activation toward hyperpolarized potentials by dynamic clamp also transformed non-resonant neurons into resonant ones. We propose that the relative levels of INaP and IM control perithreshold behavior of CA1 neurons constituting a gating mechanism for theta resonance in the spiking regime. Both currents are regulated by intracellular signaling and neuromodulators which may allow dynamic switching of perithreshold behavior between resonant and non-resonant.
Collapse
Affiliation(s)
- Jorge Vera
- Department of Biology, Cell Physiology Center, University of Chile Santiago, Chile
| | - Julio Alcayaga
- Department of Biology, Cell Physiology Center, University of Chile Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Cell Physiology Center, University of Chile Santiago, Chile
| |
Collapse
|
17
|
Keppel Hesselink JM, Kopsky DJ. Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. J Neurol 2017; 264:1617-1621. [PMID: 28083647 DOI: 10.1007/s00415-017-8391-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 02/01/2023]
Abstract
In 1908 phenytoin (5,5-diphenylhydantoin) was first synthesized as a barbiturate derivative in Germany by professor Heinrich Biltz (1865-1943) and subsequently resynthesized by an American chemist of the pharmaceutical company Parke-Davis in 1923 in Detroit. Screening phenytoin did not reveal comparable sedative side effects as barbiturates and, thus, Parke-Davis discarded this compound as a useful drug. In 1936, phenytoin's anticonvulsive properties were identified via a new animal model for convulsive disorders, developed by Putnam and Merritt, who also evaluated its clinical value in a number of patients in the period 1937-1940. For many diseases, mechanism of action of phenytoin remains obscure. The voltage-gated sodium channel was and is generally regarded as the main target to explain phenytoin's activity as an anticonvulsant and an anti-arrhythmic drug. This target, however, does not explain many of the other clinical properties of phenytoin. We will explore a number of original articles on phenytoin published in its 80 years history and give extra attention to the various hypothesis and experiments done to elucidate its mechanisms of action. Phenytoin has been explored in over 100 different disorders; the last two promising indications tested in the clinic are breast cancer and optic neuritis. Most probably, there are multiple targets active for these various disorders, and the insight into which targets are relevant is still very incomplete. It is remarkable that many pharmacological studies tested one dose only, mostly 50 or 100 μM, doses which most probably are higher than the non-plasma bound phenytoin plasma levels obtained during treatment.
Collapse
Affiliation(s)
| | - David J Kopsky
- Institute for Neuropathic Pain, Vespuccistraat 64-III, 1056 SN, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Anti-Epileptic Drug Combination Efficacy in an In Vitro Seizure Model - Phenytoin and Valproate, Lamotrigine and Valproate. PLoS One 2017; 12:e0169974. [PMID: 28076384 PMCID: PMC5226812 DOI: 10.1371/journal.pone.0169974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/24/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the relative efficacy of different classes of commonly used anti-epileptic drugs (AEDs) with different mechanisms of action, individually and in combination, to suppress epileptiform discharges in an in vitro model. Extracellular field potential were recorded in 450 μm thick transverse hippocampal slices prepared from juvenile Wistar rats, in which “epileptiform discharges” (ED’s) were produced with a high-K+ (8.5 mM) bicarbonate-buffered saline solution. Single and dual recordings in stratum pyramidale of CA1 and CA3 regions were performed with 3–5 MΩ glass microelectrodes. All drugs—lamotrigine (LTG), phenytoin (PHT) and valproate (VPA)—were applied to the slice by superfusion at a rate of 2 ml/min at 32°C. Effects upon frequency of ED’s were assessed for LTG, PHT and VPA applied at different concentrations, in isolation and in combination. We demonstrated that high-K+ induced ED frequency was reversibly reduced by LTG, PHT and VPA, at concentrations corresponding to human therapeutic blood plasma concentrations. With a protocol using several applications of drugs to the same slice, PHT and VPA in combination displayed additivity of effect with 50μM PHT and 350μM VPA reducing SLD frequency by 44% and 24% individually (n = 19), and together reducing SLD frequency by 66% (n = 19). 20μM LTG reduced SLD frequency by 32% and 350μM VPA by 16% (n = 18). However, in combination there was a supra-linear suppression of ED’s of 64% (n = 18). In another independent set of experiments, similar results of drug combination responses were also found. In conclusion, a combination of conventional AEDs with different mechanisms of action, PHT and VPA, displayed linear additivity of effect on epileptiform activity. More intriguingly, a combination of LTG and VPA considered particularly efficacious clinically showed a supra-additive suppression of ED’s. This approach may be useful as an in vitro platform for assessing drug combination efficacy.
Collapse
|
19
|
Lara-Valderrábano L, Rocha L, Galván EJ. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels. Neurotoxicology 2016; 57:183-193. [DOI: 10.1016/j.neuro.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|
20
|
Alcayaga J, Oyarce MP, Del Rio R. Chronic phenytoin treatment reduces rat carotid body chemosensory responses to acute hypoxia. Brain Res 2016; 1649:38-43. [DOI: 10.1016/j.brainres.2016.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
21
|
Zeng Z, Hill-Yardin EL, Williams D, O'Brien T, Serelis A, French CR. Effect of phenytoin on sodium conductances in rat hippocampal CA1 pyramidal neurons. J Neurophysiol 2016; 116:1924-1936. [PMID: 27489371 DOI: 10.1152/jn.01060.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/24/2016] [Indexed: 11/22/2022] Open
Abstract
The antiepileptic drug phenytoin (PHT) is thought to reduce the excitability of neural tissue by stabilizing sodium channels (NaV) in inactivated states. It has been suggested the fast-inactivated state (IF) is the main target, although slow inactivation (IS) has also been implicated. Other studies on local anesthetics with similar effects on sodium channels have implicated the NaV voltage sensor interactions. In this study, we reexamined the effect of PHT in both equilibrium and dynamic transitions between fast and slower forms of inactivation in rat hippocampal CA1 pyramidal neurons. The effects of PHT were observed on fast and slow inactivation processes, as well as on another identified "intermediate" inactivation process. The effect of enzymatic removal of IF was also studied, as well as effects on the residual persistent sodium current (INaP). A computational model based on a gating charge interaction was derived that reproduced a range of PHT effects on NaV equilibrium and state transitions. No effect of PHT on IF was observed; rather, PHT appeared to facilitate the occupancy of other closed states, either through enhancement of slow inactivation or through formation of analogous drug-bound states. The overall significance of these observations is that our data are inconsistent with the commonly held view that the archetypal NaV channel inhibitor PHT stabilizes fast inactivation states, and we demonstrate that conventional slow activation "IS" and the more recently identified intermediate-duration inactivation process "II" are the primary functional targets of PHT. In addition, we show that the traditional explanatory frameworks based on the "modulated receptor hypothesis" can be substituted by simple, physiologically plausible interactions with voltage sensors. Additionally, INaP was not preferentially inhibited compared with peak INa at short latencies (50 ms) by PHT.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - David Williams
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence O'Brien
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; and
| | - Andris Serelis
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; and
| |
Collapse
|
22
|
Terragni B, Scalmani P, Colombo E, Franceschetti S, Mantegazza M. Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons. Neuropharmacology 2016; 110:223-236. [PMID: 27450092 DOI: 10.1016/j.neuropharm.2016.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na(+) channels (NaV) are involved in pathologies and are important targets of drugs (NaV-blockers), e.g. some anti-epileptic drugs (AEDs). Besides the fast inactivating transient Na(+) current (INaT), they generate a slowly inactivating "persistent" current (INaP). Ranolazine, a NaV-blocker approved for treatment of angina pectoris, is considered a preferential inhibitor of INaP and has been proposed as a novel AED. Although it is thought that classic NaV-blockers used as AEDs target mainly INaT, they can also reduce INaP. It is important to disclose specific features of novel NaV-blockers, which could be necessary for their effect as AEDs in drug resistant patients. We have compared the action of ranolazine and of the classic AED phenytoin in transfected cells expressing the neuronal NaV1.1 Na(+) channel and in neurons of neocortical slices. Our results show that the relative block of INaT versus INaP of ranolazine and phenytoin is variable and depends on Na(+) current activation conditions. Strikingly, ranolazine blocks with less efficacy INaP and more efficacy INaT than phenytoin in conditions mimicking pathological states (i.e. high frequency firing and long lasting depolarizations). The effects are consistent with binding of ranolazine to both open/pre-open and inactivated states; larger INaT block at high stimulation frequencies is caused by the induction of a slow inactivated state. Thus, contrary than expected, ranolazine is not a better INaP blocker than phenytoin in central neurons, and phenytoin is not a better INaT blocker than ranolazine. Nevertheless, they show a complementary action and could differentially target specific pathological dysfunctions.
Collapse
Affiliation(s)
- Benedetta Terragni
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Paolo Scalmani
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Elisa Colombo
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Silvana Franceschetti
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University of the Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France; Inserm, 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
23
|
Zhao F, Li X, Jin L, Zhang F, Inoue M, Yu B, Cao Z. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin. Mar Drugs 2016; 14:md14020036. [PMID: 26891306 PMCID: PMC4771989 DOI: 10.3390/md14020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Xichun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Fan Zhang
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
24
|
Kadala A, Verdier D, Morquette P, Kolta A. Ion Homeostasis in Rhythmogenesis: The Interplay Between Neurons and Astroglia. Physiology (Bethesda) 2015; 30:371-88. [DOI: 10.1152/physiol.00023.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proper function of all excitable cells depends on ion homeostasis. Nowhere is this more critical than in the brain where the extracellular concentration of some ions determines neurons' firing pattern and ability to encode information. Several neuronal functions depend on the ability of neurons to change their firing pattern to a rhythmic bursting pattern, whereas, in some circuits, rhythmic firing is, on the contrary, associated to pathologies like epilepsy or Parkinson's disease. In this review, we focus on the four main ions known to fluctuate during rhythmic firing: calcium, potassium, sodium, and chloride. We discuss the synergistic interactions between these elements to promote an oscillatory activity. We also review evidence supporting an important role for astrocytes in the homeostasis of each of these ions and describe mechanisms by which astrocytes may regulate neuronal firing by altering their extracellular concentrations. A particular emphasis is put on the mechanisms underlying rhythmogenesis in the circuit forming the central pattern generator (CPG) for mastication and other CPG systems. Finally, we discuss how an impairment in the ability of glial cells to maintain such homeostasis may result in pathologies like epilepsy and Parkinson's disease.
Collapse
Affiliation(s)
- Aklesso Kadala
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
| | - Dorly Verdier
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
| | - Philippe Morquette
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
| | - Arlette Kolta
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
- Faculté de Médecine Dentaire and Réseau de Recherche en Santé Bucco-dentaire et Osseuse du Fonds de Recherche Québec-Santé, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Chou MY, Lee CY, Liou HH, Pan CY. Phenytoin attenuates the hyper-exciting neurotransmission in cultured embryonic cortical neurons. Neuropharmacology 2014; 83:54-61. [PMID: 24721626 DOI: 10.1016/j.neuropharm.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 11/26/2022]
Abstract
Phenytoin is an effective anti-epileptic drug that inhibits Na(+) channel activities; however, how phenytoin modulates synaptic transmission to soothe epileptic symptoms is not clear. To characterize the effects of phenytoin regulation on neurotransmission, we studied the electrophysical properties of cultured embryonic cortical neurons. Phenytoin inhibited the inward Na(+) current in a dose-dependent manner with an IC50 of 16.8 μM, and at 100 μM, the inhibitory effect of phenytoin on the Na(+) current was proportional to the frequency applied. In cultured neurons, phenytoin significantly decreased the action potential firing rate and the peak potential. To study the effect of phenytoin in neurotransmission, we measured the Ca(2+) responses from stimulated target neurons and their neighboring neurons. Phenytoin significantly suppressed the Ca(2+) responses evoked by strong stimulations in the target and neighboring neurons, and exerted a decreased inhibitory effect under moderate stimulation. Picrotoxin, a GABAA receptor antagonist, enhanced the recorded spontaneous excitatory postsynaptic current activities. After picrotoxin-induced enhancement, phenytoin had a more pronounced effect on the suppression of the spontaneous hyper-exciting excitatory postsynaptic current (>100 pA), but it only mildly inhibited the general excitatory postsynaptic current. Our results demonstrate that phenytoin suppresses the efficacy of neurotransmission especially for the high-frequency stimulation by reducing the Na(+) channel activity and can potentially alleviate epileptiform activity.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Yao Lee
- Department of Pharmacology and Neurology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Pharmacology and Neurology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|