1
|
Kumar AR, Nair B, Kamath AJ, Nath LR, Calina D, Sharifi-Rad J. Impact of gut microbiota on metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma: pathways, diagnostic opportunities and therapeutic advances. Eur J Med Res 2024; 29:485. [PMID: 39367507 PMCID: PMC11453073 DOI: 10.1186/s40001-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and progression to hepatocellular carcinoma (HCC) exhibits distinct molecular and immune characteristics. These traits are influenced by multiple factors, including the gut microbiome, which interacts with the liver through the "gut-liver axis". This bidirectional relationship between the gut and its microbiota and the liver plays a key role in driving various liver diseases, with microbial metabolites and immune responses being central to these processes. Our review consolidates the latest research on how gut microbiota contributes to MASH development and its progression to HCC, emphasizing new diagnostic and therapeutic possibilities. We performed a comprehensive literature review across PubMed/MedLine, Scopus, and Web of Science from January 2000 to August 2024, focusing on both preclinical and clinical studies that investigate the gut microbiota's roles in MASH and HCC. This includes research on pathogenesis, as well as diagnostic and therapeutic advancements related to the gut microbiota. This evidence emphasizes the critical role of the gut microbiome in the pathogenesis of MASH and HCC, highlighting the need for further clinical studies and trials. This is to refine diagnostic techniques and develop targeted therapies that exploit the microbiome's capabilities, aiming to enhance patient care in liver diseases.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health. Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
3
|
Expression of Concern: The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 Modulation. PLoS One 2024; 19:e0306742. [PMID: 38959202 PMCID: PMC11221689 DOI: 10.1371/journal.pone.0306742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
|
4
|
Ali M, Benfante V, Stefano A, Yezzi A, Di Raimondo D, Tuttolomondo A, Comelli A. Anti-Arthritic and Anti-Cancer Activities of Polyphenols: A Review of the Most Recent In Vitro Assays. Life (Basel) 2023; 13:life13020361. [PMID: 36836717 PMCID: PMC9967894 DOI: 10.3390/life13020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols have gained widespread attention as they are effective in the prevention and management of various diseases, including cancer diseases (CD) and rheumatoid arthritis (RA). They are natural organic substances present in fruits, vegetables, and spices. Polyphenols interact with various kinds of receptors and membranes. They modulate different signal cascades and interact with the enzymes responsible for CD and RA. These interactions involve cellular machinery, from cell membranes to major nuclear components, and provide information on their beneficial effects on health. These actions provide evidence for their pharmaceutical exploitation in the treatment of CD and RA. In this review, we discuss different pathways, modulated by polyphenols, which are involved in CD and RA. A search of the most recent relevant publications was carried out with the following criteria: publication date, 2012-2022; language, English; study design, in vitro; and the investigation of polyphenols present in extra virgin olive, grapes, and spices in the context of RA and CD, including, when available, the underlying molecular mechanisms. This review is valuable for clarifying the mechanisms of polyphenols targeting the pathways of senescence and leading to the development of CD and RA treatments. Herein, we focus on research reports that emphasize antioxidant properties.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- Correspondence:
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Agaj A, Peršurić Ž, Pavelić SK. Mediterranean Food Industry By-Products as a Novel Source of Phytochemicals with a Promising Role in Cancer Prevention. Molecules 2022; 27:8655. [PMID: 36557789 PMCID: PMC9784942 DOI: 10.3390/molecules27248655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet is recognized as a sustainable dietary approach with beneficial health effects. This is highly relevant, although the production of typical Mediterranean food, i.e., olive oil or wine, processed tomatoes and pomegranate products, generates significant amounts of waste. Ideally, this waste should be disposed in an appropriate, eco-friendly way. A number of scientific papers were published recently showing that these by-products can be exploited as a valuable source of biologically active components with health benefits, including anticancer effects. In this review, accordingly, we elaborate on such phytochemicals recovered from the food waste generated during the processing of vegetables and fruits, typical of the Mediterranean diet, with a focus on substances with anticancer activity. The molecular mechanisms of these phytochemicals, which might be included in supporting treatment and prevention of various types of cancer, are presented. The use of bioactive components from food waste may improve the economic feasibility and sustainability of the food processing industry in the Mediterranean region and can provide a new strategy to approach prevention of cancer.
Collapse
Affiliation(s)
- Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ul. Viktora cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Das BK. Altered gut microbiota in hepatocellular carcinoma: Insights into the pathogenic mechanism and preclinical to clinical findings. APMIS 2022; 130:719-740. [PMID: 36321381 DOI: 10.1111/apm.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. It is usually the result of pre-existing liver damage caused by hepatitis B and/or C virus infection, alcohol consumption, nonalcoholic steatohepatitis (NASH), aflatoxin exposure, liver cirrhosis, obesity, and diabetes. A growing body of evidence suggests that gut microbes have a role in cancer genesis. More research into the microbiome gut-liver axis has recently contributed to understanding how the gut microbiome facilitates liver disease or even HCC progression. This review focuses on the preclinical results of gut-related hepatocarcinogenesis and probiotics, prebiotics, and antibiotics as therapeutic interventions to maintain gut microbial flora and minimize HCC-associated symptoms. Understanding the mechanistic link between the gut microbiota, host, and cancer progression could aid us in elucidating the cancer-related pathways and drive us toward preventing HCC-associated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Bhrigu Kumar Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science (Assam Science and Technology University), Guwahati, Assam, India
| |
Collapse
|
7
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Hazafa A, Iqbal MO, Javaid U, Tareen MBK, Amna D, Ramzan A, Piracha S, Naeem M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review. Clin Transl Oncol 2022; 24:432-445. [PMID: 34609675 DOI: 10.1007/s12094-021-02709-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Natural products, especially polyphenols (phenolic acids, lignans, and stilbenes) are suggested to be more potent anticancer drugs because of their no or less adverse effects, excess availability, high accuracy, and secure mode of action. In the present review, potential anticancer mechanisms of action of some polyphenols including phenolic acids, lignans, and stilbenes are discussed based on clinical, epidemiological, in vivo, and in vitro studies. The emerging evidence revealed that phenolic acids, lignans, and stilbenes induced apoptosis in the treatment of breast (MCF-7), colon (Caco-2), lung (SKLU-1), prostate (DU-145 and LNCaP), hepatocellular (hepG-2), and cervical (A-431) cancer cells, cell cycle arrest (S/G2/M/G1-phases) in gastric (MKN-45 and MKN-74), colorectal (HCT-116), bladder (T-24 and 5637), oral (H-400), leukemic (HL-60 and MOLT-4) and colon (Caco-2) cancer cells, and inhibit cell proliferation against the prostate (PC-3), liver (LI-90), breast (T47D and MDA-MB-231), colon (HT-29 and Caco-2), cervical (HTB-35), and MIC-1 cancer cells through caspase-3, MAPK, AMPK, Akt, NF-κB, Wnt, CD95, and SIRT1 pathways. Based on accumulated data, we suggested that polyphenols could be considered as a viable therapeutic option in the treatment of cancer cells in the near future.
Collapse
Affiliation(s)
- A Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - M O Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - U Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - M B K Tareen
- College of Food Science & Technology, Huazhong Agricultural University, Huazhong, China
| | - D Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - A Ramzan
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - S Piracha
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - M Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
9
|
Ju PC, Ho YC, Chen PN, Lee HL, Lai SY, Yang SF, Yeh CB. Kaempferol inhibits the cell migration of human hepatocellular carcinoma cells by suppressing MMP-9 and Akt signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1981-1989. [PMID: 34156145 DOI: 10.1002/tox.23316] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Metastasis is the most prevalent cause of cancer-related deaths and treatment failure in patients with hepatocellular carcinoma (HCC). Kaempferol is a natural flavonol belonging to the subgroup of flavonoids and exhibits potent anticancer activities. This study provides molecular evidence on the anti-invasive and anti-migratory effects of kaempferol on human HCC cells. The anti-invasive effect was investigated by applying kaempferol on two human HCC cell lines (Huh-7 and SK-Hep-1). Kaempferol reduced the invasion and migration of Huh-7 and SK-Hep-1 cells by Boyden chamber invasion assay and wound healing assay, respectively. A protease array analysis showed that Matrix Metalloproteinase-9 (MMP-9) was dramatically downregulated in HCC cells after kaempferol treatment. Gelatin zymography and Western blot assay showed that kaempferol reduced the activities and protein expression of MMP-9, respectively. Kaempferol also sufficiently suppressed the phosphorylation of the Akt expression. Overall, kaempferol inhibited the invasive properties of human HCC cells by targeting MMP-9 and Akt pathways. Hence, kaempferol could be used as an adjuvant therapeutic agent for the treatment of human HCC cells.
Collapse
Affiliation(s)
- Po-Chung Ju
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Szu-Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Temraz S, Nassar F, Kreidieh F, Mukherji D, Shamseddine A, Nasr R. Hepatocellular Carcinoma Immunotherapy and the Potential Influence of Gut Microbiome. Int J Mol Sci 2021; 22:ijms22157800. [PMID: 34360566 PMCID: PMC8346024 DOI: 10.3390/ijms22157800] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Disruptions in the human gut microbiome have been associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. Evidence suggests that the gut microbiota can promote the development of hepatocellular carcinoma through the persistence of this inflammation by inducing genetic and epigenetic changes leading to cancer. As the gut microbiome is known for its effect on host metabolism and immune response, it comes as no surprise that the gut microbiome may have a role in the response to therapeutic strategies such as immunotherapy and chemotherapy for liver cancer. Gut microbiota may influence the efficacy of immunotherapy by regulating the responses to immune checkpoint inhibitors in patients with hepatocellular carcinoma. Here, we review the mechanisms by which gut microbiota influences hepatic carcinogenesis, the immune checkpoint inhibitors currently being used to treat hepatocellular carcinoma, as well as summarize the current findings to support the potential critical role of gut microbiome in hepatocellular carcinoma (HCC) immunotherapy.
Collapse
Affiliation(s)
- Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
- Correspondence: (S.T.); (R.N.)
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Firas Kreidieh
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon
- Correspondence: (S.T.); (R.N.)
| |
Collapse
|
11
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan M, Hadi S, Khan MA, Patel M. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda. PLANTS (BASEL, SWITZERLAND) 2021; 10:979. [PMID: 34068885 PMCID: PMC8156211 DOI: 10.3390/plants10050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022]
Abstract
Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 394230, India
| |
Collapse
|
12
|
Yu Q, Wu L, Ji J, Feng J, Dai W, Li J, Wu J, Guo C. Gut Microbiota, Peroxisome Proliferator-Activated Receptors, and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:271-288. [PMID: 33150145 PMCID: PMC7605923 DOI: 10.2147/jhc.s277870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. HCC incidence rate is sixth and mortality is fourth worldwide. However, HCC pathogenesis and molecular mechanisms remain unclear. The incidence of HCC is associated with genetic, environmental, and metabolic factors. The role of gut microbiota in the pathogenesis of HCC has attracted researchers' attention because of anatomical and functional interactions between liver and intestine. Studies have demonstrated the involvement of gut microbiota in the development of HCC and chronic liver diseases, such as alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs) are a group of receptors with diverse biological functions. Natural and synthetic PPAR agonists show potential for treatment of NAFLD, liver fibrosis, and HCC. Recent studies have demonstrated that PPARs take part in gut microbiota inhabitation and adaptation. This manuscript reviews the role of gut microbiota in the development of HCC and precancerous diseases, the role of PPARs in modulation of gut microbiota and HCC, and potential of gut microbiota for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200336, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| |
Collapse
|
13
|
The Effects of Supplement Therapy on HCV-Related HCC: a Case Report of a Patient Who Had Undergone TACE for Six Times. J Gastrointest Cancer 2020; 52:802-808. [PMID: 33095378 DOI: 10.1007/s12029-020-00540-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
|
14
|
Mandlik DS, Mandlik SK. Herbal and Natural Dietary Products: Upcoming Therapeutic Approach for Prevention and Treatment of Hepatocellular Carcinoma. Nutr Cancer 2020; 73:2130-2154. [PMID: 33073617 DOI: 10.1080/01635581.2020.1834591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most common tumor linked with elevated death rates is considered the hepatocellular carcinoma (HCC), sometimes called the malignant hepatoma. The initiation and progression of HCC are triggered by multiple factors like long term alcohol consumption, metabolic disorders, fatty liver disease, hepatitis B and C infection, age, and oxidative stress. Sorafenib is the merely US Food and Drug Administration (FDA)-approved drug used to treat HCC. Several treatment methods are available for HCC therapy such as chemotherapy, immunotherapy and adjuvant therapy but they often lead to several side effects. Yet these treatment methods are not entirely adequate due to the increasing resistance to the drug and their toxicity. Many natural products help to prevent and treat HCC. A variety of pathways are associated with the prevention and treatment of HCC with herbal products and their active components. Accumulating research shows that certain natural dietary compounds are possible source of hepatic cancer prevention and treatments, such as black currant, strawberries, plum, grapes, pomegranate, cruciferous crops, tomatoes, French beans, turmeric, garlic, ginger, asparagus, and many more. Such a dietary natural products and their active constituents may prevent the production and advancement of liver cancer in many ways such as guarding against liver carcinogens, improving the effectiveness of chemotherapeutic medications, inhibiting the growth, metastasis of tumor cells, reducing oxidative stress, and chronic inflammation. The present review article represents hepatic carcinoma etiology, role of herbal products, their active constituents, and dietary natural products for the prevention and treatment of HCC along with their possible mechanisms of action.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
15
|
Ping Z, Jun X, Yan W, Jun Z. Anti-cancer properties of specific Chinese herbal medicines for hepatocellular carcinoma treatment. Eur J Integr Med 2020:101215. [PMID: 33042292 PMCID: PMC7532350 DOI: 10.1016/j.eujim.2020.101215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS This essay explores the anti-cancer activity of specific Chinese herbal medicines to clarify how effective Chinese herbal medicine is used for handling hepatocellular carcinoma. METHODS Literature form publica domain were studied and an analysis of anti-cancer activity of specific Chinese herbal medicines is presented in this review. RESULTS Hepatocellular carcinoma is one of the most dangerous malignant tumors in the world. The operative diagnosis of liver cancer remains a significant challenge. Although surgery tissue resection is encouraging, a high risk of recurrence and metastasis, illustrating disease-related mortality is desperately required to enhance postoperative preventive and therapeutic clinical procedures. The almost only effective clinical intervention seems to be developing advanced targeted therapies such as sorafenib for hepatocellular carcinoma patients, but there is little research in this field. Because their preventative/therapeutic properties strengthen Chinese herbal medicinal compounds, they are deemed relevant to the treatment of hepatocellular carcinoma. Conclusion: Chinese herbal medicine derivates provide multifaceted, orientated and orchestrated therapy, making it an ideal candidate for inhibiting hepatocellular tumor production and metastasis.
Collapse
Affiliation(s)
- Zang Ping
- Pharmacy, Qingdao Island Central Hospital
| | - Xue Jun
- Department of Pharmacy, Huangdao district Chinese Medicine Hospital, Qingdao
| | - Wang Yan
- Qingdao West Coast New Area Health Comprehensive Administrative Law Enforcement Brigade
| | - Zhang Jun
- Department of Pharmacy, Huangdao district Chinese Medicine Hospital, Qingdao
| |
Collapse
|
16
|
Abolaji AO, Ajala VO, Adigun JO, Adedara IA, Kinyi HW, Farombi EO. Protective role of resveratrol, a natural polyphenol, in sodium fluoride-induced toxicity in Drosophila melanogaster. Exp Biol Med (Maywood) 2019; 244:1688-1694. [PMID: 31766888 DOI: 10.1177/1535370219890334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sodium fluoride (NaF) is used in water fluoridation and dental products such as mouth rinses and toothpastes. Resveratrol is a natural polyphenol with antioxidant and anti-inflammatory properties. The present study was carried out to evaluate the toxicity of NaF and the protective role of resveratrol in Drosophila melanogaster. For longevity assay, Harwich strain of D. melanogaster was treated with NaF (0, 10, 30, 50, 70 and 90 mg/kg diet) throughout the lifespan and daily mortality recorded. Then, flies were again treated with similar doses of NaF for seven days to evaluate survival rate and oxidative stress markers. Thereafter, 60 mg resveratrol/kg diet was selected to determine its ameliorative role in NaF (70 mg/kg)-induced toxicity in flies: Group A (control), Group B (60 mg resveratrol/kg diet), Group C (70 mg NaF/kg diet), and Group D (resveratrol, 60 mg/kg diet) + NaF, 70 mg/kg diet). Thereafter, Glutathione-S-transferase (GST), catalase and acetylcholinesterase (AchE) activities, as well as total thiol (T-SH), nitrites/nitrates and hydrogen peroxide (H2O2) levels were determined. The results showed that resveratrol prevented NaF-induced elevation of H2O2and nitrites/nitrates levels, as well as catalase activity. In addition, resveratrol restored NaF-induced inhibition of GST and AChE activities and depletion of T-SH content ( P < 0.05). Conclusively, resveratrol offered protective benefit against NaF-mediated toxicity in flies due to its antioxidant and anti-inflammatory properties.Impact statementD. melanogaster was used to understand the impact of NaF on lifespan and emergence rate as well as the rescue role of resveratrol. These parameters are difficult to carry out in previously used models such as rodents. This further enforces in part, the suitability of D. melanogaster in studying NaF-induced toxicity and the therapeutic effects of drugs. Additionally, we found that resveratrol rescued D. melanogaster from oxidative stress-induced by sodium fluoride (NaF) administration. This study is of public health significance as it indicated that the consumption of fruits rich in resveratrol such as grapes may offer protective role against inadvertent exposure to NaF and related chemicals.
Collapse
Affiliation(s)
- Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 20028, Nigeria
| | - Victor O Ajala
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 20028, Nigeria
| | - Janet O Adigun
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 20028, Nigeria
| | - Isaac A Adedara
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 20028, Nigeria
| | - Hellen W Kinyi
- Department of Biochemistry, School of Biomedical Sciences, Kampala International University, Kampala 20131, Uganda
| | - Ebenezer O Farombi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 20028, Nigeria
| |
Collapse
|
17
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
18
|
Kim J, Jung KH, Yan HH, Cheon MJ, Kang S, Jin X, Park S, Oh MS, Hong SS. Artemisia Capillaris leaves inhibit cell proliferation and induce apoptosis in hepatocellular carcinoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:147. [PMID: 29739391 PMCID: PMC5941330 DOI: 10.1186/s12906-018-2217-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/23/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Natural product is one of the most important sources of drugs used in pharmaceutical therapeutics. Artemisia capillaris has been traditionally used as a hepatoprotective and anti-inflammatory agent. In this study, we extracted an ethanol fraction (LAC117) from the dried leaves of Artemisia capillaris and identified its anticancer activity and mechanism of action against hepatocellular carcinoma (HCC). METHODS Anti-proliferative effect of LAC117 was evaluated by MTT assay and BrdU assay. The apoptotic effect of LAC117 on the expression of cleaved PARP and cleaved caspase-3 was evaluated by Western blot and immunohistochemistry from in vivo mouse xenograft, respectively. RESULTS We found that LAC117 strongly suppressed the growth and proliferation of human HCC cell lines (HepG2 and Huh7). Induction of apoptosis was evidenced by the increases of cleaved caspase-3 and PARP as well as TUNEL-positive cells. Additionally, the pro-apoptotic effect of LAC117 was observed by a decrease in the expression of the XIAP and an increase in cytochrome c releases via mitochondrial membrane potential. Moreover, it significantly inhibited PI3K/AKT pathway in HCC in vivo and in vitro. LAC117 suppressed tumor growth in an ex vivo model as well as in vivo mouse xenograft by inducing apoptosis and inhibiting tumor cell proliferation. CONCLUSIONS The present study highlights that LAC117 could not only efficiently induce apoptosis, but also inhibit the growth of human HCC cells by blocking the PI3K/AKT signaling pathway, suggesting that LAC117 would be a potentially useful drug candidate against HCC.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712 Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712 Korea
| | - Hong Hua Yan
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712 Korea
| | - Min Ji Cheon
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712 Korea
| | - Sunmi Kang
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - Xing Jin
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - Sunghyouk Park
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, 151-742 Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712 Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| |
Collapse
|
19
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
20
|
Samad NA, Abdul AB, Rahman HS, Rasedee A, Tengku Ibrahim TA, Keon YS. Zerumbone Suppresses Angiogenesis in HepG2 Cells through Inhibition of Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor, and Vascular Endothelial Growth Factor Receptor Expressions. Pharmacogn Mag 2018; 13:S731-S736. [PMID: 29491625 PMCID: PMC5822492 DOI: 10.4103/pm.pm_18_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Context Due to increase in the number of patients with impaired immunity, the incidence of liver cancer has increased considerably. Aims The aim of this study is the investigation the in vitro anticancer effect of zerumbone (ZER) on hepatocellular carcinoma (HCC). Materials and Methods The anticancer mechanism of ZER was determined by the rat aortic ring, human umbilical vein endothelial cells (HUVECs) proliferation, chorioallantoic membrane, cell migration, and proliferation inhibition assays. Results Our results showed that ZER reduced tube formation by HUVECs effectively inhibits new blood vessel and tissue matrix formation. Western blot analysis revealed that ZER significantly (P < 0.05) decreased expression of molecular effectors of angiogenesis, the matrix metalloproteinase-9, vascular endothelial growth factor (VEGF), and VEGF receptor proteins. We found that ZER inhibited the proliferation and suppressed migration of HepG2 cell in dose-dependent manner. Statistical Analysis Used Statistical analyses were performed according to the Statistical Package for Social Science (SPSS) version 17.0. The data were expressed as the mean ± standard deviation and analyzed using a one-way analysis of variance. A P < 0.05 was considered statistically significant. Conclusion The study for the first time showed that ZER is an inhibitor angiogenesis, tumor growth, and spread, which is suggested to be the mechanisms for its anti-HCC effect. SUMMARY Tumor angiogenesis has currently become an important research area for the control of cancer growth and metastasis. The current study determined the effect of zerumbone on factors associated with angiogenesis that occurs in tumor formation. Abbreviations used: ZER: Zerumbone, MMP-9: Matrix metalloproteinase-9, VEGF: Vascular endothelial growth factor, VEGFR: Vascular endothelial growth factor receptor, HUVECs: Human umbilical vein endothelial cells, HCC: Hepatocellular carcinoma, HIFCS: Heat inactivated fetal calf serum, DMSO: Dimethyl sulfoxide, EDTA: Ethyldiaminetetraacetic acid, Ig: Immunoglobulin, CAM: Chorioallantoic membrane, HRP: Horseradish peroxidase, NIH: National Institutes of Health, MTT: Microtetrazolium, SPSS: Statistical Package for Social Science.
Collapse
Affiliation(s)
- Nozlena Abdul Samad
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Ahmad Bustamam Abdul
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Northern Iraq.,Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaese, Sulaimani City, Kurdistan Region, Northern Iraq.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdullah Rasedee
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tengku Azmi Tengku Ibrahim
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yeap Swee Keon
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Nivelle L, Hubert J, Courot E, Borie N, Renault JH, Nuzillard JM, Harakat D, Clément C, Martiny L, Delmas D, Jeandet P, Tarpin M. Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144. Molecules 2017; 22:E1940. [PMID: 29120391 PMCID: PMC6150286 DOI: 10.3390/molecules22111940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
A new resveratrol dimer (1) called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) analyses including ¹H, 13C, heteronuclear single-quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and correlation spectroscopy (COSY) as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) were used to characterize this compound and to unambiguously identify it as a new stilbene dimer, though its relative stereochemistry remained unsolved. Labruscol was recovered as a pure compound (>93%) in sufficient amounts (41 mg) to allow assessment of its biological activity (cell viability, cell invasion and apoptotic activity) on two different cell lines, including one human skin melanoma cancer cell line HT-144 and a healthy human dermal fibroblast (HDF) line. This compound induced almost 100% of cell viability inhibition in the cancer line at a dose of 100 μM within 72 h of treatment. However, at all tested concentrations and treatment times, resveratrol displayed an inhibition of the cancer line viability higher than that of labruscol in the presence of fetal bovine serum. Both compounds also showed differential activities on healthy and cancer cell lines. Finally, labruscol at a concentration of 1.2 μM was shown to reduce cell invasion by 40%, although no similar activity was observed with resveratrol. The cytotoxic activity of this newly-identified dimer is discussed.
Collapse
Affiliation(s)
- Laetitia Nivelle
- Unité Matrice Extracellulaire et Dynamique Cellulaire, UMR CNRS 7369, SFR Cap-Santé FED 4231, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France.
| | - Jane Hubert
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR Cap-Santé FED 4231, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France.
| | - Eric Courot
- Unité de Recherche Vignes et Vins de Champagne EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France.
| | - Nicolas Borie
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR Cap-Santé FED 4231, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France.
| | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR Cap-Santé FED 4231, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France.
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR Cap-Santé FED 4231, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France.
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR Cap-Santé FED 4231, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France.
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France.
| | - Laurent Martiny
- Unité Matrice Extracellulaire et Dynamique Cellulaire, UMR CNRS 7369, SFR Cap-Santé FED 4231, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France.
| | - Dominique Delmas
- Centre de Recherche Inserm U866, Université de Bourgogne, 21000 Dijon, France.
| | - Philippe Jeandet
- Unité de Recherche Vignes et Vins de Champagne EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France.
| | - Michel Tarpin
- Unité Matrice Extracellulaire et Dynamique Cellulaire, UMR CNRS 7369, SFR Cap-Santé FED 4231, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France.
| |
Collapse
|
22
|
Dutra LA, Heidenreich D, Silva GDBD, Man Chin C, Knapp S, Santos JLD. Dietary Compound Resveratrol Is a Pan-BET Bromodomain Inhibitor. Nutrients 2017; 9:nu9111172. [PMID: 29077030 PMCID: PMC5707644 DOI: 10.3390/nu9111172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
The chemopreventive and anticancer effects of resveratrol (RSV) are widely reported in the literature. Specifically, mechanisms involving epigenetic regulation are promising targets to regulate tumor development. Bromodomains act as epigenetic readers by recognizing lysine acetylation on histone tails and boosting gene expression in order to regulate tissue-specific transcription. In this work, we showed that RSV is a pan-BET inhibitor. Using Differential Scanning Fluorimetry (DSF), we showed that RSV at 100 µM increased the melting temperature (∆Tm) of BET bromodomains by around 2.0 °C. The micromolar dissociation constant (Kd) range was characterized using Isothermal Titration Calorimetry (ITC). The RSV Kd value accounted to 6.6 µM in case of BRD4(1). Molecular docking proposed the binding mode of RSV against BRD4(1) mimicking the acetyl-lysine interactions. All these results suggest that RSV can also recognize epigenetic readers domains by interacting with BET bromodomains.
Collapse
Affiliation(s)
- Luiz Antonio Dutra
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University, D-60438 Frankfurt am Main, Germany.
| | - David Heidenreich
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University, D-60438 Frankfurt am Main, Germany.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University, D-60438 Frankfurt am Main, Germany.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
23
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
24
|
Hensel KO, Rendon JC, Navas MC, Rots MG, Postberg J. Virus-host interplay in hepatitis B virus infection and epigenetic treatment strategies. FEBS J 2017; 284:3550-3572. [PMID: 28457020 DOI: 10.1111/febs.14094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Worldwide, chronic hepatitis B virus (HBV) infection is a major health problem and no cure exists. Importantly, hepatocyte intrusion by HBV particles results in a complex deregulation of both viral and host cellular genetic and epigenetic processes. Among the attempts to develop novel therapeutic approaches against HBV infection, several options targeting the epigenomic regulation of HBV replication are gaining attention. These include the experimental treatment with 'epidrugs'. Moreover, as a targeted approach, the principle of 'epigenetic editing' recently is being exploited to control viral replication. Silencing of HBV by specific rewriting of epigenetic marks might diminish viral replication, viremia, and infectivity, eventually controlling the disease and its complications. Additionally, epigenetic editing can be used as an experimental tool to increase our limited understanding regarding the role of epigenetic modifications in viral infections. Aiming for permanent epigenetic reprogramming of the viral genome without unspecific side effects, this breakthrough may pave the roads for an ambitious technological pursuit: to start designing a curative approach utilizing manipulative molecular therapies for viral infections in vivo.
Collapse
Affiliation(s)
- Kai O Hensel
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| | - Julio C Rendon
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands.,Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Maria-Cristina Navas
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands
| | - Jan Postberg
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| |
Collapse
|
25
|
Yeh CB, Hsieh MJ, Lin CW, Chiou HL, Lin PY, Chen TY, Yang SF. Correction: The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 Modulation. PLoS One 2017; 12:e0174494. [PMID: 28319146 PMCID: PMC5358885 DOI: 10.1371/journal.pone.0174494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Ho HY, Ho YC, Hsieh MJ, Yang SF, Chuang CY, Lin CW, Hsin CH. Hispolon suppresses migration and invasion of human nasopharyngeal carcinoma cells by inhibiting the urokinase-plasminogen activator through modulation of the Akt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:645-655. [PMID: 27037602 DOI: 10.1002/tox.22266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Hispolon has been reported to possess antioxidant, antiinflammatory, and antitumor activities. However, the effect of hispolon on the metastasis of nasopharyngeal carcinoma (NPC) remains unclear. In this study, we investigated how the antimetastatic activity and relevant signaling pathways of hispolon affected three NPC cell lines. The results revealed that hispolon significantly reduced the migration and invasion of three NPC cells in a dose-dependent manner from 0 to 50 µM. Hispolon also significantly inhibited the activity and expression of urokinase-plasminogen activator (uPA) as well as the phosphorylation of Akt. Moreover, blocking the Akt pathway also enhanced the antimetastatic ability of hispolon in the NPC cells. In conclusion, hispolon inhibited uPA expression and NPC cell metastasis by downregulating Akt signal pathways; therefore, hispolon exerts beneficial effects in chemoprevention. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 645-655, 2017.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Changhua Christian Hospital, Cancer Research Center, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, 110 Chien-Kuo N. Road, Section 1, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Prebiotics: A Novel Approach to Treat Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2017; 2017:6238106. [PMID: 28573132 PMCID: PMC5442341 DOI: 10.1155/2017/6238106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is one of the fatal malignancies and is considered as the third leading cause of death. Mutations, genetic modifications, dietary aflatoxins, or impairments in the regulation of oncogenic pathways may bring about liver cancer. An effective barrier against hepatotoxins is offered by gut-liver axis as a change in gut permeability and expanded translocation of lipopolysaccharides triggers the activation of Toll-like receptors which stimulate the process of hepatocarcinogenesis. Prebiotics, nondigestible oligosaccharides, have a pivotal role to play when it comes to inducing an antitumor effect. A healthy gut flora balance is imperative to downregulation of inflammatory cytokines and reducing lipopolysaccharides induced endotoxemia, thus inducing the antitumor effect.
Collapse
|
28
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
29
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
30
|
Mikami S, Ota I, Masui T, Itaya-Hironaka A, Shobatake R, Okamoto H, Takasawa S, Kitahara T. Effect of resveratrol on cancer progression through the REG Ⅲ expression pathway in head and neck cancer cells. Int J Oncol 2016; 49:1553-1560. [PMID: 27633858 DOI: 10.3892/ijo.2016.3664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/12/2016] [Indexed: 11/05/2022] Open
Abstract
Identification of reliable markers of chemo- and radiosensitivity and the key molecules that enhance the susceptibility of head and neck squamous cell carcinoma (HNSCC) to anticancer treatments is highly desirable. Previously, we have reported that regenerating gene (REG) Ⅲ expression was such a marker associated with an improved survival rate for HNSCC patients. In the present study, we investigated the stimulators for induction of REG Ⅲ expression using REG Ⅲ promoter assay in HNSCC cells transfected with REG Ⅲ promoter vector. We tested inflammatory cytokines, growth factors, polyphenols, PPARγ activator of thiazolidinediones, and histone deacetylase inhibitors, and found that 3,4',5-trihydroxy-trans-stilbene (resveratrol) significantly increased the REG Ⅲ promoter activity and the mRNA levels of REG Ⅲ in HNSCC cells. Moreover, we demonstrated the effect of resveratrol on cancer cell progression, such as cell proliferation, chemo‑ and radiosensitivity and cancer invasion of HNSCC cells. Resveratrol significantly inhibited cell growth, enhanced chemo‑ and radiosensitivity, and blocked cancer invasion of HNSCC cells. These data suggested that resveratrol could inhibit cancer progression through the REG Ⅲ expression pathway in HNSCC cells.
Collapse
Affiliation(s)
- Shinji Mikami
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Ichiro Ota
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Takashi Masui
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Hideyuki Okamoto
- Department of Otolaryngology, Nara City Hospital, Nara 630‑8305, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| |
Collapse
|
31
|
Abraham JA, Golubnitschaja O. Time for paradigm change in management of hepatocellular carcinoma: is a personalized approach on the horizon? Per Med 2016; 13:455-467. [PMID: 29767598 DOI: 10.2217/pme-2016-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer form but the second leading cause of all cancer-related deaths. There are several reasons for high mortality in the HCC cohort: lack of effective screening programs and consequently late diagnosis, multifactorial origin with cumulative risk factors, complex carcinogenesis, tumor heterogeneity, unpredictable impacts of individual microenvironment on tumor development and progression, and, as the consequence, frequently untargeted therapy and cancer resistance toward currently applied treatment approaches. The currently applied 'treat and wait' approach is inappropriate in the overall HCC management. Urgent need in paradigm change toward predictive, preventive and personalized medicine is discussed in this review article. Innovative strategies for an advanced predictive, preventive and personalized medicine approach in the overall HCC management benefiting the patient are presented.
Collapse
Affiliation(s)
- Jella-Andrea Abraham
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Olga Golubnitschaja
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
32
|
Matsushima-Nishiwaki R, Toyoda H, Nagasawa T, Yasuda E, Chiba N, Okuda S, Maeda A, Kaneoka Y, Kumada T, Kozawa O. Phosphorylated Heat Shock Protein 20 (HSPB6) Regulates Transforming Growth Factor-α-Induced Migration and Invasion of Hepatocellular Carcinoma Cells. PLoS One 2016; 11:e0151907. [PMID: 27046040 PMCID: PMC4821579 DOI: 10.1371/journal.pone.0151907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/12/2016] [Indexed: 01/25/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway.
Collapse
Affiliation(s)
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Tomoaki Nagasawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Eisuke Yasuda
- Department of Radiological Technology, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Naokazu Chiba
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Seiji Okuda
- Department of Medical Technology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Atsuyuki Maeda
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| |
Collapse
|
33
|
Hsieh MJ, Yeh CB, Chiou HL, Hsieh MC, Yang SF. Dioscorea nipponica Attenuates Migration and Invasion by Inhibition of Urokinase-Type Plasminogen Activator through Involving PI3K/Akt and Transcriptional Inhibition of NF-κB and SP-1 in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:177-95. [DOI: 10.1142/s0192415x16500129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. In our previous studies, we have reported that Dioscorea nipponica Makino extract (DNE) has anti-metastasis effects on human oral cancer cells. However, the effect of DNE on hepatoma metastasis have not been thoroughly investigated and remains poorly understood. To determine the effects of DNE on the migration and invasion in HCC cells we used a wound healing model, Boyden chamber assays, gelatin/casein zymography and Western blotting. Transcriptional levels of matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (u-PA) were detected by real-time PCR and promoter assays. In this study, DNE treatment significantly inhibited the migration/invasion capacities of Huh7 cell lines. The results of gelatin/casein zymography and Western blotting revealed that the activities and protein levels of the MMP-9 and u-PA were inhibited by DNE. Tests of the mRNA levels, real-time PCR, and promoter assays evaluated the inhibitory effects of DNE on u-PA expression in human hepatoma cells. A chromatin immunoprecipitation (ChIP) assay showed not only that DNE inhibits u-PA expression, but also the inhibitory effects were associated with the down-regulation of the transcription factors of NF-[Formula: see text]B and SP-1 signaling pathways. Western blot analysis also showed that DNE inhibits PI3K and phosphorylation of Akt. In conclusion, these results show that u-PA expression may be a potent therapeutic target in the DNE-mediated suppression of HCC invasion/migration. DNE may have potential use as a chemo-preventive agent against liver cancer metastasis.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
- School of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
34
|
Pan W, Yu H, Huang S, Zhu P. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK. PLoS One 2016; 11:e0147034. [PMID: 26799794 PMCID: PMC4723256 DOI: 10.1371/journal.pone.0147034] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/28/2015] [Indexed: 11/18/2022] Open
Abstract
Inflammation and reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α)-induced injury in human umbilical endothelial cells (HUVECs) using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNF-α induced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1); and repression of SIRT1 by small-interfering RNA (siRNA) and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC) achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs.
Collapse
Affiliation(s)
- Wei Pan
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Huizhen Yu
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Geriatrics, Fujian Provincial Hospital Key Laboratory of Geriatrics, Fujian Medical University, Fuzhou, China
- Fujian Institute of Clinical Geriatrics, Fuzhou, China
| | - Shujie Huang
- Fujian Institute of Clinical Geriatrics, Fuzhou, China
| | - Pengli Zhu
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Institute of Clinical Geriatrics, Fuzhou, China
- * E-mail:
| |
Collapse
|
35
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Yang Y, Cui J, Xue F, Overstreet AM, Zhan Y, Shan D, Li H, Li H, Wang Y, Zhang M, Yu C, Xu ZQD. Resveratrol Represses Pokemon Expression in Human Glioma Cells. Mol Neurobiol 2015; 53:1266-1278. [PMID: 25875864 DOI: 10.1007/s12035-014-9081-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/29/2014] [Indexed: 01/10/2023]
Abstract
POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.
Collapse
Affiliation(s)
- Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Jiajun Cui
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anne-Marie Overstreet
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yiping Zhan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dapeng Shan
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Hui Li
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hui Li
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | | | - Mengmeng Zhang
- Jiaxing Entry-Exit Inspection and Quarantine, Jiaxing, 314001, China
| | - Chunjiang Yu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
37
|
Lin FY, Hsieh YH, Yang SF, Chen CT, Tang CH, Chou MY, Chuang YT, Lin CW, Chen MK. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells. J Oral Pathol Med 2014; 44:699-706. [PMID: 25401496 DOI: 10.1111/jop.12288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. METHODS Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. RESULTS We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. CONCLUSION In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention.
Collapse
Affiliation(s)
- Feng-Yan Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chang-Tai Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ting Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
38
|
Heiduschka G, Bigenzahn J, Brunner M, Thurnher D. Resveratrol synergistically enhances the effect of etoposide in HNSCC cell lines. Acta Otolaryngol 2014; 134:1071-8. [PMID: 25220729 DOI: 10.3109/00016489.2014.888592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Resveratrol shows a growth inhibitory effect in head and neck squamous cell carcinoma (HNSCC) cell lines and acts synergistically in combination with etoposide in three cell lines via the induction of apoptotic and necrotic cell death. OBJECTIVE In patients with recurrent/distant HNSCC, one of the limited treatment options is etoposide. The aim of this study was to investigate whether resveratrol is able to enhance the antiproliferative effect of etoposide in vitro synergistically. METHODS Dose-response curves of etoposide and resveratrol in three HNSCC cell lines were generated. Drug combinations in a fixed dose ratio were carried out and results were analyzed by the combination index method. Detection of apoptotic cells was performed by flow cytometry. RESULTS Both compounds show a dose- and time-dependent growth inhibitory effect as single agents after treatment. In combination experiments we observed distinct synergistic effects increasing over time in all three cell lines.
Collapse
Affiliation(s)
- Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna , Vienna , Austria
| | | | | | | |
Collapse
|
39
|
Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:127-35. [PMID: 27508182 PMCID: PMC4918273 DOI: 10.2147/jhc.s48512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major leading cause of cancer death worldwide. Hepatitis B virus, hepatitis C virus, alcohol consumption, non-alcoholic fatty liver disease, and diabetes are the major risks for developing HCC. Until now, recurrence and metastasis are the major cause of death in HCC patients. Therefore, identification of new effective molecular targets is an urgent need for treatment of HCC. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor which could be activated by PPARγ agonists such as thiazolidinediones, and natural PPARγ ligand (such as 15-deoxy-Δ12,14-prostaglandin J2, 15d-PGJ2). Increasing in vitro and in vivo evidence has demonstrated that PPARγ agonists exhibit an inhibitory role on tumor cell growth, migration, and invasion, suggesting that PPARγ activation may play an important role in the regulation of growth of HCC. It has been reported that PPARγ activation by thiazolidinediones or overexpression of PPARγ by virus-mediated gene transfer has shown growth inhibitory effects in hepatoma cells, but the expression level of PPARγ in HCC tissues still remains conflicting. Notably, a novel PPARγ agonist, honokiol, has recently been found to activate the PPARγ/RXR heterodimer, and has also exhibited significant anti-cancer effects in hepatoma cells. In the present review, we summarized studies on the role and the molecular regulation of PPARγ in HCC development in vitro and in vivo. PPARγ has the potential to be a therapeutic target for future treatment of HCC.
Collapse
Affiliation(s)
- Hui-Tzu Hsu
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Lin CW, Chou YE, Chiou HL, Chen MK, Yang WE, Hsieh MJ, Yang SF. Pterostilbene suppresses oral cancer cell invasion by inhibiting MMP-2 expression. Expert Opin Ther Targets 2014; 18:1109-20. [PMID: 25109417 DOI: 10.1517/14728222.2014.947962] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Polyphenol compounds, present in a wide variety of natural plants, exhibit antioxidant and free radical scavenging ability and induce apoptosis in various cancer cells. However, the effect of pterostilbene on oral cancer cell metastasis has not been clarified. RESEARCH DESIGN AND METHODS The present study aimed to examine the anti-metastatic properties of pterostilbene in human oral squamous cell carcinoma (SCC)-9 cells. RESULTS In this study, pterostilbene treatment significantly inhibited migration/invasion capacities of SCC-9 cells in vitro. The results of zymography and western blotting revealed that the activities and protein levels of the MMP-2 and urokinase-type plasminogen activator (u-PA) was inhibited by pterostilbene. Western blot analysis also showed that pterostilbene inhibits the phosphorylation of Akt, extracellular signal-regulated kinase 1/2 and p38. Determinations of the mRNA levels, real-time polymerase chain reaction and promoter assays were conducted to evaluate the inhibitory effects of pterostilbene on MMP-2 and u-PA expression in SCC-9 cells. Such inhibitory effects were associated with the upregulation of tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1 and the downregulation of the transcription factors of NF-κB, SP-1 and CREB signaling pathways. CONCLUSIONS Pterostilbene may have potential use as a chemopreventive agent against oral cancer metastasis.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Chung Shan Medical University, Institute of Oral Sciences , Taichung 40201 , Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Byambaragchaa M, de la Cruz J, Yang SH, Hwang SG. Anti-metastatic potential of ethanol extract of Saussurea involucrata against hepatic cancer in vitro. Asian Pac J Cancer Prev 2014; 14:5397-402. [PMID: 24175833 DOI: 10.7314/apjcp.2013.14.9.5397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The rates of morbidity and mortality of hepatocellular carcinoma (HCC) have not lessened because of difficulty in treating tumor metastasis. Mongolian Saussurea involucrata (SIE) possesses various anticancer activities, including apoptosis and cell cycle arrest. However, detailed effects and molecular mechanisms of SIE on metastasis are unclear. Thus, the present study was undertaken to investigate antimetastatic effects on HCC cells as well as possible mechanisms. Effects of SIE on the growth, adhesion, migration, aggregation and invasion of the SK-Hep1 human HCC cell line were investigated. SIE inhibited cell growth of metastatic cells in dose- and time-dependent manners. Incubation of SK-Hep1 cells with 200-400 μg/mL of SIE significantly inhibited cell adhesion to gelatin-coated substrate. In the migration (wound healing) and aggregation assays, SIE treated cells showed lower levels than untreated cells. Invasion assays revealed that SIE treatment inhibited cell invasion capacity of HCC cells substantially. Quantitative real time PCR showed inhibitory effects of SIE on MMP-2/-9 and MT1-MMP mRNA levels, and stimulatory effects on TIMP-1, an inhibitor of MMPs. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by SIE, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 expression of SK-Hep1 cells. From these results, it was suggested that SIE could be used as potential anti-tumor agent.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Division of Animal Life and Environmental Science, Hankyong National University, Anseong, Philippines E-mail :
| | | | | | | |
Collapse
|
42
|
Yeh CB, Yu YL, Lin CW, Chiou HL, Hsieh MJ, Yang SF. Terminalia catappa attenuates urokinase-type plasminogen activator expression through Erk pathways in Hepatocellular carcinoma. Altern Ther Health Med 2014; 14:141. [PMID: 24886639 PMCID: PMC4012530 DOI: 10.1186/1472-6882-14-141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/25/2014] [Indexed: 01/31/2023]
Abstract
Background The survival rate of malignant tumors, and especially hepatocellular carcinoma (HCC), has not improved primarily because of uncontrolled metastasis. In our previous studies, we have reported that Terminalia catappa leaf extract (TCE) exerts antimetastasis effects on HCC cells. However, the molecular mechanisms of urokinase-type plasminogen activator (u-PA) in HCC metastasis have not been thoroughly investigated, and remain poorly understood. Methods The activities and protein levels of u-PA were determined by casein zymography and western blotting. Transcriptional levels of u-PA were detected by real-time PCR and promoter assays. Results We found that treatment of Huh7 cells with TCE significantly reduced the activities, protein levels and mRNA levels of u-PA. A chromatin immunoprecipitation (ChIP) assay showed that TCE inhibited the transcription protein of nuclear factors SP-1 and NF-κB. TCE also did inhibit the effects of u-PA by reducing the phosphorylation of ERK1/2 pathway. Conclusions These results show that u-PA expression may be a potent therapeutic target in the TCE-mediated suppression of HCC metastasis.
Collapse
|
43
|
Hu Y, Wang S, Wu X, Zhang J, Chen R, Chen M, Wang Y. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:601-12. [PMID: 23916858 DOI: 10.1016/j.jep.2013.07.030] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) as the major histological subtype of primary liver cancer remains one of the most common malignancies worldwide. Due to the complicated molecular pathogenesis of HCC, the option for effective systemic treatment is quite limited. There exists a critical need to explore and evaluate possible alternative strategies for effective control of HCC. With a long history of clinical use, Chinese herbal medicine (CHM) is emerging as a noticeable choice for its multi-level, multi-target and coordinated intervention effects against HCC. With the aids of phytochemistry and molecular biological approaches, in the past decades many CHM-derived compounds have been carefully studied through both preclinical and clinical researches and have shown great potential in novel anti-HCC natural product development. The present review aimed at providing the most recent developments on anti-HCC compounds derived from CHM, especially their underlying pharmacological mechanisms. MATERIALS AND METHODS A systematic search of anti-HCC compounds from CHM was carried out focusing on literatures published both in English (PubMed, Scopus, Web of Science and Medline) and in Chinese academic databases (Wanfang and CNKI database). RESULTS In this review, we tried to give a timely and comprehensive update about the anti-HCC effects and targets of several representative CHM-derived compounds, namely curcumin, resveratrol, silibinin, berberine, quercetin, tanshinone II-A and celastrol. Their mechanisms of anti-HCC behaviors, potential side effects or toxicity and future research directions were discussed. CONCLUSION Herbal compounds derived from CHM are of much significance in devising new drugs and providing unique ideas for the war against HCC. We propose that these breakthrough findings may have important implications for targeted-HCC therapy and modernization of CHM.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Yang H, Zheng Y, Li TWH, Peng H, Fernandez-Ramos D, Martínez-Chantar ML, Rojas AL, Mato JM, Lu SC. Methionine adenosyltransferase 2B, HuR, and sirtuin 1 protein cross-talk impacts on the effect of resveratrol on apoptosis and growth in liver cancer cells. J Biol Chem 2013; 288:23161-70. [PMID: 23814050 DOI: 10.1074/jbc.m113.487157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is growth-suppressive and pro-apoptotic in liver cancer cells. Methionine adenosyltransferase 2B (MAT2B) encodes for two dominant variants V1 and V2 that positively regulate growth, and V1 is anti-apoptotic when overexpressed. Interestingly, crystal structure analysis of MAT2B protein (MATβ) protomer revealed two resveratrol binding pockets, which raises the question of the role of MAT2B in resveratrol biological activities. We found that resveratrol induced the expression of MAT2BV1 and V2 in a time- and dose-dependent manner by increasing transcription, mRNA, and protein stabilization. Following resveratrol treatment, HuR expression increased first, followed by SIRT1 and MAT2B. SIRT1 induction contributes to increased MAT2B transcription whereas HuR induction increased MAT2B mRNA stability. MATβ interacts with HuR and SIRT1, and resveratrol treatment enhanced these interactions while reducing the interaction between MATβ and MATα2. Because MATβ lowers the Ki of MATα2 for S-adenosylmethionine (AdoMet), this allowed steady-state AdoMet level to rise. Interaction among MATβ, SIRT1, and HuR increased stability of these proteins. Induction of MAT2B is a compensatory response to resveratrol as knocking down MAT2BV1 potentiated the resveratrol pro-apoptotic and growth-suppressive effects, whereas the opposite occurred with V1 overexpression. The same effect on growth occurred with MAT2BV2. In conclusion, resveratrol induces HuR, SIRT1, and MAT2B expression; the last may represent a compensatory response against apoptosis and growth inhibition. However, MATβ induction also facilitates SIRT1 activation, as the interaction stabilizes SIRT1. This complex interplay among MATβ, HuR, and SIRT1 has not been previously reported and suggests that these proteins may regulate each other's signaling.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, University of Southern California Research Center for Liver Diseases, Keck School of Medicine, the University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|