1
|
Xu R, Yan C, Cao G. RPS27A as a potential clock-related diagnostic biomarker for myocardial infarction: Comprehensive bioinformatics analysis and experimental validation. Clinics (Sao Paulo) 2025; 80:100677. [PMID: 40409241 DOI: 10.1016/j.clinsp.2025.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/05/2025] [Accepted: 04/13/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The circadian system plays a crucial role in managing cardiovascular functions, with disturbances in this system associated with Myocardial Infarction (MI). Despite this connection, the exact mechanisms by which clock genes influence MI occurrence are not well-defined. This research focused on investigating the link between clock genes and MI. METHODS The authors examined MI microarray datasets (GSE151412 and GSE60993) from the GEO database, concentrating on Differentially Expressed Genes (DEGs) associated with the circadian system. To clarify critical biological functions and pathways, the authors performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Through Lasso regression, the authors pinpointed hub genes and confirmed their relevance using both the GSE66360 dataset and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR). Furthermore, the authors conducted single-Gene Set Enrichment Analysis (GSEA) to reveal pathways linked to the hub gene. The analysis extended to exploring drug interactions and networks involving competing endogenous RNA (ceRNA). RESULTS The present analysis identified ten clock genes associated with circadian rhythms that showed differential expression between MI patients and healthy controls. Enrichment analysis suggested these genes' roles in pathways like the Gap junction and circadian rhythm pathways. Following Lasso regression and validation, RPS27A was identified as the main hub gene. GSEA further highlighted enriched pathways, such as mismatch repair. Additionally, immune infiltration analysis revealed notable differences in B-cell and CD4+ T-cell populations between the MI group and the control group. CONCLUSION The present findings suggest that the clock-related gene RPS27A is associated with MI, potentially influencing its development through circadian rhythm regulation. These results enhance the understanding of MI pathogenesis and may offer new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Rui Xu
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, China
| | - Changshun Yan
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, China
| | - GuiQiu Cao
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, China.
| |
Collapse
|
2
|
Zhang X, Zhao Q, Wang T, Long Q, Sun Y, Jiao L, Gullerova M. DNA damage response, a double-edged sword for vascular aging. Ageing Res Rev 2023; 92:102137. [PMID: 38007046 DOI: 10.1016/j.arr.2023.102137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Vascular aging is a major risk factor for age-related cardiovascular diseases, which have high rates of morbidity and mortality. It is characterized by changes in the blood vessels, such as macroscopically increased vascular diameter and intima-medial thickness, chronic inflammation, vascular calcification, arterial stiffening, and atherosclerosis. DNA damage and the subsequent various DNA damage response (DDR) pathways are important causative factors of vascular aging. Deficient DDR, which may result in the accumulation of unrepaired damaged DNA or mutations, can lead to vascular aging. On the other hand, over-activation of some DDR proteins, such as poly (ADP ribose) polymerase (PARP) and ataxia telangiectasia mutated (ATM), also can enhance the process of vascular aging, suggesting that DDR can have both positive and negative effects on vascular aging. Despite the evidence reviewed in this paper, the role of DDR in vascular aging and potential therapeutic targets remain poorly understood and require further investigation.
Collapse
Affiliation(s)
- Xiao Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; China International Neuroscience Institute (China-INI), Beijing 100053, China
| | - Qing Zhao
- M.D. Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; China International Neuroscience Institute (China-INI), Beijing 100053, China
| | - Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Yixin Sun
- First Hospital, Peking University, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; China International Neuroscience Institute (China-INI), Beijing 100053, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
3
|
Babushkina NP, Postrigan AE, Kucher AN. Involvement of Variants in the Genes Encoding BRCA1-Associated Genome Surveillance Complex (BASC) in the Development of Human Common Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Vargas-Alarcón G, Pérez-Hernández N, Rodríguez-Pérez JM, Fragoso JM, Cardoso-Saldaña G, Vázquez-Vázquez C, Ramírez-Bello J, Posadas-Romero C, Posadas-Sánchez R. MRE11A Polymorphisms Are Associated With Subclinical Atherosclerosis and Cardiovascular Risk Factors. A Case-Control Study of the GEA Mexican Project. Front Genet 2019; 10:530. [PMID: 31214252 PMCID: PMC6555271 DOI: 10.3389/fgene.2019.00530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/14/2019] [Indexed: 01/10/2023] Open
Abstract
DNA damage and subsequent repair pathways have been involved in the initiation and progression of atherosclerosis. Meiotic recombination 11 homolog A (MRE11A) gene polymorphisms have been associated with the presence of myocardial infarction. We analyzed five MRE11A gene polymorphisms in 386 individuals with subclinical atherosclerosis and 1093 healthy controls. Under different models, the rs13447720 (Odds ratio = 0.646, Padditive = 0.009; Odds ratio = 0.636, Pdominant = 0.012; Odds ratio = 0.664, Pover–dominant = 0.025; Odds ratio = 0.655, Pcodominant1 = 0.021) and rs499952 (Odds ratio = 0.807, Padditive = 0.032; Odds ratio = 0.643, Pcodominant2 = 0.034) polymorphisms were associated with a lower risk of subclinical atherosclerosis. On the other hand, the rs2155209 polymorphism was associated with a reduced risk of having a coronary artery calcification score ≥ 100 Agatston units. The rs13447720, rs499952, and rs2155209 polymorphisms, as well as the haplotypes that included the five studied polymorphisms were associated with some clinical and metabolic parameters in both subclinical atherosclerosis and healthy individuals. Our results suggest that the rs13447720 and rs499952 polymorphisms are associated with a decreased risk of developing subclinical atherosclerosis, whereas the rs2155209 is associated with a lower subclinical atherosclerosis severity (coronary artery calcification < 100 Agatston units). MRE11A polymorphisms and haplotypes were associated with clinical and metabolic parameters.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Christian Vázquez-Vázquez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Research Unit on Endocrine and Metabolic Diseases, Hospital Juárez de México, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
5
|
Jiao N, Qi Y, Lv C, Li H, Yang F. Identification of protein complexes associated with myocardial infarction using a bioinformatics approach. Mol Med Rep 2018; 18:3569-3576. [PMID: 30132549 PMCID: PMC6131540 DOI: 10.3892/mmr.2018.9414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality and disability worldwide. Determination of the molecular mechanisms underlying the disease is crucial for identifying possible therapeutic targets and designing effective treatments. On the basis that MI may be caused by dysfunctional protein complexes rather than single genes, the present study aimed to use a bioinformatics approach to identifying complexes that may serve important roles in the development of MI. By investigating the proteins involved in these identified complexes, numerous proteins have been reported that are related to MI, whereas other proteins interacted with MI-related proteins, which implied that these protein complexes may indeed be related to the development of MI. The protein complexes detected in the present study may aid in our understanding of the molecular mechanisms that underlie MI pathogenesis.
Collapse
Affiliation(s)
- Nianhui Jiao
- Intensive Care Unit, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Yongjie Qi
- Intensive Care Unit, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Changli Lv
- Emergency Department, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Hongjun Li
- Emergency Department, The Central Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China
| | - Fengyong Yang
- Intensive Care Unit, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| |
Collapse
|
6
|
Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA Damage: A Main Determinant of Vascular Aging. Int J Mol Sci 2016; 17:E748. [PMID: 27213333 PMCID: PMC4881569 DOI: 10.3390/ijms17050748] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
Collapse
Affiliation(s)
- Paula K Bautista-Niño
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Eliana Portilla-Fernandez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Douglas E Vaughan
- Department of Medicine & Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
7
|
Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F, Buchler T, Landi S, Vodicka P, Pardini B. Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget 2016; 7:23156-69. [PMID: 26735576 PMCID: PMC5029617 DOI: 10.18632/oncotarget.6804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022] Open
Abstract
Genetic variations in 3' untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis.In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38-0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41-0.89, p = 0.01, respectively).miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome.
Collapse
Affiliation(s)
- Alessio Naccarati
- Molecular and Genetic Epidemiology Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Fabio Rosa
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Italy
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cornelia Di Gaetano
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jan Novotny
- Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Tomas Buchler
- Department of Oncology, Thomayer Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbara Pardini
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
|
9
|
Hoffmann W, Bahr J, Weitmann K, Herold R, Kohlmann T, van den Berg N. Not Just the Demographic Change--The Impact of Trends in Risk Factor Prevalences on the Prediction of Future Cases of Myocardial Infarction. PLoS One 2015. [PMID: 26214851 PMCID: PMC4516359 DOI: 10.1371/journal.pone.0131256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Previous predictions of population morbidity consider demographic changes only. To model future morbidity, however, changes in prevalences of risk factors should be considered. We calculated the number of incident cases of first myocardial infarction (MI) in Mecklenburg-Western Pomerania in 2017 considering the effects of demographic changes and trends in the prevalences of major risk factors simultaneously. Methods Data basis of the analysis were two population-based cohorts of the German Study of Health in Pomerania (SHIP-baseline [1997–2001] and the 5-year follow-up and SHIP-Trend-baseline [2008–2011] respectively). SHIP-baseline data were used to calculate the initial coefficients for major risk factors for MI with a Poisson regression model. The dependent variable was the number of incident cases of MI between SHIP-baseline and SHIP-5-year follow-up. Explanatory variables were sex, age, a validated diagnosis of hypertension and/or diabetes, smoking, waist circumference (WC), increased blood levels of triglycerides (TG) and low-density-lipoprotein cholesterol (LDL), and low blood levels of high-density-lipoprotein cholesterol (HDL). Applying the coefficients determined for SHIP baseline to risk factor prevalences, derived from the new cohort SHIP-Trend together with population forecast data, we calculated the projected number of incident cases of MI in 2017. Results Except for WC and smoking in females, prevalences of risk factors in SHIP-Trend-baseline were lower compared to SHIP-baseline. Based on demographic changes only, the calculated incidence of MI for 2017 compared to the reference year 2006 yields an increase of MI (males: +11.5%, females: +8.0%). However, a decrease of MI (males: -23.7%, females: -17.1%) is shown considering the changes in the prevalences of risk factors in the projection. Conclusions The predicted number of incident cases of MI shows large differences between models with and without considering changes in the prevalences of major risk factors. Hence, the prediction of incident MI should preferably not only be based on demographic changes.
Collapse
Affiliation(s)
- Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- * E-mail:
| | - Jeanette Bahr
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Weitmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Robert Herold
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kohlmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Neeltje van den Berg
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015; 218:293-312. [DOI: 10.1016/j.ijheh.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
11
|
Purkey MT, Li J, Mentch F, Grant SFA, Desrosiers M, Hakonarson H, Toskala E. Genetic variation in genes encoding airway epithelial potassium channels is associated with chronic rhinosinusitis in a pediatric population. PLoS One 2014; 9:e89329. [PMID: 24595210 PMCID: PMC3940609 DOI: 10.1371/journal.pone.0089329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/18/2014] [Indexed: 11/19/2022] Open
Abstract
Background Apical potassium channels regulate ion transport in airway epithelial cells and influence air surface liquid (ASL) hydration and mucociliary clearance (MCC). We sought to identify whether genetic variation within genes encoding airway potassium channels is associated with chronic rhinosinusitis (CRS). Methods Single nucleotide polymorphism (SNP) genotypes for selected potassium channels were derived from data generated on the Illumnia HumanHap550 BeadChip or Illumina Human610-Quad BeadChip for 828 unrelated individuals diagnosed with CRS and 5,083 unrelated healthy controls from the Children's Hospital of Philadelphia (CHOP). Statistical analysis was performed with set-based tests using PLINK, and corrected for multiple testing. Results Set-based case control analysis revealed the gene KCNMA1 was associated with CRS in our Caucasian subset of the cohort (598 CRS cases and 3,489 controls; p = 0.022, based on 10,000 permutations). In addition there was borderline evidence that the gene KCNQ5 (p = 0.0704) was associated with the trait in our African American subset of the cohort (230 CRS cases and 1,594 controls). In addition to the top significant SNPs rs2917454 and rs6907229, imputation analysis uncovered additional genetic variants in KCNMA1 and in KCNQ5 that were associated with CRS. Conclusions We have implicated two airway epithelial potassium channels as novel susceptibility loci in contributing to the pathogenesis of CRS.
Collapse
Affiliation(s)
- Michael T. Purkey
- Department of Otorhinolaryngology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jin Li
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Frank Mentch
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Struan F. A. Grant
- Division of Human Genetics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Martin Desrosiers
- Department of Otolaryngology, Montreal General Hospital, McGill University, Montreal, Québec Canada
| | - Hakon Hakonarson
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Division of Human Genetics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HH); (ET)
| | - Elina Toskala
- Department of Otolaryngology, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HH); (ET)
| |
Collapse
|
12
|
Wu H, Roks AJ. Genomic instability and vascular aging: A focus on nucleotide excision repair. Trends Cardiovasc Med 2014; 24:61-8. [DOI: 10.1016/j.tcm.2013.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
|
13
|
Luo JQ, Wen JG, Zhou HH, Chen XP, Zhang W. Endothelial nitric oxide synthase gene G894T polymorphism and myocardial infarction: a meta-analysis of 34 studies involving 21,068 subjects. PLoS One 2014; 9:e87196. [PMID: 24498040 PMCID: PMC3907515 DOI: 10.1371/journal.pone.0087196] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/17/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Researches have revealed that the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism is associated with the risk of Myocardial infarction (MI), but the results remain conflicting. OBJECTIVE AND METHODS A meta-analysis was conducted to investigate the association between eNOS G894T polymorphism and MI. Published studies from PubMed, Embase, CNKI and CBM databases were retrieved. The pooled odds ratios (ORs) for the association between eNOS G894T polymorphism and MI and their corresponding 95% confidence intervals (CIs) were estimated using the random- or fixed- effect model. RESULTS A total of 34 studies including 8229 cases and 12839 controls were identified for the meta-analysis. The eNOS G894T polymorphism was significantly associated with MI under a homozygous genetic model (OR = 1.41, 95% CI = 1.08-1.84; P = 0.012), a recessive genetic model (OR = 1.35, 95% CI = 1.06-1.70; P = 0.014), a dominant genetic model (OR = 1.18, 95% CI = 1.04-1.34; P = 0.009). In the subgroup analysis by ethnicity (non-Asian and Asian), no significant association was observed between eNOS G894T polymorphism and MI risk among non-Asians (P>0.05), but a positive significant association was found among Asians (P<0.05). CONCLUSIONS The eNOS G894T polymorphism is associated with increased MI risk in Asians. The results indicate that ethnicity plays important roles in the association between eNOS G894T polymorphism and MI.
Collapse
Affiliation(s)
- Jian-Quan Luo
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P.R. China
| | - Jia-Gen Wen
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P.R. China
| | - Hong-Hao Zhou
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P.R. China
| | - Xiao-Ping Chen
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P.R. China
| | - Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P.R. China
| |
Collapse
|
14
|
DNA modifications in atherosclerosis: From the past to the future. Atherosclerosis 2013; 230:202-9. [DOI: 10.1016/j.atherosclerosis.2013.07.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022]
|
15
|
Borghini A, Luca Gianicolo EA, Picano E, Andreassi MG. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis 2013; 230:40-7. [DOI: 10.1016/j.atherosclerosis.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/16/2022]
|