1
|
Kawashima I, Matsushita M, Mishima K, Kamiya Y, Osawa Y, Ohkawara B, Ohno K, Kitoh H, Imagama S. Activated FGFR3 suppresses bone regeneration and bone mineralization in an ovariectomized mouse model. BMC Musculoskelet Disord 2023; 24:200. [PMID: 36927417 PMCID: PMC10018961 DOI: 10.1186/s12891-023-06318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis is a widespread health concern due to its prevalence among older adults and an associated high risk of fracture. The downregulation of bone regeneration delays fracture healing. Activated fibroblast growth factor receptor 3 (FGFR3) accelerates bone regeneration at juvenile age and downregulates bone mineralization at all ages. However, the impact of FGFR3 signaling on bone regeneration and bone mineralization post-menopause is still unknown. This study aimed to evaluate the impact of FGFR3 signaling on bone regeneration and bone mineralization during menopause by developing a distraction osteogenesis (DO) mouse model after ovariectomy (OVX) using transgenic mice with activated FGFR3 driven by Col2a1 promoter (Fgfr3 mice). METHODS The OVX or sham operations were performed in 8-week-old female Fgfr3 and wild-type mice. After 8 weeks of OVX surgery, DO surgery in the lower limb was performed. The 5-day-latency period followed by performing distraction for 9 days. Bone mineral density (BMD) and bone regeneration was assessed by micro-computed tomography (micro-CT) scan and soft X-ray. Bone volume in the distraction area was also evaluated by histological analysis after 7 days at the end of distraction. Osteogenic differentiation and mineralization of bone marrow-derived mesenchymal stem cells (BMSCs) derived from each mouse after 8 weeks of the OVX or sham operations were also evaluated with and without an inhibitor for FGFR3 signaling (meclozine). RESULTS BMD decreased after OVX in both groups, and it further deteriorated in Fgfr3 mice. Poor callus formation after DO was also observed in both groups with OVX, and the amount of regenerated bone was further decreased in Fgfr3 mice. Similarly, histological analysis revealed that Fgfr3 OVX mice showed lower bone volume. Osteogenic differentiation and mineralization of BMSCs were also deteriorated in Fgfr3 OVX mice. An inhibitor for FGFR3 signaling dramatically reversed the inhibitory effect of OVX and FGFR3 signaling on BMSC mineralization. CONCLUSION Upregulated FGFR3 decreased newly regenerated bone after DO and BMD in OVX mice. FGFR3 signaling can be a potential therapeutic target in patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Itaru Kawashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan.
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Yasunari Kamiya
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 4748710, Obu, Aichi, Japan.,Department of Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Wang J, Wei Y, Zhou Z, Yang J, Jia Y, Wu H, Dong H, Leng X. Deer antler extract promotes tibia fracture healing in mice by activating BMP-2/SMAD4 signaling pathway. J Orthop Surg Res 2022; 17:468. [PMID: 36307889 PMCID: PMC9617435 DOI: 10.1186/s13018-022-03364-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deer antler is a traditional Chinese medicine with the function of tonifying kidney and strengthening bone, which is often used to treat orthopedic diseases. METHODS Eight-week-old C57BL/6 mice were used as the fixation model of open tibial fracture with intramedullary nail. The mice were treated with deer antler extract (DAE) or PBS by oral gavage once daily. The tibial fracture samples were collected and performed to the tissue analysis, including X-ray, micro-CT, histology, qRT-PCR, immunohistochemistry. MC3T3-E1 cells were used to detect the effect of deer antler extract on ability of cell proliferation and migration by CCK-8 assay and cell scratch test. RESULTS Imaging and micro-CT showed that DAE could promote the healing of tibial fracture in mice, and histological analysis showed that DAE could promote the transformation of cartilage callus to bone callus in fracture area. The results of qRT-PCR and immunohistochemistry showed that DAE could promote intrachondral ossification in fracture zone and the mechanism of promoting fracture healing may be related to the activation of BMP-2/SMAD4 signaling pathway. In the cytological experiment of DAE, it can be found that DAE promoted the proliferation of MC3T3-E1 cells and the migration of MC3T3-E1 cells at a certain concentration, which is also related to the promotion of fracture healing by DAE. CONCLUSION DAE can promote fracture healing by activating BMP-2/SMAD4 signaling pathway. DAE has the potential to be used in clinic as an important means of promoting fracture healing.
Collapse
Affiliation(s)
- Jianyu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuchi Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuyan Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Hailong Wu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Haisi Dong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
3
|
Abstract
Purpose of Review Despite the continued growth of spine fusion procedures, the ideal material for bone regeneration remains unclear. Current bone graft substitutes and extenders in use such as exogenous BMP-2 or demineralized bone matrix and hydroxyapatite either have serious complications associated with use or lead to clinically significant rates of non-union. The introduction of nanotechnology and 3D printing to regenerative medicine facilitates the development of safer and more efficacious bone regenerative scaffolds that present solutions to these problems. Many researchers in orthopedics recognize the importance of lowering the dose of recombinant growth factors like BMP-2 to avoid the complications associated with its normal required supraphysiologic dosing to achieve high rates of fusion in spine surgery. Recent Findings Recent iterations of bioactive scaffolds have moved towards peptide amphiphiles that bind endogenous osteoinductive growth factor sources at the site of implantation. These molecules have been shown to provide a highly fluid, natural mimetic of natural extracellular matrix to achieve 100% fusion rates at 10–100 times lower doses of BMP-2 relative to controls in pre-clinical animal posterolateral fusion models. Alternative approaches to bone regeneration include the combination of existing natural growth factor sources like human bone combined with bioactive, biocompatible components like hydroxyapatite using 3D-printing technologies. Their elastomeric, 3D-printed scaffolds demonstrate an optimal safety profile and high rates of fusion (~92%) in the rat posterolateral fusion model. Summary Bioactive peptide amphiphiles and developments in 3D printing offer the promising future of a recombinant growth factor- free bone graft substitute with similar efficacy but improved safety profiles compared to existing bone graft substitutes.
Collapse
|
4
|
Smith MM, Hayes AJ, Melrose J. Pentosan Polysulphate (PPS), a Semi-Synthetic Heparinoid DMOAD With Roles in Intervertebral Disc Repair Biology emulating The Stem Cell Instructive and Tissue Reparative Properties of Heparan Sulphate. Stem Cells Dev 2022; 31:406-430. [PMID: 35102748 DOI: 10.1089/scd.2022.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review highlights the attributes of pentosan polysulphate (PPS) in the promotion of intervertebral disc (IVD) repair processes. PPS has been classified as a disease modifying osteoarthritic drug (DMOAD) and many studies have demonstrated its positive attributes in the countering of degenerative changes occurring in cartilaginous tissues during the development of osteoarthritis (OA). Degenerative changes in the IVD also involve inflammatory cytokines, degradative proteases and cell signalling pathways similar to those operative in the development of OA in articular cartilage. PPS acts as a heparan sulphate (HS) mimetic to effect its beneficial effects in cartilage. The IVD contains small cell membrane HS-proteoglycans (HSPGs) such as syndecan, and glypican and a large multifunctional HS/chondroitin sulphate (CS) hybrid proteoglycan (HSPG2/perlecan) that have important matrix stabilising properties and sequester, control and present growth factors from the FGF, VEGF, PDGF and BMP families to cellular receptors to promote cell proliferation, differentiation and matrix synthesis. HSPG2 also has chondrogenic properties and stimulates the synthesis of extracellular matrix (ECM) components, expansion of cartilaginous rudiments and has roles in matrix stabilisation and repair. Perlecan is a perinuclear and nuclear proteoglycan in IVD cells with roles in chromatin organisation and control of transcription factor activity, immunolocalises to stem cell niches in cartilage, promotes escape of stem cells from quiescent recycling, differentiation and attainment of pluripotency and migratory properties. These participate in tissue development and morphogenesis, ECM remodelling and repair. PPS also localises in the nucleus of stromal stem cells, promotes development of chondroprogenitor cell lineages, ECM synthesis and repair and discal repair by resident disc cells. The availability of recombinant perlecan and PPS offer new opportunities in repair biology. These multifunctional agents offer welcome new developments in repair strategies for the IVD.
Collapse
Affiliation(s)
- Margaret M Smith
- The University of Sydney Raymond Purves Bone and Joint Research Laboratories, 247198, St Leonards, New South Wales, Australia;
| | - Anthony J Hayes
- Cardiff School of Biosciences, University of Cardiff, UK, Bioimaging Unit, Cardiff, Wales, United Kingdom of Great Britain and Northern Ireland;
| | - James Melrose
- Kolling Institute, University of Sydney, Royal North Shore Hospital, Raymond Purves Lab, Sydney Medical School Northern, Level 10, Kolling Institute B6, Royal North Shore Hospital, St. Leonards, New South Wales, Australia, 2065.,University of New South Wales, 7800, Graduate School of Biomedical Engineering, University of NSW, Sydney, New South Wales, Australia, 2052;
| |
Collapse
|
5
|
Latifi M, Sani M, Salmannejad M, Kabir-Salmani M, Babakhanzadeh Bavanati H, Talaei-Khozani T. Synergistic impact of platelet rich plasma-heparin sulfate with hydroxyapatite/zirconia on the osteoblast differentiation potential of adipose-derived mesenchymal stem cells. Cell Tissue Bank 2021; 23:669-683. [PMID: 34665403 DOI: 10.1007/s10561-021-09966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
3D porous hydroxyapatite (HA) has been reinforced by zirconia (ZrO2) coating and impregnation with a combination of platelet rich plasma (PRP) as a source of growth factors (GFs) and Heparin sulfate (HS) to sustain the release of GFs. Adipose mesenchymal stem cells (ADMSCs) were characterized by flow cytometry for CD (cluster of differentiation) 44, CD105, CD106, CD34 and CD144, along with checking the multipotency by differentiation into the adipocytes and osteoblasts. Then, they were cultured on the scaffold treated with and without osteogenic media on days 7, 14 and 21. Electron micrograph and PKH staining show that the ADMSCs have a fusiform phenotype in the absence of osteogenic induction. Cell viability assay shows a higher number of the viable cells on the PRP-containing scaffolds than PRP-free scaffolds on day 7. Colorimetric evaluation, quantitative RT-PCR and immunocytochemistry demonstrate that PRP and HS significantly elevate the alkaline phosphatase enzyme activity and also accelerate the production of both early and mid-osteogenic markers, including collagen I and osteopontin expression with and without osteogenic conditions. The PRP-HS also accelerates the expression of the late osteogenic marker, osteocalcin, in both mRNA and protein level expression with a peak on day 21. In conclusion, supplementation of HA/ZrO2 with PRP/HS has a synergistic impact on the ADMSCs, even in the absence of chemical induction. It seems that HA/ZrO2/PRP/HS scaffold provides a higher osteoconductive microenvironment for stem cell differentiation to osteoblasts.
Collapse
Affiliation(s)
- Mona Latifi
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering, School of Advanced Medical Science and Technologies, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahin Salmannejad
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabir-Salmani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Faculty, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Forces Exerted in Craniofacial Distraction Osteogenesis. J Craniofac Surg 2021; 33:187-191. [PMID: 34643602 DOI: 10.1097/scs.0000000000008283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The purpose of this study was to develop a methodology for quantifying linear forces of distraction osteogenesis, and thereafter apply this methodology to measure and compare distraction force magnitudes between cranial vault distraction osteogenesis (CVDO) and mandibular distraction osteogenesis (MDO). METHODS Patients undergoing CVDO or MDO as inpatients had distraction forces acquired with a digital torque-measuring screwdriver. Torque measurements were then converted into linear distraction force values, which were then compared across distraction types and protocols with appropriate statistics. RESULTS CVDO was performed on 7 patients (41.2%), and MDO was performed on 10 patients (58.8%). Across the entire cohort, the average maximum force per activation was 27.0 N, and the average elastic force was 10.7 N. Maximum force (CVDO: 52.9 N versus MDO: 12.9 N; P < 0.001) and elastic force (CVDO: 22.0 N versus MDO: 4.5 N; P < 0.001) were significantly higher in patients undergoing CVDO than MDO. Multivariate regression demonstrated that maximum activation force was significantly associated with sequential days of distraction (B= + 1.1 N/day; P < 0.001), distraction rate (B= + 8.9 N/mm/day; P = 0.016), distractor hardware failure (B= + 10.3 N if failure; P = 0.004), and distraction type (B= + 41.4 N if CVDO; P < 0.001). CONCLUSIONS Cranial vault distraction requires significantly more linear distraction force than mandibular distraction. Maximum forces increase with each day of distraction, as well as with increased distraction rates. Linear distraction force methodology from this study may provide the foundation for future development of optimized procedure-specific or patient-specific distraction protocols.
Collapse
|
7
|
Sun W, Li M, Zhang Y, Huang Y, Zhan Q, Ren Y, Dong H, Chen J, Li Z, Fan C, Huang F, Shen Z, Jiang Z. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-Smad signaling pathway induced large tibial defect rats. Biomed Pharmacother 2021; 138:111480. [PMID: 33774316 DOI: 10.1016/j.biopha.2021.111480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022] Open
Abstract
Osteogenesis and angiogenesis acts as an essential role in repairing large tibial defects (LTDs). Total flavonoids of rhizoma drynariae (TFRD), a traditional Chinese medicinal herb, is reported to show anabolic effects on fracture healing. However, whether TFRD could improve the bone formation and angiogenesis in LTDs remains unknown. The purpose of this study was to evaluate the effect of TFRD on bone formation and angiogenesis in LTDs in distraction osteogenesis (DO). Using a previously established fracture model, LTD rats was established with circular external fixator (CEF). All rats then randomly divided into TFRD low dosage group (with DO), TFRD medium dosage group (with DO), TFRD high dosage group (with DO), model group (with DO) and blank group (without DO). Twelve weeks after treatment, according to X-ray and Micro-CT, TFRD groups (especially in medium dosage group) can significantly promote the formation of a large number of epiphyses and improve new bone mineralization compared with model group, and the results of HE and Masson staining and in vitro ALP level of BMSC also demonstrated the formation of bone matrix and mineralization in the TFRD groups. Also, angiographic imaging suggested that total flavonoids of TFRD was able to promote angiogenesis in the defect area. Consistently, TFRD significantly increased the levels of BMP-2, SMAD1, SMAD4, RUNX-2, OSX and VEGF in LTD rats based on ELISA and Real-Time PCR. In addition, we found that ALP activity of TFRD medium dosage group reached a peak after 10 days of induction through BMSC cell culture in vitro experiment. TFRD promoted bone formation in LTD through activation of BMP-Smad signaling pathway, which provides a promising new strategy for repairing bone defects in DO surgeries.
Collapse
Affiliation(s)
- Weipeng Sun
- First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Minying Li
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yan Zhang
- First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yingjie Huang
- First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qunzhang Zhan
- First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yueyi Ren
- First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hang Dong
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiena Chen
- Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zige Li
- First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Chun Fan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhen Shen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming Municipal, Yunnan Province, China.
| | - Ziwei Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Yehuda S, Nandikol SS, Thulasiram HV, Padler-Karavani V, Kikkeri R. Synthetic heparan sulfate ligands for vascular endothelial growth factor to modulate angiogenesis. Chem Commun (Camb) 2021; 57:3516-3519. [PMID: 33704312 DOI: 10.1039/d1cc00964h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the discovery of a potential heparan sulfate (HS) ligand to target several growth factors using 13 unique HS tetrasaccharide ligands. By employing an HS microarray and SPR, we deciphered the crucial structure-binding relationship of these glycans with the growth factors BMP2, VEGF165, HB-EGF, and FGF2. Notably, GlcNHAc(6-O-SO3-)-IdoA(2-O-SO3-) (HT-2,6S-NAc) tetrasaccharide showed strong binding with the VEGF165 growth factor. In vitro vascular endothelial cell proliferation, migration and angiogenesis was inhibited in the presence of VEGF165 and HT-2,6S-NAc or HT-6S-NAc, revealing the potential therapeutic role of these synthetic HS ligands.
Collapse
Affiliation(s)
- Prashant Jain
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune-411008, India.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Xu Z, Wang Q, Jiang Y, Wang R, Chen S, Zhu J, Zhang Y, Chen J. Selective regulation of RANKL/RANK/OPG pathway by heparan sulfate through the binding with estrogen receptor β in MC3T3-E1 cells. Int J Biol Macromol 2020; 161:1526-1534. [DOI: 10.1016/j.ijbiomac.2020.07.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 02/09/2023]
|
10
|
Chiu PY, HuangFu WC, Liu IH, Chang YP. Topical application of Heparanase-1 facilitates bone remodeling during the healing of bone defects in a mouse model. J Chin Med Assoc 2020; 83:272-279. [PMID: 31985568 DOI: 10.1097/jcma.0000000000000261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although previous studies have suggested a stimulatory role of heparanase in physiological bone turnover, the potential therapeutic role of heparanase in bone healing has not been elucidated. The purpose of this study was to assess the effect of topical application of heparanase-1 on bone healing. METHODS Two different dosages of recombinant mouse heparanase-1 and vehicle control were prepared and delivered via an osmotic pump to provide continuous topical infusion of the therapeutic reagent in a mouse bone defect model at the distal femoral metaphysis. The bone healing progress was evaluated by micro-computed tomography and histological examination at 7, 14, and 21 days after the bone defect was created. RESULTS The peak of trabecular bone generation was achieved earlier than anticipated with the use of heparanase as measured by medullary bone volume fraction and trabecular number observed in micro-computed tomography, while the remodeling of trabecular bone to cortical bone was also achieved earlier than anticipated with the use of heparanase as measured by connectivity density. Histopathological observation revealed a higher frequency of the presence of cartilaginous tissue in the heparanase-treated groups. Both bone mineral density and cortical bone volume fraction showed the best healing outcome with low-dose heparanase, implying a biphasic effect of its mode of action. CONCLUSION These results indicated that with the appropriate dose of topical heparanase-1, the progress of bone healing could be accelerated in vivo.
Collapse
Affiliation(s)
- Po-Yu Chiu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Pei Chang
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Shahsavari-Pour S, Aliabadi E, Latifi M, Zareifard N, Namavar MR, Talaei-Khozani T. Evaluation of the Possible Synergic Regenerative Effects of Platelet-Rich Plasma and Hydroxyapatite/Zirconia in the Rabbit Mandible Defect Model. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:633-644. [PMID: 30510340 PMCID: PMC6230930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Platelet-rich plasma (PRP) and bioceramics such as hydroxyapatite (HA) and zirconium oxide (ZrO2) are used to reconstruct mandibular defects. We sought to determine the synergistic effects of HA/ZrO2 and PRP and compare their osteogenic activity. METHODS ZrO2 scaffolds were constructed by the slurry method and were then coated with HA and impregnated by PRP/heparan sulfate (HS). Bilateral mandibular defects were created in 26 male rabbits. In 20 rabbits, the left defects were treated with HA/ZrO2/PRP (Group 1) and the corresponding right defects were filled with HA/ZrO2 (Group 2). The 6 remaining models were treated with PRP gels at both sides (Group 3). The osteoconductivity of HA/ZrO2/PRP was compared with that of HA/ZrO2 or PRP by radiological and histological methods after the follow-up period, at weeks 2, 6 and 8. The statistical analyses were performed by ANOVA and LSD using SPSS, version 16.0, for Windows (P<0.05). RESULTS After 2 weeks, the percentage of the surface occupied by bone was significantly higher in the HA/ZrO2/PRP-treated defects than in the PRP-treated defects (P=0.007). Osteoblast and osteocyte counts were higher significantly in the PRP-treated group (P=0.032); however, the cells had not started matrix formation on a large scale and just small islands of osteoid with trapped osteocytes were observed. In the long term, the regenerative potential of all the scaffolds was the same. CONCLUSION HA/ZrO2 showed a superior osteoconductive capacity over PRP in the short term; however, they showed no long-term synergic effects.
Collapse
Affiliation(s)
- Sheila Shahsavari-Pour
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz Iran
| | - Ehsan Aliabadi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz Iran
| | - Mona Latifi
- Department of Tissue Engineering, National Institute of Genetic Engineering and Biotechnology, Iran
| | - Nehle Zareifard
- Stem Cell Lab, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Latifi M, Talaei-Khozani T, Mehraban-Jahromi H, Sani M, Sadeghi-Atabadi M, Fazel-Anvari A, Kabir-Salmani M. Fabrication of platelet-rich plasma heparin sulfate/hydroxyapatite/zirconia scaffold. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mona Latifi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Faculty, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mehraban-Jahromi
- Department of Metallurgy and Material Sciences, School of Engineering, Shiraz University, Shiraz, Iran
| | - Mahsa Sani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Sadeghi-Atabadi
- Department of Reproductive Biology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Science, Shiraz, Iran
| | - Abbas Fazel-Anvari
- Department of Biomedical Engineering, Materials and Biomaterials Research Center, Tehran, Iran
| | - Maryam Kabir-Salmani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Faculty, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
13
|
Osawa Y, Matsushita M, Hasegawa S, Esaki R, Fujio M, Ohkawara B, Ishiguro N, Ohno K, Kitoh H. Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis. Bone 2017; 105:42-49. [PMID: 28802681 DOI: 10.1016/j.bone.2017.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 01/19/2023]
Abstract
Achondroplasia (ACH) is one of the most common short-limbed skeletal dysplasias caused by gain-of-function mutations in the fibroblast growth factor receptors 3 (FGFR3) gene. Distraction osteogenesis (DO) is a treatment option for short stature in ACH in some countries. Although the patients with ACH usually show faster healing in DO, details of the newly formed bone have not been examined. We have developed a mouse model of DO and analyzed new bone regenerates of the transgenic mice with ACH (Fgfr3ach mice) histologically and morphologically. We established two kinds of DO protocols, the short-DO consisted of 5days of latency period followed by 5days of distraction with a rate of 0.4mm per 24h, and the long-DO consisted of the same latency period followed by 7days of distraction with a rate of 0.3mm per 12h. The callus formation was evaluated radiologically by bone fill score and quantified by micro-CT scan in both protocols. The histomorphometric analysis was performed in the short-DO protocol by various stainings, including Villanueva Goldner, Safranin-O/Fast green, tartrate-resistant acid phosphatase, and type X collagen. Bone fill scores were significantly higher in Fgfr3ach mice than in wild-type mice in both protocols. The individual bone parameters, including bone volume and bone volume/tissue volume, were also significantly higher in Fgfr3ach mice than in wild-type mice in both protocols. The numbers of osteoblasts, as well as osteoclasts, around the trabecular bone were increased in Fgfr3ach mice. Cartilaginous tissues of the distraction region rapidly disappeared in Fgfr3ach mice compared to wild-type mice during the consolidation phase. Similarly, type X collagen-positive cells were markedly decreased in Fgfr3ach mice during the same period. Fgfr3ach mice exhibited accelerated bone regeneration after DO. Accelerated endochondral ossification could contribute to faster healing in Fgfr3ach mice.
Collapse
Affiliation(s)
- Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| | - Sachi Hasegawa
- Department of Orthopaedic Surgery, Aichi Prefectural Colony Central Hospital, Japan
| | - Ryusaku Esaki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| | - Masahito Fujio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
14
|
Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds. ASAIO J 2017; 63:684-691. [DOI: 10.1097/mat.0000000000000551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Xu Z, Chen J, Shao W, Wang R, Liu Y. [Research progress in osteogenesis and osteogenic mechanism of heparan sulfate]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1016-1020. [PMID: 29806444 PMCID: PMC8458588 DOI: 10.7507/1002-1892.201701103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/13/2017] [Indexed: 11/03/2022]
Abstract
Objective To discuss the role of heparan sulfate (HS) in bone formation and bone remodeling and summarize the research progress in the osteogenic mechanism of HS. Methods The domestic and abroad related literature about HS acting on osteoblast cell line in vitro, HS and HS composite scaffold materials acting on the ani-mal bone defect models, and the effect of HS proteoglycans on bone development were summarized and analyzed. Results Many growth factors involved in fracture healing especially heparin-binding growth factors, such as fibroblast growth factors, bone morphogenetic protein, and transforming growth factor β, are connected noncovalently with long HS chains. HS proteoglycans protect these proteins from protease degradation and are directly involved in the regulation of growth factors signaling and bone cell function. HS can promote the differentiation of stem cells into osteoblasts and enhance the differentiation of osteoblasts. In bone matrix, HS plays a significant role in promoting the formation, maintaining the stability, and accelerating the mineralization. Conclusion The osteogenesis of HS is pronounced. HS is likely to become the clinical treatment measures of fracture nonunion or delayed union, and is expected to provide more choices for bone tissue engineering with identification of its long-term safety.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China
| | - Jinghua Chen
- Medicinal Biopolymer Laboratory of College of Pharmacy, Jiangnan University, Wuxi Jiangsu, 214000, P.R.China
| | - Wei Shao
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China
| | - Rui Wang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China
| | - Yi Liu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China;Medicinal Biopolymer Laboratory of College of Pharmacy, Jiangnan University, Wuxi Jiangsu, 214000,
| |
Collapse
|
16
|
Repair of segmental ulna defects using a β-TCP implant in combination with a heparan sulfate glycosaminoglycan variant. Acta Biomater 2015; 28:193-204. [PMID: 26384700 DOI: 10.1016/j.actbio.2015.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/06/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Given the wide spread clinical use of ceramic-based bone void fillers, we sought to determine the efficacy of an FDA-approved β-tricalcium phosphate bone graft substitute (JAX™) in combination with a carboxymethyl cellulose (CMC) handling agent that included a particular heparan glycosaminoglycan (GAG) variant, herein referred to as HS3. Having recently demonstrated efficacy of a combination collagen/HS3 device, we further aimed to determine the support that HS3 could offer a handling agent used to administer a more tissue-relevant bone void filler. This study evaluated the JAX™-HS3 combination device in 1.5 cm critical-sized defects in the ulna bones of 27 male New Zealand White rabbits. Treatment groups consisted of JAX™ applied with CMC alone, or JAX™ with CMC containing either 30 μg or 100 μg of the HS3 GAG. Data based on radiographic, μCT, mechanical, and histological analyses at 4 and 8 weeks post-surgery, clearly demonstrate enhanced new bone formation in the JAX™-HS3 combination treated defects compared to treatment with JAX™ alone. The efficacy of such a combination advocates for inclusion of HS3 in handling agents used in the preparation of various bone void fillers being used in orthopaedic surgery. STATEMENT OF SIGNIFICANCE Synthetic bone grafts and demineralized bone matrices are gaining prominence as alternatives to autologous and allogeneic bone grafts and are frequently administered in granular form, necessitating their combination with a handling agent. Typical handling agents include glycerol, gelatin, cellulose, hyaluronic acid and lecithin, formulated as hydrogels, which can be further enhanced by the addition of heparan sulfate (HS) glycosaminoglycans that augment the osteostimulatory properties of the graft. Here we assessed the efficacy of β-TCP granules combined with a hydrogel consisting of carboxymethyl cellulose and the HS variant (HS3) previously shown to enhance osteogenic healing. The data advocates for HS3 to be included during the formulation of hydrogel-based carriers that support the various bone void fillers being used in orthopaedic surgery.
Collapse
|
17
|
Mostafa NZ, Talwar R, Shahin M, Unsworth LD, Major PW, Doschak MR. Cleft Palate Reconstruction Using Collagen and Nanofiber Scaffold Incorporating Bone Morphogenetic Protein in Rats. Tissue Eng Part A 2015; 21:85-95. [DOI: 10.1089/ten.tea.2014.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Reena Talwar
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Mostafa Shahin
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Larry D. Unsworth
- Department of Chemical Engineering, University of Alberta, Edmonton, Canada
| | - Paul W. Major
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Michael R. Doschak
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| |
Collapse
|