1
|
Mangione W, Falls Z, Samudrala R. Effective holistic characterization of small molecule effects using heterogeneous biological networks. Front Pharmacol 2023; 14:1113007. [PMID: 37180722 PMCID: PMC10169664 DOI: 10.3389/fphar.2023.1113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The two most common reasons for attrition in therapeutic clinical trials are efficacy and safety. We integrated heterogeneous data to create a human interactome network to comprehensively describe drug behavior in biological systems, with the goal of accurate therapeutic candidate generation. The Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multiscale therapeutic discovery, repurposing, and design was enhanced by integrating drug side effects, protein pathways, protein-protein interactions, protein-disease associations, and the Gene Ontology, and complemented with its existing drug/compound, protein, and indication libraries. These integrated networks were reduced to a "multiscale interactomic signature" for each compound that describe its functional behavior as vectors of real values. These signatures are then used for relating compounds to each other with the hypothesis that similar signatures yield similar behavior. Our results indicated that there is significant biological information captured within our networks (particularly via side effects) which enhance the performance of our platform, as evaluated by performing all-against-all leave-one-out drug-indication association benchmarking as well as generating novel drug candidates for colon cancer and migraine disorders corroborated via literature search. Further, drug impacts on pathways derived from computed compound-protein interaction scores served as the features for a random forest machine learning model trained to predict drug-indication associations, with applications to mental disorders and cancer metastasis highlighted. This interactomic pipeline highlights the ability of Computational Analysis of Novel Drug Opportunities to accurately relate drugs in a multitarget and multiscale context, particularly for generating putative drug candidates using the information gleaned from indirect data such as side effect profiles and protein pathway information.
Collapse
Affiliation(s)
| | | | - Ram Samudrala
- Jacobs School of Medicine and Biomedical Sciences, Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
3
|
Wang Y, Zhang T, Li C, Guo J, Xu B, Xue L. Telmisartan attenuates human glioblastoma cells proliferation and oncogenicity by inducing the lipid oxidation. Asia Pac J Clin Oncol 2021; 18:217-223. [PMID: 33945216 PMCID: PMC9290901 DOI: 10.1111/ajco.13574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Background Glioblastoma (GBM) is one of the most common primary brain tumors, which accounts up to 80% of malignant brain tumors and the 5‐year relative survival rate is below 5%. Recent studies showed that the lipid metabolism played an essential role in GBM development. As a peroxisome proliferators‐activated receptors γ (PPAR‐γ) agonist, telmisartan improves the lipid metabolism and has been used to treat hypertension for long time. It has also been shown to have anticancer function, such as in lung cancer and melanoma. Methods Incucyte real‐time live cell imaging system was used to assess the effect of telmisartan on glioma cell lines U87 and U251 proliferation. Transwell assay and colony formation assay were conducted to detect the effect of telmisartan on oncogenicity of GBM cell lines. Western blot and immunofluorescence analysis were used to detect the effect of telmisartan on the expression of PPAR‐γ and hydroxyacyl‐coenzyme A dehydrogenase alpha subunit (HADHA). Results We demonstrate that telmisartan inhibits two glioma cell lines U87 and U251 proliferation in a time‐ and dose‐dependent manner, and arrests the cell cycle at S phase. We further show that telmisartan decreases the oncogenicity of GBM cell lines. Our data show that telmisartan treatment significantly increases the PPAR‐γ expression level, enhances the lipid oxidation, and upregulates the level of fatty acid oxidation key enzyme HADHA. Conclusions Telmisartan inhibits the proliferation and oncogenicity while it also increases the lipid oxidation of human GBM cells.
Collapse
Affiliation(s)
- Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Tengrui Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Chen Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, China.,Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China.,Biobank, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Facciorusso A, Abd El Aziz MA, Cincione I, Cea UV, Germini A, Granieri S, Cotsoglou C, Sacco R. Angiotensin Receptor 1 Blockers Prolong Time to Recurrence after Radiofrequency Ablation in Hepatocellular Carcinoma patients: A Retrospective Study. Biomedicines 2020; 8:399. [PMID: 33050084 PMCID: PMC7599746 DOI: 10.3390/biomedicines8100399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibition of angiotensin II synthesis seems to decrease hepatocellular carcinoma recurrence after radical therapies; however, data on the adjuvant role of angiotensin II receptor 1 blockers (sartans) are still lacking. Aim of the study was to evaluate whether sartans delay time to recurrence and prolong overall survival in hepatocellular carcinoma patients after radiofrequency ablation. Data on 215 patients were reviewed. The study population was classified into three groups: 113 (52.5%) patients who received neither angiotensin-converting enzyme inhibitors nor sartans (group 1), 59 (27.4%) patients treated with angiotensin-converting enzyme inhibitors (group 2) and 43 (20.1%) patients treated with sartans (group 3). Survival outcomes were analyzed using Kaplan-Meier analysis and compared with log-rank test. In the whole study population, 85.6% of patients were in Child-Pugh A-class and 89.6% in Barcelona Clinic Liver Cancer A stage. Median maximum tumor diameter was 30 mm (10-40 mm) and alpha-fetoprotein was 25 (1.1-2100) IU/mL. No differences in baseline characteristics among the three groups were reported. Median overall survival was 48 months (42-51) in group 1, 51 months (42-88) in group 2, and 63 months (51-84) in group 3 (p = 0.15). Child-Pugh stage and Model for End-staging Liver Disease (MELD) score resulted as significant predictors of overall survival in multivariate analysis. Median time to recurrence was 33 months (24-35) in group 1, 41 (23-72) in group 2 and 51 months (42-88) in group 3 (p = 0.001). Number of nodules and anti-angiotensin treatment were confirmed as significant predictors of time to recurrence in multivariate analysis. Sartans significantly improved time to recurrence after radiofrequency ablation in hepatocellular carcinoma patients but did not improve overall survival.
Collapse
Affiliation(s)
- Antonio Facciorusso
- Department of Medical Sciences, Gastroenterology Unit, Ospedali Riuniti di Foggia, 71122 Foggia, Italy; (U.V.C.); (R.S.)
| | | | - Ivan Cincione
- Department of Clinical and Experimental Medicine, Faculty of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Ugo Vittorio Cea
- Department of Medical Sciences, Gastroenterology Unit, Ospedali Riuniti di Foggia, 71122 Foggia, Italy; (U.V.C.); (R.S.)
| | - Alessandro Germini
- General Surgery Department, ASST-Vimercate, 20871 Vimercate, Italy; (A.G.); (S.G.); (C.C.)
| | - Stefano Granieri
- General Surgery Department, ASST-Vimercate, 20871 Vimercate, Italy; (A.G.); (S.G.); (C.C.)
| | - Christian Cotsoglou
- General Surgery Department, ASST-Vimercate, 20871 Vimercate, Italy; (A.G.); (S.G.); (C.C.)
| | - Rodolfo Sacco
- Department of Medical Sciences, Gastroenterology Unit, Ospedali Riuniti di Foggia, 71122 Foggia, Italy; (U.V.C.); (R.S.)
| |
Collapse
|
5
|
Zamel IA, Palakkott A, Ashraf A, Iratni R, Ayoub MA. Interplay Between Angiotensin II Type 1 Receptor and Thrombin Receptor Revealed by Bioluminescence Resonance Energy Transfer Assay. Front Pharmacol 2020; 11:1283. [PMID: 32973514 PMCID: PMC7468457 DOI: 10.3389/fphar.2020.01283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The key hormone of the renin-angiotensin system (RAS), angiotensin II (AngII), and thrombin are known to play major roles in the vascular system and its related disorders. Previous studies reported connections between AngII and thrombin in both physiological and pathophysiological models. However, the molecular mechanisms controlling such interplay at the level of their receptors belonging to the family of G protein-coupled receptors (GPCRs) are not fully understood. In this study, we investigated the functional interaction between the AngII type 1 receptor (AT1R) and the thrombin receptor [or protease-activated receptor 1 (PAR1)] in human embryonic kidney 293 (HEK293) cells. For this, we used various bioluminescence resonance energy transfer (BRET) proximity-based assays to profile the coupling to the heterotrimeric Gαq protein, β-arrestin recruitment, and receptor internalization and trafficking in intact cells. The overall dose-response and real-time kinetic BRET data demonstrated the specific molecular proximity between AT1R and PAR1 resulting in their functional interaction. This was characterized by thrombin inducing BRET increase within AT1R/Gαq and AT1R/β-arrestin pairs and synergistic effects observed upon the concomitant activation of both receptors suggesting a positive allosteric interaction. The BRET data corroborated with the data on the downstream Gαq/inositol phosphate pathway. Moreover, the selective pharmacological blockade of the receptors revealed the implication of both AT1R and PAR1 protomers in such a synergistic interaction and the possible transactivation of AT1R by PAR1. Interestingly, the positive action of PAR1 on AT1R activation was contrasted with its apparent inhibition of AT1R internalization and its endosomal trafficking. Finally, BRET saturation and co-immunoprecipitation assays supported the physical AT1-PAR1 interaction in HEK293 cells. Our study reveals for the first time the functional interaction between AT1R and PAR1 in vitro characterized by a transactivation and positive allosteric modulation of AT1R and inhibition of its desensitization and internalization. This finding may constitute the molecular basis of the well-known interplay between RAS and thrombin. Thus, our data should lead to revising some findings on the implication of RAS and thrombin in vascular physiology and pathophysiology revealing the importance to consider the functional and pharmacological interaction between AT1R and thrombin receptors.
Collapse
Affiliation(s)
- Isra Al Zamel
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Najdaghi S, Razi S, Rezaei N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine 2020; 135:155205. [PMID: 32721849 DOI: 10.1016/j.cyto.2020.155205] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal Cancer (CRC), a common malignancy, is developing globally among people. Mutagenic insults activate peripheral nucleated cells to secrete chemokines in order to cause an inflammatory state. Despite the presence of multi-retrieving factors, elevated production of minor cytokines may speed-up the sever stages of the baseline inflammation targeting normal compensatory mechanism. IL-8 is a pro-inflammatory cytokine that is believed to be up-regulated in CRC to proceed primary condition into tumor behavior via induction of proliferation, angiogenesis and metastasis. Here, we assess the role of IL-8 in every step of CRC from signaling pathway and formation to invasion and discuss around new perspective therapy that targets IL-8 to manage CRC worldwide incidence and survival rate, more precisely.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
7
|
Krynina OI, Korotkevych NV, Labyntsev AJ, Romaniuk SI, Kolybo DV, Komisarenko SV. Influence of human HB-EGF secreted form on cells with different EGFR and ErbB4 quantity. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Effect of Telmisartan in the Oxidative Stress Components Induced by Ischemia Reperfusion in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1302985. [PMID: 31354899 PMCID: PMC6636510 DOI: 10.1155/2019/1302985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Abstract
The therapeutic effects of telmisartan, an angiotensin II receptor antagonist and a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, have been demonstrated in several disorders. It has antioxidant and immune response modulator properties and has shown promising results in the treatment of an ischemia/reperfusion (I/R) lesion. In this study, a skeletal muscle (right gastrocnemius muscle) I/R lesion was induced in rats and different reperfusion times (1 h, 24 h, 72 h, 7-day, and 14-day subgroups) were assessed. Furthermore, levels of oxidative markers such as enzymatic scavengers (catalase (CAT) and superoxide dismutase (SOD)) and metabolites (nitrates and 8-oxo-deoxyguanosine) were determined. The degree of tissue injury (total lesioned fibers and inflammatory cell count) was also evaluated. We observed an increase in CAT and SOD expression levels under telmisartan treatment, with a decrease in injury and oxidative biomarker levels in the 72 h, 7-day, and 14-day subgroups. Telmisartan reduced oxidative stress and decreased the damage of the I/R lesion.
Collapse
|
9
|
Barone M, Viggiani MT, Losurdo G, Principi M, Leo AD. Systematic review: Renin-angiotensin system inhibitors in chemoprevention of hepatocellular carcinoma. World J Gastroenterol 2019; 25:2524-2538. [PMID: 31171895 PMCID: PMC6543242 DOI: 10.3748/wjg.v25.i20.2524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neoangiogenesis is one of the key pathogenetic mechanisms in hepatocellular carcinoma (HCC). Modulation of the renin-angiotensin system (RAS) by angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) seems to be a possible adjuvant therapy for HCC, due to the anti-angiogenic and anti-fibrogenic activity of these drugs. AIM To elucidate the role of ARBs and ACE-Is in HCC. METHODS We performed an electronic search of the literature using the most accessed online databases (PubMed, Cochrane library, Scopus and Web of Science), entering the query terms "angiotensin-converting enzyme inhibitors" OR "ACE inhibitors" OR "ACE-I" AND "hepatocarcinoma*" OR "hepatocellular carcinoma; moreover "angiotensin II type 1 receptor blockers" OR "ARBs" AND "hepatocarcinoma*" OR "hepatocellular carcinoma". Eligibility criteria were: (1) prospective or retrospective clinical studies; (2) epidemiological studies; and (3) experimental studies conducted in vivo or in vitro. Abstracts, conference papers, and reviews were excluded a priori. We limited our literature search to articles published in English, in peer-reviewed journals. RESULTS Thirty-one studies were selected. Three interventional studies showed that ACE-Is had a significant protective effect on HCC recurrence only when used in combination with vitamin K or branched chain aminoacids, without a significant increase in overall survival. Of six retrospective observational studies, mainly focused on overall survival, only one demonstrated a prolonged survival in the ACE-Is group, whereas the two that also evaluated tumor recurrence showed conflicting results. All experimental studies displayed beneficial effects of RAS inhibitors on hepatocarcinogenesis. Numerous experimental studies, conducted either on animals and cell cultures, demonstrated the anti-angiogenetic and antifibrotic effect of ACE-Is and ARBs, thanks to the suppression of some cytokines such as vascular endothelial growth factor, hypoxia-inducible factor-1a, transforming growth factor-beta and tumor necrosis factor alpha. All or parts of these mechanisms were demonstrated in rodents developing fewer HCC and preneoplastic lesions after receiving such drugs. CONCLUSION In humans, RAS inhibitors - alone or in combination - significantly suppressed the cumulative HCC recurrence, without prolonging patient survival, but some limitations intrinsic to these studies prompt further investigations.
Collapse
Affiliation(s)
- Michele Barone
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Maria Teresa Viggiani
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giuseppe Losurdo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Mariabeatrice Principi
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Alfredo Di Leo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| |
Collapse
|
10
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
11
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Lian C, Ruan L, Shang D, Wu Y, Lu Y, Lü P, Yang Y, Wei Y, Dong X, Ren D, Chen K, Liu H, Tu Z. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Potent Target for Breast Cancer Therapy. Cancer Biother Radiopharm 2016; 31:85-90. [DOI: 10.1089/cbr.2015.1956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Caixia Lian
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lingling Ruan
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yongjin Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yuhua Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yajun Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiaojing Dong
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dewan Ren
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Facciorusso A, Del Prete V, Crucinio N, Muscatiello N, Carr BI, Di Leo A, Barone M. Angiotensin receptor blockers improve survival outcomes after radiofrequency ablation in hepatocarcinoma patients. J Gastroenterol Hepatol 2015; 30:1643-1650. [PMID: 25974743 DOI: 10.1111/jgh.12988] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Inhibition of angiotensin II synthesis seems to decrease hepatocellular carcinoma recurrence after radical therapies; however, data on the adjuvant role of angiotensin II receptor 1 blockers (sartans) are still lacking. The aim of the study was to evaluate whether sartans delay time to recurrence and prolong overall survival in hepatocellular carcinoma patients after radiofrequency ablation. METHODS Data on 153 patients were reviewed. The study population was classified into three groups: 73 (47.8%) patients who received neither angiotensin-converting enzyme inhibitors nor sartans (group 1), 49 (32%) patients treated with angiotensin-converting enzyme inhibitors (group 2), and 31 (20.2%) patients treated with sartans (group 3). Survival outcomes were analysed by means of Kaplan-Meier analysis and compared with log-rank test. RESULTS In the whole study population, 85.6% of patients were in Child-Pugh A class and 89.6% in Barcelona Clinic Liver Cancer A stage. Median maximum tumor diameter was 30 mm (10-40) and alpha fetoprotein was 25 (1.1-2100) UI/mL. No differences in baseline characteristics among the three groups were reported. Median overall survival was 48 months (95% confidence interval: 31-58) in group 1, 72 months (49-89) in group 2, and 84 months (58-92) in group 3 (P = 0.02). Median time to recurrence was 26 (15-42), 44 (33-72), and 69 (44-74) months in the three groups, respectively (P = 0.02). Sartan therapy was a significant predictor of longer overall survival and delayed time to recurrence on multivariate analysis. CONCLUSION Sartans significantly improved overall survival and time to recurrence after radiofrequency ablation in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Antonio Facciorusso
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Valentina Del Prete
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nicola Crucinio
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nicola Muscatiello
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Brian I Carr
- Laboratory of Biochemistry and Tumor Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Alfredo Di Leo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
14
|
AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene 2015; 35:3016-26. [PMID: 26434590 PMCID: PMC4908437 DOI: 10.1038/onc.2015.357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126* in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126*, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126*-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2α, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126*. We showed the chance of restoring miR-126&126* expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2α expression, which in turn binds to and induces miR-126&126* transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126* toward miR-221&222. This circuitry, besides confirming the central role of AP2α in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics.
Collapse
|
15
|
Hu Y, Lin X, Wang P, Xue YX, Li Z, Liu LB, Yu B, Feng TD, Liu YH. CRM197 in Combination With shRNA Interference of VCAM-1 Displays Enhanced Inhibitory Effects on Human Glioblastoma Cells. J Cell Physiol 2015; 230:1713-28. [PMID: 25201410 DOI: 10.1002/jcp.24798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023]
Abstract
CRM197 is a naturally nontoxic diphtheria toxin mutant that binds and inhibits heparin-binding epidermal growth factor-like growth factor. CRM197 serves as carrier protein for vaccine and other therapeutic agents. CRM197 also inhibits the growth, migration, invasion, and induces apoptosis in various tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we aimed to investigate the role and mechanism of CRM197 combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion, and apoptosis of glioblastoma cells. U87 and U251 human glioblastoma cells were treated with CRM197 (10 µg/ml) and shRNA interfering technology was employed to silence VCAM-1 expression. Cell viability, migration, invasiveness, and apoptosis were assessed with CCK8, Transwell and Annexin V-PE/7-AAD staining. Activation of cleaved caspase-3, 8, and 9, activity of matrix metalloproteinase-2/9 (MMP-2/9), and expression of phosphorylated Akt (p-Akt) were also checked. Results showed that CRM197 and shRNA-VCAM-1 not only significantly inhibited the cell proliferation, migration, invasion, but also promoted the apoptosis of U87 and U251 cells. Combined treatment of both displayed enhanced inhibitory effects on the malignant biological behavior of glioma cells. The activation of cleaved caspase-3, 8, 9 was promoted, activity of MMP-2 and MMP-9 and expression of p-Akt were inhibited significantly by the treatment of CRM197 and shRNA-VCAM-1 alone or in combination, indicating that the combination of CRM197 with shRNA-VCAM-1 additively inhibited the malignant behavior of human glioblastoma cells via activating caspase-3, 8, 9 as well as inhibiting MMP-2, MMP-9, and Akt pathway.
Collapse
Affiliation(s)
- Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Papanagnou P, Baltopoulos P, Tsironi M. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal. Ther Clin Risk Manag 2015; 11:807-19. [PMID: 26056460 PMCID: PMC4445694 DOI: 10.2147/tcrm.s82049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Panagiotis Baltopoulos
- Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| |
Collapse
|
17
|
Matsuzawa K, Izawa S, Ohkura T, Ohkura H, Ishiguro K, Yoshida A, Takiyama Y, Haneda M, Shigemasa C, Yamamoto K, Taniguchi SI. Implication of intracellular localization of transcriptional repressor PLZF in thyroid neoplasms. BMC Endocr Disord 2014; 14:52. [PMID: 24990570 PMCID: PMC4087200 DOI: 10.1186/1472-6823-14-52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Promyelocytic leukaemia zinc finger (PLZF) is a transcriptional repressor that was originally isolated from a patient with promyelocytic leukaemia. PLZF also affects key elements for cell cycle progression, such as cyclin A, and can affect the tumourigenicity of various cancers. Thus far, the behaviour of PLZF in thyroid carcinoma remains unclear. METHODS We analysed the expression profile of PLZF in different types of benign and malignant thyroid lesions as well as in normal thyroid tissue. Specifically, we examined PLZF expression in normal thyroid (N; n = 4), adenomatous lesion (AL; n = 5), follicular adenoma (FA; n = 2), papillary thyroid carcinoma (PTC; n = 20), and anaplastic thyroid carcinoma (ATC; n = 3) samples. PLZF expression was estimated by western blotting and immunohistochemical (IHC) staining. RESULTS PLZF was expressed in all samples of thyroid lesions examined. In N, AL, and FA, PLZF was mainly localized in the nucleus. In contrast, in PTC and ATC, PLZF was mainly expressed in the cytosol with high intensity. In more detail, the cytoplasmic IHC scores in PTC with capsular invasion (CI) and lymph node (LN) metastasis were higher than those in PTC without CI and LN metastasis. CONCLUSIONS PLZF shows different subcellular localizations among PTC, ATC, and other thyroid lesions. Furthermore, high cytoplasmic expression of PLZF may be correlated with CI and LN metastasis in thyroid carcinoma. The present report is the first to describe the implications of intracellular PLZF expression in thyroid carcinomas.
Collapse
Affiliation(s)
- Kazuhiko Matsuzawa
- Department of Regional Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Shoichiro Izawa
- Department of Molecular Medicine and Therapeutics, Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Tsuyoshi Ohkura
- Department of Molecular Medicine and Therapeutics, Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hiroko Ohkura
- Department of Regional Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Kiyosuke Ishiguro
- Department of Surgery, Division of Organ Regeneration Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Akio Yoshida
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yumi Takiyama
- Department of Medicine, Division of Metabolism and Biosystemic Science, Asahikawa Medical University, 1-1-1 Midorigaokahigashinijyo, Asahikawa 078-8510, Japan
| | - Masakazu Haneda
- Department of Medicine, Division of Metabolism and Biosystemic Science, Asahikawa Medical University, 1-1-1 Midorigaokahigashinijyo, Asahikawa 078-8510, Japan
| | | | - Kazuhiro Yamamoto
- Department of Molecular Medicine and Therapeutics, Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Shin-ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
18
|
Hao PP, Liu YP, Yang CY, Liang T, Zhang C, Song J, Han JK, Hou GH. Evaluation of (131)I-anti-angiotensin II type 1 receptor monoclonal antibody as a reporter for hepatocellular carcinoma. PLoS One 2014; 9:e85002. [PMID: 24416333 PMCID: PMC3885667 DOI: 10.1371/journal.pone.0085002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022] Open
Abstract
Background Finding a specific agent is useful for early detection of tumor. Angiotensin II type 1 receptor (AT1R) was reported to be elevated in a variety of tumors and participate in tumor progression. The aim of our study was to evaluate whether 131I-anti-AT1R monoclonal antibody (mAb) is an efficient imaging reporter for the detection of hepatocellular carcinoma. Methodology/Principal Findings AT1R mAb or isotype IgG was radioiodinated with 131I and the radiochemical purity and stability of the two imaging agents and the affinity of 131I-anti-AT1R mAb against AT1R were measured. 3.7 MBq 131I-anti-AT1R mAb or isotype 131I-IgG was intravenously injected to mice with hepatocellular carcinoma through tail vein, and then the whole-body autoradiography and biodistribution of the two imaging agents and the pharmacokinetics of 131I-anti-AT1R mAb were studied. 131I-anti-AT1R mAb and 131I-IgG were successfully radioiodinated and both maintained more stable in serum than in saline. The 131I-anti-AT1R mAb group showed much clearer whole-body images for observing hepatocellular carcinoma than the 131I-IgG group. The biodistributions of the two imaging agents suggested that hepatocellular carcinoma tissue uptook more 131I-anti-AT1R mAb than other tissues (%ID/g = 1.82±0.40 and T/NT ratio = 7.67±0.64 at 48 h), whereas hepatocellular carcinoma tissue did not selectively uptake 131I-IgG (%ID/g = 0.42±0.06 and T/NT ratio = 1.33±0.08 at 48 h). The pharmacokinetics of 131I-anti-AT1R mAb was in accordance with the two-compartment model, with a rapid distribution phase and a slow decline phase. These results were further verified by real-time RT-PCR, immunohistochemistry staining and Western blot. Conclusions/Significance 131I-anti-AT1R mAb may be a potential target for early detection of tumor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Blotting, Western
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/pathology
- Drug Stability
- Early Diagnosis
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/immunology
- Iodine Radioisotopes
- Liver/diagnostic imaging
- Liver/pathology
- Liver Neoplasms/diagnosis
- Liver Neoplasms/diagnostic imaging
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Radionuclide Imaging
- Radiopharmaceuticals/immunology
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/immunology
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Pan-Pan Hao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yan-Ping Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
| | - Chang-Ya Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
| | - Jing Song
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
| | - Jian-Kui Han
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Gui-Hua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
19
|
Kaur M, Bhatia RK, Pissurlenkar RR, Coutinho EC, Jain UK, Katare OP, Chandra R, Madan J. Telmisartan complex augments solubility, dissolution and drug delivery in prostate cancer cells. Carbohydr Polym 2014; 101:614-22. [DOI: 10.1016/j.carbpol.2013.09.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022]
|
20
|
George AJ, Hannan RD, Thomas WG. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J 2013; 280:5258-68. [PMID: 23992425 DOI: 10.1111/febs.12509] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
To influence physiology and pathophysiology, G protein-coupled receptors (GPCRs) have evolved to appropriate additional signalling modalities, such as activation of adjacent membrane receptors. Epidermal growth factor receptors (EGFRs) mediate growth and remodelling actions of GPCRs, although the precise network of gene products and molecular cascades linking GPCRs to EGFRs (termed EGFR transactivation) remains incomplete. In this review, we describe the current view of GPCR-EGFR transactivation, identifying the established models of receptor cross-talk. We consider the limitations in our current knowledge, and propose that recent advances in molecular and cell biology technology, including functional genomics approaches, will allow a renewed focus of efforts to understand the mechanism underlying EGFR transactivation. Using an unbiased approach for identification of the molecules required for GPCR-mediated EGFR transactivation will provide a contemporary and more complete representation from which to extrapolate therapeutic control in diseases from cardiovascular remodelling to cancer.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia; Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia; Department of Pathology, The University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|