1
|
Mokarram N, Case A, Hossainy NN, Lyon JG, MacDonald TJ, Bellamkonda R. Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. COMMUNICATIONS MATERIALS 2025; 6:5. [PMID: 39790893 PMCID: PMC11706785 DOI: 10.1038/s43246-024-00721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier, essential for protecting the central nervous system, also restricts drug delivery to this region. Thus, delivering drugs across the blood-brain barrier is an active research area in immunology, oncology, and neurology; moreover, novel methods are urgently needed to expand therapeutic options for central nervous system pathologies. While previous strategies have focused on small molecules that modulate blood-brain barrier permeability or penetrate the barrier, there is an increased focus on biomedical devices-external or implanted-for improving drug delivery. Here, we review device-assisted drug delivery across the blood-brain barrier, emphasizing its application in glioblastoma, an aggressively malignant primary brain cancer in which the blood-brain barrier plays a central role. We examine the blood-brain barrier and its features in glioblastoma, emerging models for studying the blood-brain barrier, and device-assisted methods for crossing the blood-brain barrier. We conclude by presenting methods to monitor the blood-brain barrier and paradigms for combined cross-BBB drug delivery.
Collapse
Affiliation(s)
- Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, GA USA
| | - Ayden Case
- Trinity College of Arts and Sciences, Duke University, Durham, NC USA
| | | | - Johnathan G. Lyon
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | | |
Collapse
|
2
|
Giantini-Larsen AM, Pandey A, Garton ALA, Rampichini M, Winston G, Goldberg JL, Magge R, Stieg PE, Souweidane MM, Ramakrishna R. Therapeutic manipulation and bypass of the blood-brain barrier: powerful tools in glioma treatment. Neurooncol Adv 2025; 7:vdae201. [PMID: 39877748 PMCID: PMC11773386 DOI: 10.1093/noajnl/vdae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The blood-brain barrier (BBB) remains an obstacle for delivery of chemotherapeutic agents to gliomas. High grade and recurrent gliomas continue to portend a poor prognosis. Multiple methods of bypassing or manipulating the BBB have been explored, including hyperosmolar therapy, convection-enhanced delivery (CED), laser-guided interstitial thermal therapy (LITT), and Magnetic Resonance Guided Focused Ultrasound (MRgFUS) to enhance delivery of chemotherapeutic agents to glial neoplasms. Here, we review these techniques, currently ongoing clinical trials to disrupt or bypass the BBB in gliomas, and the results of completed trials.
Collapse
Affiliation(s)
- Alexandra M Giantini-Larsen
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Abhinav Pandey
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Andrew L A Garton
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Margherita Rampichini
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Graham Winston
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Philip E Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Rohan Ramakrishna
- Corresponding Author: Rohan Ramakrishna, MD, Chief, Neurological Surgery, New York Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medical Center, 525 East 68 Street, New York, NY 10065, USA ()
| |
Collapse
|
3
|
Partridge B, Eardley A, Morales BE, Campelo SN, Lorenzo MF, Mehta JN, Kani Y, Mora JKG, Campbell EOY, Arena CB, Platt S, Mintz A, Shinn RL, Rylander CG, Debinski W, Davalos RV, Rossmeisl JH. Advancements in drug delivery methods for the treatment of brain disease. Front Vet Sci 2022; 9:1039745. [PMID: 36330152 PMCID: PMC9623817 DOI: 10.3389/fvets.2022.1039745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Allison Eardley
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna E. Morales
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jason N. Mehta
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yukitaka Kani
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Josefa K. Garcia Mora
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Etse-Oghena Y. Campbell
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Richard L. Shinn
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - John H. Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
4
|
Prezelski K, Keiser M, Stein JM, Lucas TH, Davidson B, Gonzalez-Alegre P, Vitale F. Design and Validation of a Multi-Point Injection Technology for MR-Guided Convection Enhanced Delivery in the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:725844. [PMID: 35047955 PMCID: PMC8757778 DOI: 10.3389/fmedt.2021.725844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
Convection enhanced delivery (CED) allows direct intracranial administration of neuro-therapeutics. Success of CED relies on specific targeting and broad volume distributions (VD). However, to prevent off-target delivery and tissue damage, CED is typically conducted with small cannulas and at low flow rates, which critically limit the maximum achievable VD. Furthermore, in applications such as gene therapy requiring injections of large fluid volumes into broad subcortical regions, low flow rates translate into long infusion times and multiple surgical trajectories. The cannula design is a major limiting factor in achieving broad VD, while minimizing infusion time and backflow. Here we present and validate a novel multi-point cannula specifically designed to optimize distribution and delivery time in MR-guided intracranial CED of gene-based therapeutics. First, we evaluated the compatibility of our cannula with MRI and common viral vectors for gene therapy. Then, we conducted CED tests in agarose brain phantoms and benchmarked the results against single-needle delivery. 3T MRI in brain phantoms revealed minimal susceptibility-induced artifacts, comparable to the device dimensions. Benchtop CED of adeno-associated virus demonstrated no viral loss or inactivation. CED in agarose brain phantoms at 3, 6, and 9 μL/min showed >3x increase in volume distribution and 60% time reduction compared to single-needle delivery. This study confirms the validity of a multi-point delivery approach for improving infusate distribution at clinically-compatible timescales and supports the feasibility of our novel cannula design for advancing safety and efficacy of MR-guided CED to the central nervous system.
Collapse
Affiliation(s)
- Kayla Prezelski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Megan Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Timothy H Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Beverly Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Rossmeisl JH, Herpai D, Quigley M, Cecere TE, Robertson JL, D'Agostino RB, Hinckley J, Tatter SB, Dickinson PJ, Debinski W. Phase I trial of convection-enhanced delivery of IL13RA2 and EPHA2 receptor targeted cytotoxins in dogs with spontaneous intracranial gliomas. Neuro Oncol 2021; 23:422-434. [PMID: 32812637 PMCID: PMC7992889 DOI: 10.1093/neuonc/noaa196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The interleukin-13 receptor alpha 2 (IL13RA2) and ephrin type A receptor 2 (EPHA2) are attractive therapeutic targets, being expressed in ~90% of canine and human gliomas, and absent in normal brain. Clinical trials using an earlier generation IL-13 based cytotoxin showed encouraging clinical effects in human glioma, but met with technical barriers associated with the convection-enhanced delivery (CED) method. In this study, IL-13 mutant and ephrin A1 (EFNA1)–based bacterial cytotoxins targeted to IL13RA2 and EPHA2 receptors, respectively, were administered locoregionally by CED to dogs with intracranial gliomas to evaluate their safety and preliminary efficacy. Methods In this phase I, 3 + 3 dose escalation trial, cytotoxins were infused by CED in 17 dogs with gliomas expressing IL13RA2 or EPHA2 receptors. CED was performed using a shape-fitting therapeutic planning algorithm, reflux-preventing catheters, and real-time intraoperative MRI monitoring. The primary endpoint was to determine the maximum tolerated dose of the cytotoxic cocktail in dogs with gliomas. Results Consistent intratumoral delivery of the cytotoxic cocktail was achieved, with a median target coverage of 70% (range, 40–94%). Cytotoxins were well tolerated over a dose range of 0.012–1.278 μg/mL delivered to the target volume (median, 0.099 μg/mL), with no dose limiting toxicities observed. Objective tumor responses, up to 94% tumor volume reduction, were observed in 50% (8/16) of dogs, including at least one dog in each dosing cohort >0.05 μg/mL. Conclusions This study provides preclinical data fundamental to the translation of this multireceptor targeted therapeutic approach to the human clinic.
Collapse
Affiliation(s)
- John H Rossmeisl
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina.,Veterinary and Comparative Neurooncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia.,Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, Virginia
| | - Denise Herpai
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina
| | - Mindy Quigley
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Thomas E Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - John L Robertson
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina.,Veterinary and Comparative Neurooncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, Virginia
| | - Ralph B D'Agostino
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina.,Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jonathan Hinckley
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina
| | - Stephen B Tatter
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina.,Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California (P.J.D.)
| | - Waldemar Debinski
- Comprehensive Cancer Center and Brain Tumor Center of Excellence of Wake Forest University, Winston-Salem, North Carolina.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, Virginia.,Department of Cancer Biology of Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
6
|
Convection Enhanced Delivery for Diffuse Intrinsic Pontine Glioma: Review of a Single Institution Experience. Pharmaceutics 2020; 12:pharmaceutics12070660. [PMID: 32674336 PMCID: PMC7407112 DOI: 10.3390/pharmaceutics12070660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are a pontine subtype of diffuse midline gliomas (DMGs), primary central nervous system (CNS) tumors of childhood that carry a terrible prognosis. Because of the highly infiltrative growth pattern and the anatomical position, cytoreductive surgery is not an option. An initial response to radiation therapy is invariably followed by recurrence; mortality occurs approximately 11 months after diagnosis. The development of novel therapeutics with great preclinical promise has been hindered by the tightly regulated blood-brain barrier (BBB), which segregates the tumor comportment from the systemic circulation. One possible solution to this obstacle is the use of convection enhanced delivery (CED), a local delivery strategy that bypasses the BBB by direct infusion into the tumor through a small caliber cannula. We have recently shown CED to be safe in children with DIPG (NCT01502917). In this review, we discuss our experience with CED, its advantages, and technical advancements that are occurring in the field. We also highlight hurdles that will likely need to be overcome in demonstrating clinical benefit with this therapeutic strategy.
Collapse
|
7
|
Orozco GA, Smith JH, García JJ. Three-dimensional nonlinear finite element model to estimate backflow during flow-controlled infusions into the brain. Proc Inst Mech Eng H 2020; 234:1018-1028. [DOI: 10.1177/0954411920937220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Convection-enhanced delivery is a technique to bypass the blood–brain barrier and deliver therapeutic drugs into the brain tissue. However, animal investigations and preliminary clinical trials have reported reduced efficacy to transport the infused drug in specific zones, attributed mainly to backflow, in which an annular gap is formed outside the catheter and the fluid preferentially flows toward the surface of the brain rather than through the tissue in front of the cannula tip. In this study, a three-dimensional human brain finite element model of backflow was developed to study the influence of anatomical structures during flow-controlled infusions. Predictions of backflow length were compared under the influence of ventricular pressure and the distance between the cannula and the ventricles. Simulations with zero relative ventricle pressure displayed similar backflow length predictions for larger cannula-ventricle distances. In addition, infusions near the ventricles revealed smaller backflow length and the liquid was observed to escape to the longitudinal fissure and ventricular cavities. Simulations with larger cannula-ventricle distances and nonzero relative ventricular pressure showed an increase of fluid flow through the tissue and away from the ventricles. These results reveal the importance of considering both the subject-specific anatomical details and the nonlinear effects in models focused on analyzing current and potential treatment options associated with convection-enhanced delivery optimization for future clinical trials.
Collapse
Affiliation(s)
- Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Joshua H Smith
- Department of Mechanical Engineering, Lafayette College, Easton, PA, USA
| | - José J García
- Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia
| |
Collapse
|
8
|
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii3-ii8. [PMID: 25746090 DOI: 10.1093/neuonc/nou354] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low-positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique.
Collapse
Affiliation(s)
- Michael A Vogelbaum
- Brain Tumor & Neuro-Oncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurological Surgery, University of California, San Francisco, California (M.K.A.)
| | - Manish K Aghi
- Brain Tumor & Neuro-Oncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurological Surgery, University of California, San Francisco, California (M.K.A.)
| |
Collapse
|
9
|
Hicks J, Platt S, Kent M, Haley A. Canine brain tumours: a model for the human disease? Vet Comp Oncol 2015; 15:252-272. [PMID: 25988678 DOI: 10.1111/vco.12152] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Canine brain tumours are becoming established as naturally occurring models of disease to advance diagnostic and therapeutic understanding successfully. The size and structure of the dog's brain, histopathology and molecular characteristics of canine brain tumours, as well as the presence of an intact immune system, all support the potential success of this model. The limited success of current therapeutic regimens such as surgery and radiation for dogs with intracranial tumours means that there can be tremendous mutual benefit from collaboration with our human counterparts resulting in the development of new treatments. The similarities and differences between the canine and human diseases are described in this article, emphasizing both the importance and limitations of canines in brain tumour research. Recent clinical veterinary therapeutic trials are also described to demonstrate the areas of research in which canines have already been utilized and to highlight the important potential benefits of translational research to companion dogs.
Collapse
Affiliation(s)
- J Hicks
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - S Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M Kent
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - A Haley
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Rossmeisl JH. New treatment modalities for brain tumors in dogs and cats. Vet Clin North Am Small Anim Pract 2014; 44:1013-38. [PMID: 25441624 DOI: 10.1016/j.cvsm.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advancements in standard therapies, intracranial tumors remain a significant source of morbidity and mortality in veterinary and human medicine. Several newer approaches are gaining more widespread acceptance or are currently being prepared for translation from experimental to routine therapeutic use. Clinical trials in dogs with spontaneous brain tumors have contributed to the development and human translation of several novel therapeutic brain tumor approaches.
Collapse
Affiliation(s)
- John H Rossmeisl
- Neurology and Neurosurgery, Department of Small Animal Clinical Sciences, VA-MD Regional College of Veterinary Medicine, Virginia Tech, 215 Duckpond Drive, Mail Code 0442, Blacksburg, VA 24061, USA.
| |
Collapse
|