1
|
Starr CH, Bryant Z, Spakowitz AJ. Coarse-grained modeling reveals the impact of supercoiling and loop length in DNA looping kinetics. Biophys J 2022; 121:1949-1962. [PMID: 35421389 PMCID: PMC9199097 DOI: 10.1016/j.bpj.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Measurements of protein-mediated DNA looping reveal that in vivo conditions favor the formation of loops shorter than those that occur in vitro, yet the precise physical mechanisms underlying this shift remain unclear. To understand the extent to which in vivo supercoiling may explain these shifts, we develop a theoretical model based on coarse-grained molecular simulation and analytical transition state theory, enabling us to map out looping energetics and kinetics as a function of two key biophysical parameters: superhelical density and loop length. We show that loops on the scale of a persistence length respond to supercoiling over a much wider range of superhelical densities and to a larger extent than longer loops. This effect arises from a tendency for loops to be centered on the plectonemic end region, which bends progressively more tightly with superhelical density. This trend reveals a mechanism by which supercoiling favors shorter loop lengths. In addition, our model predicts a complex kinetic response to supercoiling for a given loop length, governed by a competition between an enhanced rate of looping due to torsional buckling and a reduction in looping rate due to chain straightening as the plectoneme tightens at higher superhelical densities. Together, these effects lead to a flattening of the kinetic response to supercoiling within the physiological range for all but the shortest loops. Using experimental estimates for in vivo superhelical densities, we discuss our model's ability to explain available looping data, highlighting both the importance of supercoiling as a regulatory force in genetics and the additional complexities of looping phenomena in vivo.
Collapse
Affiliation(s)
- Charles H Starr
- Biophysics Program, Stanford University, Stanford, California
| | - Zev Bryant
- Biophysics Program, Stanford University, Stanford, California; Department of Bioengineering, Stanford University, Stanford, California
| | - Andrew J Spakowitz
- Biophysics Program, Stanford University, Stanford, California; Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
2
|
Tse DH, Becker NA, Young RT, Olson WK, Peters JP, Schwab TL, Clark KJ, Maher LJ. Designed architectural proteins that tune DNA looping in bacteria. Nucleic Acids Res 2021; 49:10382-10396. [PMID: 34478548 PMCID: PMC8501960 DOI: 10.1093/nar/gkab759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.
Collapse
Affiliation(s)
- David H Tse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Robert T Young
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, 1227 West 27th Street, Cedar Falls, IA 50614, USA
| | - Tanya L Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Fogg JM, Judge AK, Stricker E, Chan HL, Zechiedrich L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat Commun 2021; 12:5683. [PMID: 34584096 PMCID: PMC8478907 DOI: 10.1038/s41467-021-25936-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Allison K Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Erik Stricker
- Department of Molecular Virology and Microbiology, Houston, TX, USA
| | - Hilda L Chan
- Graduate Program in Immunology and Microbiology, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Houston, TX, USA.
- Graduate Program in Immunology and Microbiology, Houston, TX, USA.
| |
Collapse
|
4
|
Becker NA, Peters JP, Schwab TL, Phillips WJ, Wallace JP, Clark KJ, Maher LJ. Characterization of Gene Repression by Designed Transcription Activator-like Effector Dimer Proteins. Biophys J 2020; 119:2045-2054. [PMID: 33091377 PMCID: PMC7732741 DOI: 10.1016/j.bpj.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Gene regulation by control of transcription initiation is a fundamental property of living cells. Much of our understanding of gene repression originated from studies of the Escherichia coli lac operon switch, in which DNA looping plays an essential role. To validate and generalize principles from lac for practical applications, we previously described artificial DNA looping driven by designed transcription activator-like effector dimer (TALED) proteins. Because TALE monomers bind the idealized symmetrical lac operator sequence in two orientations, our prior studies detected repression due to multiple DNA loops. We now quantitatively characterize gene repression in living E. coli by a collection of individual TALED loops with systematic loop length variation. Fitting of a thermodynamic model allows unequivocal demonstration of looping and comparison of the engineered TALED repression system with the natural lac repressor system.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, Iowa
| | - Tanya L Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - William J Phillips
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jordan P Wallace
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
5
|
Olson WK. Biophysical Reviews' "Meet the Editors Series"-a profile of Wilma K. Olson. Biophys Rev 2020; 12:9-12. [PMID: 31956968 PMCID: PMC7040138 DOI: 10.1007/s12551-020-00611-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the five Executive Editors of Biophysical Reviews I have been asked to provide this short biographical sketch for the readers of the journal. I have been a member of the Editorial Board since the inception of the journal in 2008 and an Executive Editor since 2014. I hold a B.S. degree in Chemistry from the University of Delaware and a Ph.D. in Physical Chemistry from Stanford University. Except for a year as a Damon Runyon Postdoctoral Fellow at Columbia University, I have spent my entire professional career at Rutgers, the State University of New Jersey, where I am currently the Mary I. Bunting Professor of Chemistry and Chemical Biology. I served for many years as Founding Director of the Rutgers University Center for Molecular Biophysics and Biophysical Chemistry, and have trained undergraduate, graduate, and postdoctoral students from a variety of academic disciplines.
Collapse
Affiliation(s)
- Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
- Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Biton YY. Effects of Protein-Induced Local Bending and Sequence Dependence on the Configurations of Supercoiled DNA Minicircles. J Chem Theory Comput 2018; 14:2063-2075. [PMID: 29558800 DOI: 10.1021/acs.jctc.7b01090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yoav Y. Biton
- Department of Mechanical Engineering, SCE, Shamoon College of Engineering, Beer Sheva 84100, Israel
| |
Collapse
|
7
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
8
|
Todolli S, Perez PJ, Clauvelin N, Olson WK. Contributions of Sequence to the Higher-Order Structures of DNA. Biophys J 2016; 112:416-426. [PMID: 27955889 DOI: 10.1016/j.bpj.2016.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
One of the critical unanswered questions in genome biophysics is how the primary sequence of DNA bases influences the global properties of very-long-chain molecules. The local sequence-dependent features of DNA found in high-resolution structures introduce irregularities in the disposition of adjacent residues that facilitate the specific binding of proteins and modulate the global folding and interactions of double helices with hundreds of basepairs. These features also determine the positions of nucleosomes on DNA and the lengths of the interspersed DNA linkers. Like the patterns of basepair association within DNA, the arrangements of nucleosomes in chromatin modulate the properties of longer polymers. The intrachromosomal loops detected in genomic studies contain hundreds of nucleosomes, and given that the simulated configurations of chromatin depend on the lengths of linker DNA, the formation of these loops may reflect sequence-dependent information encoded within the positioning of the nucleosomes. With knowledge of the positions of nucleosomes on a given genome, methods are now at hand to estimate the looping propensities of chromatin in terms of the spacing of nucleosomes and to make a direct connection between the DNA base sequence and larger-scale chromatin folding.
Collapse
Affiliation(s)
- Stefjord Todolli
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pamela J Perez
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Nicolas Clauvelin
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, New Jersey; Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
9
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:145-155. [PMID: 28035245 PMCID: PMC5153831 DOI: 10.1007/s12551-016-0241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
10
|
Perez PJ, Olson WK. Insights into Genome Architecture Deduced from the Properties of Short Lac Repressor-mediated DNA Loops. Biophys Rev 2016; 8:135-144. [PMID: 28133491 PMCID: PMC5267335 DOI: 10.1007/s12551-016-0209-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 11/26/2022] Open
Abstract
Genomic DNA is vastly longer than the space allotted to it in a cell. The molecule must fold with a level of organization that satisfies the imposed spatial constraints as well as allows for the processing of genetic information. Key players in this organization include the negative supercoiling of DNA, which facilitates the unwinding of the double-helical molecule, and the associations of DNA with proteins, which partition the DNA into isolated loops, or domains. In order to gain insight into the principles of genome organization and to visualize the folding of spatially constrained DNA, we have developed new computational methods to identify the preferred three-dimensional pathways of protein-mediated DNA loops and to characterize the topological properties of these structures. Here we focus on the levels of supercoiling and the spatial arrangements of DNA in model nucleoprotein systems with two topological domains. We construct these systems by anchoring DNA loops in opposing orientations on a common protein-DNA assembly, namely the Lac repressor protein with two bound DNA operators. The linked pieces of DNA form a covalently closed circle such that the protein attaches to two widely spaced sites along the DNA. We examine the effects of operator spacing, loop orientation, and long-range contacts on overall chain configuration and topology and discuss our findings in the context of classic experiments on the effects of supercoiling and operator spacing on Lac repressor-mediated looping and recent work on the role of proteins as barriers that divide genomes into independent topological domains.
Collapse
Affiliation(s)
- Pamela J. Perez
- Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Wilma K. Olson
- Rutgers, The State University of New Jersey, Piscataway, NJ USA
| |
Collapse
|
11
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:233-243. [PMID: 27738452 PMCID: PMC5039213 DOI: 10.1007/s12551-016-0208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
12
|
Finzi L, Dunlap D. Supercoiling biases the formation of loops involved in gene regulation. Biophys Rev 2016; 8:65-74. [PMID: 28510212 DOI: 10.1007/s12551-016-0211-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
The function of DNA as a repository of genetic information is well-known. The post-genomic effort is to understand how this information-containing filament is chaperoned to manage its compaction and topological states. Indeed, the activities of enzymes that transcribe, replicate, or repair DNA are regulated to a large degree by access. Proteins that act at a distance along the filament by binding at one site and contacting another site, perhaps as part of a bigger complex, create loops that constitute topological domains and influence regulation. DNA loops and plectonemes are not necessarily spontaneous, especially large loops under tension for which high energy is required to bring their ends together, or small loops that require accessory proteins to facilitate DNA bending. However, the torsion in stiff filaments such as DNA dramatically modulates the topology, driving it from extended and genetically accessible to more looped and compact, genetically secured forms. Furthermore, there are accessory factors that bias the response of the DNA filament to supercoiling. For example, small molecules like polyamines, which neutralize the negative charge repulsions along the phosphate backbone, enhance flexibility and promote writhe over twist in response to torsion. Such increased flexibility likely pushes the topological equilibrium from twist toward writhe at tensions thought to exist in vivo. A predictable corollary is that stiffening DNA antagonizes looping and bending. Certain sequences are known to be more or less flexible or to exhibit curvature, and this may affect interactions with binding proteins. In vivo all of these factors operate simultaneously on DNA that is generally negatively supercoiled to some degree. Therefore, in order to better understand gene regulation that involves protein-mediated DNA loops, it is critical to understand the thermodynamics and kinetics of looping in DNA that is under tension, negatively supercoiled, and perhaps exposed to molecules that alter elasticity. Recent experiments quantitatively reveal how much negatively supercoiling DNA lowers the free energy of looping, possibly biasing the operation of genetic switches.
Collapse
Affiliation(s)
- Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr. N.E., Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr. N.E., Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics. Biophys J 2016; 109:618-29. [PMID: 26244743 DOI: 10.1016/j.bpj.2015.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 12/24/2022] Open
Abstract
DNA looping plays a key role in many fundamental biological processes, including gene regulation, recombination, and chromosomal organization. The looping of DNA is often mediated by proteins whose structural features and physical interactions can alter the length scale at which the looping occurs. Looping and unlooping processes are controlled by thermodynamic contributions associated with mechanical deformation of the DNA strand and entropy arising from thermal fluctuations of the conformation. To determine how these confounding effects influence DNA looping and unlooping kinetics, we present a theoretical model that incorporates the role of the protein interactions, DNA mechanics, and conformational entropy. We show that for shorter DNA strands the interaction distance affects the transition state, resulting in a complex relationship between the looped and unlooped state lifetimes and the physical properties of the looped DNA. We explore the range of behaviors that arise with varying interaction distance and DNA length. These results demonstrate how DNA deformation and entropy dictate the scaling of the looping and unlooping kinetics versus the J-factor, establishing the connection between kinetic and equilibrium behaviors. Our results show how the twist-and-bend elasticity of the DNA chain modulates the kinetics and how the influence of the interaction distance fades away at intermediate to longer chain lengths, in agreement with previous scaling predictions.
Collapse
|
14
|
Alexandrov LB, Bishop AR, Rasmussen KØ, Alexandrov BS. The role of structural parameters in DNA cyclization. BMC Bioinformatics 2016; 17:68. [PMID: 26846597 PMCID: PMC4743258 DOI: 10.1186/s12859-016-0897-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this study, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization. RESULTS We calculate the cyclization rates of 86 DNA sequences with previously measured J factors and lengths between 57 and 325 bp as well as of 20,000 randomly generated DNA sequences with lengths between 350 and 4000 bp. Our comparison with experimental data is complemented with analysis of simulated data. CONCLUSIONS Our data demonstrate that all sets of parameters yield very similar results for longer DNA fragments, regardless of the nucleotide sequence, which are in agreement with experimental measurements. However, for DNA fragments shorter than 100 bp, all sets of parameters performed poorly yielding results with several orders of magnitude difference from the experimental measurements. Our data show that DNA cyclization rates calculated using conformational parameters based on nucleosome packaging data are most similar to the experimental measurements. Overall, our study provides a comprehensive large-scale assessment of the role of structural parameters in calculating DNA cyclization rates.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA. .,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Alan R Bishop
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Kim Ø Rasmussen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Boian S Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
15
|
Abstract
Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, as the physical origin of the previously unidentified loop dissociation dynamics observed here, and discuss the robustness of this behavior to perturbations in several polymer parameters.
Collapse
|
16
|
DNA topology confers sequence specificity to nonspecific architectural proteins. Proc Natl Acad Sci U S A 2014; 111:16742-7. [PMID: 25385626 DOI: 10.1073/pnas.1405016111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid.
Collapse
|
17
|
Kumar S, Manzo C, Zurla C, Ucuncuoglu S, Finzi L, Dunlap D. Enhanced tethered-particle motion analysis reveals viscous effects. Biophys J 2014; 106:399-409. [PMID: 24461015 DOI: 10.1016/j.bpj.2013.11.4501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/29/2022] Open
Abstract
Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.
Collapse
Affiliation(s)
- Sandip Kumar
- Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Carlo Manzo
- Department of Physics, Emory University, Atlanta, Georgia
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | - Laura Finzi
- Department of Physics, Emory University, Atlanta, Georgia
| | - David Dunlap
- Department of Cell Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
18
|
Perez PJ, Clauvelin N, Grosner MA, Colasanti AV, Olson WK. What controls DNA looping? Int J Mol Sci 2014; 15:15090-108. [PMID: 25167135 PMCID: PMC4200792 DOI: 10.3390/ijms150915090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein--the nonspecific nucleoid protein HU--increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.
Collapse
Affiliation(s)
- Pamela J Perez
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Nicolas Clauvelin
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Michael A Grosner
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Andrew V Colasanti
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Wilma K Olson
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 2014; 42:10265-77. [PMID: 25120267 PMCID: PMC4176382 DOI: 10.1093/nar/gku563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Jan-Willem van de Meent
- Department of Statistics, Columbia University, 1255 Amsterdam Avenue MC 4690, New York, New York 10027
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd, 500 W. 120th St. MC 4701, New York, New York 10027
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden Department of Cell and Molecular Biology, Uppsala University, Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
20
|
Becker NA, Greiner AM, Peters JP, Maher LJ. Bacterial promoter repression by DNA looping without protein-protein binding competition. Nucleic Acids Res 2014; 42:5495-504. [PMID: 24598256 PMCID: PMC4027209 DOI: 10.1093/nar/gku180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Escherichia coli lactose operon provides a paradigm for understanding gene control by DNA looping where the lac repressor (LacI) protein competes with RNA polymerase for DNA binding. Not all promoter loops involve direct competition between repressor and RNA polymerase. This raises the possibility that positioning a promoter within a tightly constrained DNA loop is repressive per se, an idea that has previously only been considered in vitro. Here, we engineer living E. coli bacteria to measure repression due to promoter positioning within such a tightly constrained DNA loop in the absence of protein–protein binding competition. We show that promoters held within such DNA loops are repressed ∼100-fold, with up to an additional ∼10-fold repression (∼1000-fold total) dependent on topological positioning of the promoter on the inner or outer face of the DNA loop. Chromatin immunoprecipitation data suggest that repression involves inhibition of both RNA polymerase initiation and elongation. These in vivo results show that gene repression can result from tightly looping promoter DNA even in the absence of direct competition between repressor and RNA polymerase binding.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - Alexander M Greiner
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA Luther College, Departments of Biology and Chemistry, Decorah, IA 52101, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Colasanti AV, Grosner MA, Perez PJ, Clauvelin N, Lu XJ, Olson WK. Weak operator binding enhances simulated Lac repressor-mediated DNA looping. Biopolymers 2013; 99:1070-81. [PMID: 23818216 PMCID: PMC3788042 DOI: 10.1002/bip.22336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/11/2022]
Abstract
The 50th anniversary of Biopolymers coincides closely with the like celebration of the discovery of the Escherichia coli (lac) lactose operon, a classic genetic system long used to illustrate the influence of biomolecular structure on function. The looping of DNA induced by the binding of the Lac repressor protein to sequentially distant operator sites on DNA continues to serve as a paradigm for understanding long-range genomic communication. Advances in analyses of DNA structures and in incorporation of proteins in computer simulations of DNA looping allow us to address long-standing questions about the role of protein-mediated DNA loop formation in transcriptional control. Here we report insights gained from studies of the sequence-dependent contributions of the natural lac operators to Lac repressor-mediated DNA looping. Novel superposition of the ensembles of protein-bound operator structures derived from NMR measurements reveals variations in DNA folding missed in conventional structural alignments. The changes in folding affect the predicted ease with which the repressor induces loop formation and the ways that DNA closes between the protein headpieces. The peeling of the auxiliary operators away from the repressor enhances the formation of loops with the 92-bp wildtype spacing and hints of a structural reason behind their weak binding.
Collapse
Affiliation(s)
- Andrew V. Colasanti
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Pamela J. Perez
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nicolas Clauvelin
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
22
|
Boedicker JQ, Garcia HG, Johnson S, Phillips R. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation. Phys Biol 2013; 10:066005. [PMID: 24231252 DOI: 10.1088/1478-3975/10/6/066005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.
Collapse
Affiliation(s)
- James Q Boedicker
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
23
|
Brand LH, Henneges C, Schüssler A, Kolukisaoglu HÜ, Koch G, Wallmeroth N, Hecker A, Thurow K, Zell A, Harter K, Wanke D. Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA. PLoS One 2013; 8:e75177. [PMID: 24146751 PMCID: PMC3795721 DOI: 10.1371/journal.pone.0075177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022] Open
Abstract
DNA-binding proteins (DBPs), such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI)-ELISA screen of an optimized double-stranded DNA (dsDNA) probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a deeper understanding of gene regulation in any organism of choice.
Collapse
Affiliation(s)
- Luise H. Brand
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Carsten Henneges
- Cognitive Systems, Center for Bioinformatics, University of Tuebingen, Tuebingen, Germany
| | - Axel Schüssler
- Cognitive Systems, Center for Bioinformatics, University of Tuebingen, Tuebingen, Germany
| | - H. Üner Kolukisaoglu
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
- Center for Life Science Automation, Rostock, Germany
| | - Grit Koch
- Center for Life Science Automation, Rostock, Germany
| | - Niklas Wallmeroth
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Hecker
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Andreas Zell
- Cognitive Systems, Center for Bioinformatics, University of Tuebingen, Tuebingen, Germany
| | - Klaus Harter
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Dierk Wanke
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
24
|
Olson WK, Grosner MA, Czapla L, Swigon D. Structural insights into the role of architectural proteins in DNA looping deduced from computer simulations. Biochem Soc Trans 2013; 41:559-64. [PMID: 23514154 PMCID: PMC3746319 DOI: 10.1042/bst20120341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial gene expression is regulated by DNA elements that often lie far apart along the genomic sequence, but come close together during genetic processing. The intervening residues form loops, which are organized by the binding of various proteins. For example, the Escherichia coli Lac repressor protein binds DNA operators, separated by 92 or 401 bp, and suppresses the formation of gene products involved in the metabolism of lactose. The system also includes several highly abundant architectural proteins, such as the histone-like (heat-unstable) HU protein, which severely deform the double helix upon binding. In order to gain a better understanding of how the naturally stiff DNA double helix forms the short loops detected in vivo, we have developed new computational methods to study the effects of various non-specific binding proteins on the three-dimensional configurational properties of DNA sequences. The present article surveys the approach that we use to generate ensembles of spatially constrained protein-decorated DNA structures (minicircles and Lac repressor-mediated loops) and presents some of the insights gained from the correspondence between computation and experiment about the potential contributions of architectural and regulatory proteins to DNA looping and gene expression.
Collapse
Affiliation(s)
- Wilma K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, U.S.A.
| | | | | | | |
Collapse
|