1
|
Trembath HE, LaBella ME, Kearney JF, Hariharan A, Zarmer S, Nabors M, McCabe I, Zhao RT, Meyers M, Kim HJ, Yeh JJ. New Onset Diabetes in Pancreatic Adenocarcinoma Does Not Correlate With Molecular Subtype. J Surg Oncol 2024. [PMID: 39711008 DOI: 10.1002/jso.28044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Studies show that new onset diabetes mellitus (DM) (NOD) predates the diagnosis of PDAC by up to 2 years. Two tumor-intrinsic molecular subtypes of PDAC that are prognostic and predictive of chemotherapy response have been described and validated. We hypothesize that patients with NOD may have different molecular subtypes and prognoses. METHODS This is a single-institution study of patients who underwent resection for PDAC from 2009 to 2022 with de-identified samples available for sequencing. Demographic and clinical factors were examined using bivariate and multivariate analysis. RESULTS A total of 97 patients met inclusion criteria: 70 with no history of DM, 11 with longstanding DM (> 2 years), and 16 with NOD. The demographics between groups were overall similar. After controlling for age, sex, race, BMI, and tobacco history, NOD was not a significant predictor of PDAC subtype. There were no survival differences between groups. Transcriptomic analysis suggests the upregulation of inflammatory and immune activation and regulation pathways in NOD. CONCLUSIONS As continued interest in NOD and PDAC mounts, we are the first to examine if NOD may be associated with molecular subtypes and outcomes. Further investigation into the underlying pathophysiology of the NOD group is still needed.
Collapse
Affiliation(s)
- Hannah E Trembath
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle E LaBella
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph F Kearney
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arthi Hariharan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Zarmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mariaelena Nabors
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ian McCabe
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan T Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael Meyers
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Jin Kim
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jen Jen Yeh
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Wang L, Chen Z, Ma S, Jiang T. Exploring the Molecular Mechanisms underlying SADI-S Improves Glucose Metabolism in Type 2 Diabetic Rats through Liver Transcriptomics and Proteomics Analysis. J Proteome Res 2024; 23:5380-5394. [PMID: 39499038 DOI: 10.1021/acs.jproteome.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Metabolic surgery could improve or even reverse type 2 diabetes mellitus (T2DM). Single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) is one of the most effective metabolic surgeries for T2DM. However, the molecular mechanisms behind the SADI-S-induced T2DM improvement are not fully understood.Here,T2DM rats received SADI-S and were sacrificed after 8 weeks; the controls received sham surgery; Liver tissues were collected for transcriptomics and proteomics analysis to identify differentially expressed genes (DEGs) and proteins (DEPs). Parallel reaction monitoring (PRM) was performed to validate the accuracy of the proteomics results.SADI-S significantly improved glucose metabolism in T2DM rats.A total of 120 genes/proteins(e.g., phosphoenolpyruvate carboxykinase (Pck1) and pyruvate kinase (Pklr)) exhibited consistent expression trends at both mRNA and protein levels. Among the upregulated genes/proteins involved in glucose metabolic pathways, enrichment was observed in pathways such as the pyruvate metabolic pathway, insulin signaling pathway, glycolysis/gluconeogenesis biological processes, glucagon signaling pathway, and AMPK signaling pathway. Downregulated genes/proteins were enriched in the pyruvate metabolic pathway. The above-mentioned signaling pathways are implicated in glucose metabolism, suggesting a potential mechanism for SADI-S-mediated alleviation of T2DM. The PRM validation results indicated that all selected proteins showed consistent trends between PRM and proteomics data. This consistency suggests the reliability of the proteomics results.
Collapse
Affiliation(s)
- Lun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000,China
| | - Zhengfu Chen
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,China
| | - Subo Ma
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,China
| | - Tao Jiang
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,China
| |
Collapse
|
3
|
Leow SS, Khoo JS, Lee WK, Hoh CC, Fairus S, Sambanthamurthi R, Hayes KC. RNA-Seq transcriptome profiling of Nile rat livers reveals novel insights on the anti-diabetic mechanisms of Water-Soluble Palm Fruit Extract. J Appl Genet 2024; 65:867-895. [PMID: 38890243 DOI: 10.1007/s13353-024-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Water-Soluble Palm Fruit Extract (WSPFE) has been shown to confer anti-diabetic effects in the Nile rat (NR) (Arvicanthis niloticus). Liquid and powder WSPFE both deterred diabetes onset in NRs fed a high-carbohydrate (hiCHO) diet, but the liquid form provided better protection. In this study, NRs were fed either a hiCHO diet or the same diet added with liquid or powder WSPFE. Following feeding of the diets for 8 weeks, random blood glucose levels were measured to categorize NRs as either diabetes-resistant or diabetes-susceptible, based on a cut-off value of 75 mg/dL. Livers were then obtained for Illumina HiSeq 4000 paired end RNA-sequencing (RNA-Seq) and the data were mapped to the reference genome. Consistent with physiological and biochemical parameters, the gene expression data obtained indicated that WSPFE was associated with protection against diabetes. Among hepatic genes upregulated by WSPFE versus controls, were genes related to insulin-like growth factor binding protein, leptin receptor, and processes of hepatic metabolism maintenance, while those downregulated were related to antigen binding, immunoglobulin receptor, inflammation- and cancer-related processes. WSPFE supplementation thus helped inhibit diabetes progression in NRs by increasing insulin sensitivity and reducing both the inflammatory effects of a hiCHO diet and the related DNA-damage compensatory mechanisms contributing to liver disease progression. In addition, the genetic permissiveness of susceptible NRs to develop diabetes was potentially associated with dysregulated compensatory mechanisms involving insulin signaling and oxidative stress over time. Further studies on other NR organs associated with diabetes and its complications are warranted.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Jia-Shiun Khoo
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Academy of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
4
|
Wei S, Ma F, Feng S, Ha X. Integrating transcriptomics and proteomics to understand the molecular mechanisms underlying the pathogenesis of type 2 diabetes mellitus. Genomics 2024; 116:110964. [PMID: 39571829 DOI: 10.1016/j.ygeno.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The liver plays an important role in glucose regulation, and their dysfunction is closely associated with the development of type 2 diabetes mellitus (T2DM), and insulin resistance (IR) in hepatocyte mediate the pathogenesis of diabetes mellitus. In T2DM rats and their correlated control, we investigated various genes expression at transcriptional and translational level by utilizing transcriptomic using RNA sequencing (RNA-seq) and proteomics using isobaric tags for relative and absolute quantification (iTRAQ) to disclose potential candidates for Type 2 diabetes diagnosis and therapy. We found the lecithin retinol acyltransferase (Lrat) gene regulate hepatocyte IR in T2DM. Furthermore, BRL-3A cells, rat liver cells, worked as the IR model in vitro study. Hence, Lrat gene was overexpressed in BRL-3A cells to explore the role of Lrat gene in IR by measuring the cellular glucose consumption, TCHO, and LDL-C levels. Finally, we found that Lrat gene can improve the level of glycolipid metabolism in BRL-3A cells and reduce the degree of IR in BRL-3A cells. Therefore, further exploration of Lrat gene related molecular mechanism is meaningful.
Collapse
Affiliation(s)
- Shuyao Wei
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, China; Department of Clinical Laboratory, Xuzhou Municipal First People's Hospital, Xuzhou 221009, China; Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Feifei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Shanshan Feng
- Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China
| | - Xiaoqin Ha
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, China; Clinical Laboratory Diagnostics, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Stem Cells and Gene Drugs, Lanzhou 730050, China.
| |
Collapse
|
5
|
Khan R, Verma AK, Datta M. mir-98-5p regulates gluconeogenesis and lipogenesis by targeting PPP1R15B in hepatocytes. J Cell Commun Signal 2023; 17:881-895. [PMID: 36917438 PMCID: PMC10409962 DOI: 10.1007/s12079-023-00735-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Several reports suggest that circulatory miRNAs are deregulated in diverse diseases and used as markers for disease diagnosis and prognosis. Here we show that miR-98-5p, that is down-regulated in the circulation during diabetes, regulates hepatic gluconeogenesis and lipogenesis by targeting PPP1R15B. miR-98-5p overexpression significantly decreased the transcript and protein levels of PPP1R15B in hepatic HepG2 cells and increased p-eIF2α expression and these were prevented in the presence of its inhibitor. Two major hepatic hallmarks during diabetes i.e. hepatic lipid accumulation and glucose output were explored towards physiological relevance. As compared to scramble, overexpression of miR-98-5p decreased the transcript levels of both gluconeogenic and lipogenic genes together with a significant reduction in hepatic glucose production and fat accumulation in HepG2 cells. Using PASTAA to detect common transcription factors regulating these altered genes, CREB emerged as the most significantly enriched transcription factor. While miR-98-5p overexpression did not change the transcript levels of CREB, there was a significant change in its protein levels. While similar effects on gluconeogenic and lipogenic gene expression were detected using the PPP1R15B siRNA, the opposite was observed in the presence of miR-98-5p inhibitor alone. All these suggest that by targeting PPP1R15B, miR-98-5p regulates hepatic steatosis and glucose output; deregulation of which are characteristic hepatic features during diabetes. Therapeutic intervention of the miR-98/PPP1R15B axis might offer a potential strategy to target aberrant hepatic metabolism during diabetes.
Collapse
Affiliation(s)
- Rukshar Khan
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
- Jamia Millia Islamia, Jamia Nagar, Okhla, Delhi, New Delhi 110025 India
| | - Amit Kumar Verma
- Jamia Millia Islamia, Jamia Nagar, Okhla, Delhi, New Delhi 110025 India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
6
|
Arif A, Farooq A, Abbasi MH, Khawar MB, Akhtar T, Ali HA, Anjum M, Mehmood R, Saleem T, Sheikh N. Effect of heterologous platelet-rich plasma on liver and modulation of glucose metabolism and Wnt signalling pathways in diabetic mice. Mol Biol Rep 2023; 50:7145-7154. [PMID: 37407802 DOI: 10.1007/s11033-023-08600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The current study was designed to highlight the effects of heterologous platelet-rich plasma (PRP) on deteriorated hepatic tissues and impaired glucose metabolism of alloxan-induced diabetic mice. METHODS 30 male mice were divided into a control (CG), PRP (PG), diabetic (DG), and two treated groups (T1G and T2G). PG was given PRP treatment (0.5 ml/kg body weight) twice a week for four weeks. DG, T1G and T2G were given alloxan (150 mg/kg) to induce diabetes. After confirmation, PRP treatment was given to T1G and T2G for two and four weeks respectively while DG was left untreated. Upon completion of the said experimental period, liver samples were taken for histological and gene expression analyses. RESULTS The study found that the liver tissue of the DG group showed signs of damage, including hepatocyte ballooning, sinusoid dilatation, and collagen deposition. However, these changes were significantly reduced in both T1G and T2G groups. The expression of several genes related to liver function was also affected, with upregulation of Fbp1 and Pklr, and downregulation of Pck1 in the DG group. PRP treatment restored Fbp1 expression and also increased the expression of glycolytic pathway genes Hk1 and Gck, as well as Wnt signalling pathway genes Wnt2, Wnt4, and Wnt9a in both treated groups. CONCLUSION Current study revealed that heterologous PRP may partly alleviate high glucose levels in diabetics possibly by mediating glucose metabolism via inhibition of Wnt signalling pathway.
Collapse
Affiliation(s)
- Amin Arif
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Adil Farooq
- Department of Zoology, University of Okara, Okara, Pakistan
| | | | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | | | - Mehreen Anjum
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Rabia Mehmood
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, University of Central Punjab, Lahore, Pakistan
| | - Tayyaba Saleem
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
7
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression. Nat Commun 2021; 12:7213. [PMID: 34893641 PMCID: PMC8664922 DOI: 10.1038/s41467-021-27539-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2021] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a key step in the progression of nonalcoholic fatty liver (NAFL) to cirrhosis. However, the molecular mechanisms of the NAFL-to-NASH transition are largely unknown. Here, we identify methyltransferase like 3 (METTL3) as a key negative regulator of NASH pathogenesis. Hepatocyte-specific deletion of Mettl3 drives NAFL-to-NASH progression by increasing CD36-mediated hepatic free fatty acid uptake and CCL2-induced inflammation, which is due to increased chromatin accessibility in the promoter region of Cd36 and Ccl2. Antibody blockade of CD36 and CCL2 ameliorates NASH progression in hepatic Mettl3 knockout mice. Hepatic overexpression of Mettl3 protects against NASH progression by inhibiting the expression of CD36 and CCL2. Mechanistically, METTL3 directly binds to the promoters of the Cd36 and Ccl2 genes and recruits HDAC1/2 to induce deacetylation of H3K9 and H3K27 in their promoters, thus suppressing Cd36 and Ccl2 transcription. Furthermore, METTL3 is translocated from the nucleus to the cytosol in NASH, which is associated with CDK9-mediated phosphorylation of METTL3. Our data reveal a mechanism by which METTL3 negatively regulates hepatic Cd36 and Ccl2 gene transcription via a histone modification pathway for protection against NASH progression.
Collapse
|
9
|
Differential expression of gluconeogenic enzymes in early- and late-stage diabetes: the effect of Citrullus colocynthis (L.) Schrad. Seed extract on hyperglycemia and hyperlipidemia in Wistar-Albino rats model. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The medicinal plant Citrullus colocynthis (L.) Schrad. (C. colocynthis) may benefit patients at different phases of diabetes by attuning to contrasting situations. Our primary objective was to find the mechanism(s) behind the antidiabetic/anti-hyperlipidemic effects of C.colocynthis seed aqueous extract (CCAE) in two different stages of type 2 diabetes (T2D) in rats.
Methods
Fasting blood sugar (FBS) levels, body weights, and the degree of impaired glucose tolerance (IGT) were measured in healthy nondiabetic control rats (Con), as well as rats with early and late stages of T2D, denoted as ET2D and LT2D, respectively. CCAE was intraperitoneally (IP) injected for 28 days. In the end, the hepatic mRNA expression levels of the following genes were determined by RT-PCR: glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin-dependent sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), peroxisome proliferator-activated receptor alpha (PPARα), and carnitine palmitoyltransferase I (CPT1). The liver was examined by hematoxylin and eosin (H&E) and Oil-Red O staining. CCAE was partially analyzed by HPLC-DAD.
Results
ET2D and LT2D were characterized by differentially elevated FBS, deteriorated bodyweight, and significant IGT compared to Con. Hepatosteatoses of varying morphologies and higher hepatic expression of G6Pase than PRPCK in ET2D versus the opposite in LT2D further confirmed the divergent nature of metabolic aberrations. At the end of 28 days, the high levels of FBS, alkaline phosphatase (ALP), triglyceride (TG), urea, hepatic protein carbonyl content (PCC), and alanine and aspartate aminotransferases (AST and ALT, respectively) persisted in untreated LT2D. CCAE ameliorated oxidative stress and upregulated PPARα expression in diabetic groups and Con; it downregulated CPT1 expression in the LT2D group. CCAE’s ability to lower FBS and serum and hepatic TG in both ET2D and LT2D indicated its ability to act via different mechanisms. Ferulic acid (Fer A) and rutin hydrate (RH) were detected in CCAE.
Conclusion
CCAE lowered the FBS in ET2D via inhibiting the hepatic G6Pase expression (glycogenolysis). In LT2D, CCAE abated sugar levels by diverting PEPCK activity, preferably towards glyceroneogenesis than gluconeogenesis. The preserved triglyceride/fatty acid (TG/FA) cycle, the upregulated PPARα, and the downregulated CPT1 gene expressions reduced serum and hepatic TG.
Collapse
|
10
|
Urashima K, Miramontes A, Garcia LA, Coletta DK. Potential evidence for epigenetic biomarkers of metabolic syndrome in human whole blood in Latinos. PLoS One 2021; 16:e0259449. [PMID: 34714849 PMCID: PMC8555810 DOI: 10.1371/journal.pone.0259449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Metabolic syndrome (MetS) is highly prevalent worldwide. In the United States, estimates show that more than 30% of the adult population has MetS. MetS consists of multiple phenotypes, including obesity, dyslipidemia, and impaired glucose tolerance. Therefore, identifying the molecular mechanisms to explain this complex disease is critical for diagnosing and treating MetS. We previously showed 70 increased genes and 20 decreased genes in whole blood in MetS participants. The present study aimed to identify blood-based DNA methylation biomarkers in non-MetS versus MetS participants. The present study analyzed whole blood DNA samples from 184 adult participants of Latino descent from the Arizona Insulin Resistance (AIR) registry. We used the National Cholesterol Education Program Adult Treatment Panel III (NCEP: ATP III) criteria to identify non-MetS (n = 110) and MetS (n = 74) participants. We performed whole blood methylation analysis on select genes: ATP Synthase, H+ Transporting mitochondrial F1 Complex, Epsilon Subunit (ATP5E), Cytochrome C Oxidase Subunit VIc (COX6C), and Ribosomal Protein L9 (RPL9). The pyrosequencing analysis was a targeted approach focusing on the promoter region of each gene that specifically captured CpG methylation sites. In MetS participants, we showed decreased methylation in two CpG sites in COX6C and three CpG sites in RPL9, all p < 0.05 using the Mann-Whitney U test. There were no ATP5E CpG sites differently methylated in the MetS participants. Furthermore, while adjusting for age, gender, and smoking status, logistic regression analysis reaffirmed the associations between MetS and mean methylation within COX6C and RPL9 (both p < 0.05). In addition, Spearman's correlation revealed a significant inverse relationship between the previously published gene expression data and methylation data for RPL9 (p < 0.05). In summary, these results highlight potential blood DNA methylation biomarkers for the MetS phenotype. However, future validation studies are warranted to strengthen our findings.
Collapse
Affiliation(s)
- Keane Urashima
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anastasia Miramontes
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
| | - Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| | - Dawn K. Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
11
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
12
|
Lactobacillus rhamnosus Reduces Blood Glucose Level through Downregulation of Gluconeogenesis Gene Expression in Streptozotocin-Induced Diabetic Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:6108575. [PMID: 32399477 PMCID: PMC7201496 DOI: 10.1155/2020/6108575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Some lactic acid bacteria (LAB) are observed to be potential probiotics with functional properties such as lowering fasting blood glucose (FBG), as a promising hyperglycemia management. This study investigated the ability and mechanism of Lactobacillus rhamnosus BSL and Lactobacillus rhamnosus R23 on lowering FBG in diabetic rats induced by streptozotocin (STZ). The rats were orally administered with L. rhamnosus BSL and L. rhamnosus R23 by giving 1 mL cell suspension (109 CFU/mL) daily for 30 days. The body weight (BW) was recorded once in three days, and FBG was recorded once in six days. An oral glucose tolerance test (OGTT) was measured 1 week after injection with STZ and before sacrifice. Fecal samples were collected on days 0, 15, and 30 for LAB population and identification, performed by PCR detecting 16S rRNA. Oral administration of L. rhamnosus BSL and L. rhamnosus R23 decreased FBG and improved glucose tolerance via downregulation of glucose-6-phosphatase (G6pc) expression by 0.57- and 0.60-fold change, respectively (P < 0.05). The lipid profiles, BUN, creatinine, SGOT, and SGPT were significantly (P < 0.05) different between normal and diabetic rats, but they were not significantly (P > 0.05) different among diabetic rats. Both strains were effective in increasing fecal LAB population. Molecular identification of the isolated LAB from fecal sample indicated that they were able to survive and pass through the digestive tract. These results suggested that both strains have the ability to manage blood glucose level and become a promising agent to manage hyperglycemia and diabetes.
Collapse
|
13
|
Park SJ, Lee D, Kim D, Lee M, In G, Han ST, Kim SW, Lee MH, Kim OK, Lee J. The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo. J Ginseng Res 2019; 44:362-372. [PMID: 32148419 PMCID: PMC7031776 DOI: 10.1016/j.jgr.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dasom Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Gyo In
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung-Tai Han
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung Won Kim
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Su RC, Lad A, Breidenbach JD, Blomquist TM, Gunning WT, Dube P, Kleinhenz AL, Malhotra D, Haller ST, Kennedy DJ. Hyperglycemia induces key genetic and phenotypic changes in human liver epithelial HepG2 cells which parallel the Leprdb/J mouse model of non-alcoholic fatty liver disease (NAFLD). PLoS One 2019; 14:e0225604. [PMID: 31805072 PMCID: PMC6894821 DOI: 10.1371/journal.pone.0225604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern. With a propensity to progress towards non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma, NAFLD is an important link amongst a multitude of comorbidities including obesity, diabetes, and cardiovascular and kidney disease. As several in vivo models of hyperglycemia and NAFLD are employed to investigate the pathophysiology of this disease process, we aimed to characterize an in vitro model of hyperglycemia that was amenable to address molecular mechanisms and therapeutic targets at the cellular level. Utilizing hyperglycemic cell culturing conditions, we induced steatosis within a human hepatocyte cell line (HepG2 cells), as confirmed by electron microscopy. The deposition and accumulation of lipids within hyperglycemic HepG2 cells is significantly greater than in normoglycemic cells, as visualized and quantified by Nile red staining. Alanine aminotransferase (ALT) and alkaline phosphatase (ALP), diagnostic biomarkers for liver damage and disease, were found to be upregulated in hyperglycemic HepG2 cells as compared with normoglycemic cells. Suppression of CEACAM1, GLUT2, and PON1, and elevation of CD36, PCK1, and G6PK were also found to be characteristic in hyperglycemic HepG2 cells compared with normoglycemic cells, suggesting insulin resistance and NAFLD. These in vitro findings mirror the characteristic genetic and phenotypic profile seen in Leprdb/J mice, a well-established in vivo model of NAFLD. In conclusion, we characterize an in vitro model displaying several key genetic and phenotypic characteristics in common with NAFLD that may assist future studies in addressing the molecular mechanisms and therapeutic targets to combat this disease.
Collapse
Affiliation(s)
- Robin C. Su
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Apurva Lad
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Thomas M. Blomquist
- Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - William T. Gunning
- Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Prabhatchandra Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Andrew L. Kleinhenz
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- * E-mail: (DK); (SH)
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- * E-mail: (DK); (SH)
| |
Collapse
|
15
|
Chen Z, Yuan W, Liu T, Huang D, Xiang L. Bioinformatics analysis of hepatic gene expression profiles in type 2 diabetes mellitus. Exp Ther Med 2019; 18:4303-4312. [PMID: 31772629 PMCID: PMC6861877 DOI: 10.3892/etm.2019.8092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia. The liver has a critical role in regulating glucose homeostasis. The present study aimed to analyze hepatic gene expression profiles and to identify the key genes and pathways involved in T2DM. Gene expression profiles of 10 patients with T2DM and 7 subjects with normal glucose tolerance were downloaded from the Gene Expression Omnibus database. Subsequently, differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed. In addition, a protein-protein interaction network was built and hub genes were identified. In total, 1,320 DEGs were identified, including 698 up- and 622 downregulated genes, and these were mainly enriched in positive regulation of transcription from RNA polymerase II promoter, cell adhesion, inflammatory response, positive regulation of apoptotic process, signal transduction and the Tolllike receptor signaling pathway. A total of 8 hub genes (G-protein subunit gamma transducin 2, ubiquitinconjugating enzyme E2 D1, glutamate metabotropic receptor 1, G-protein signaling modulator 1, C-X-C motif chemokine ligand 9, neurotensin, purinergic receptor P2Y1 and ring finger protein 41) were screened from the network. The present study may contribute to the elucidation of the hepatic pathology of T2DM.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Weiqu Yuan
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Tao Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Danping Huang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Lei Xiang
- Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Lei Xiang, Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail:
| |
Collapse
|
16
|
Zhang R, Hou T, Cheng H, Wang X. NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism. FASEB J 2019; 33:13310-13322. [PMID: 31530015 PMCID: PMC6894049 DOI: 10.1096/fj.201901117rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are fundamental organelles for cellular and systemic metabolism, and their dysfunction has been implicated in the development of diverse metabolic diseases. Boosted mitochondrial metabolism might be able to protect against metabolic stress and prevent metabolic disorders. Here we show that NADH:ubiquinone oxidoreductase (NDU)-FAB1, also known as mitochondrial acyl carrier protein, acts as a novel enhancer of mitochondrial metabolism and protects against obesity and insulin resistance. Mechanistically, NDUFAB1 coordinately enhances lipoylation and activation of pyruvate dehydrogenase mediated by the mitochondrial fatty acid synthesis pathway and increases the assembly of respiratory complexes and supercomplexes. Skeletal muscle-specific ablation of NDUFAB1 causes systemic disruption of glucose homeostasis and defective insulin signaling, leading to growth arrest and early death within 5 postnatal days. In contrast, NDUFAB1 overexpression effectively protects mice against obesity and insulin resistance when the animals are challenged with a high-fat diet. Our findings indicate that NDUFAB1 could be a novel mitochondrial target to prevent obesity and insulin resistance by enhancing mitochondrial metabolism.-Zhang, R., Hou, T., Cheng, H., Wang, X. NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism.
Collapse
Affiliation(s)
- Rufeng Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
17
|
Denis RGP, Busi F, Castel J, Morel C, Zhang W, Bui LC, Sugamori KS, Prokopec SD, Boutros PC, Grant DM, Rodrigues-Lima F, Luquet S, Dupret JM. A readout of metabolic efficiency in arylamine N-acetyltransferase-deficient mice reveals minor energy metabolism changes. FEBS Lett 2019; 593:831-841. [PMID: 30883722 DOI: 10.1002/1873-3468.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 02/01/2023]
Abstract
Recent studies have revealed a possible link between the activities of polymorphic arylamine N-acetyltransferases (NATs) and energy metabolism. We used a Nat1/Nat2 double knockout (KO) mouse model to demonstrate that ablation of the two Nat genes is associated with modest, intermittent alterations in respiratory exchange rate. Pyruvate tolerance tests show that double KO mice have attenuated hepatic gluconeogenesis when maintained on a high-fat/high-sucrose diet. Absence of the two Nat genes also leads to an increase in the hepatic concentration of coenzyme A in mice fed a high-fat/high-sucrose diet. Our results suggest a modest involvement of NAT in energy metabolism in mice, which is consistent with the absence of major phenotypic deregulation of energy metabolism in slow human acetylators.
Collapse
Affiliation(s)
- Raphaël G P Denis
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| | - Florent Busi
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| | - Chloé Morel
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| | - Wenchao Zhang
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France.,School of Life Sciences, Lanzhou University, China
| | - Linh-Chi Bui
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| | - Kim S Sugamori
- Department of Pharmacology & Toxicology, University of Toronto, Canada
| | | | - Paul C Boutros
- Department of Pharmacology & Toxicology, University of Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Denis M Grant
- Department of Pharmacology & Toxicology, University of Toronto, Canada
| | | | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| | - Jean-Marie Dupret
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS, UMR 8251, Paris, France
| |
Collapse
|
18
|
Almanza D, Gharaee-Kermani M, Zhilin-Roth A, Rodriguez-Nieves JA, Colaneri C, Riley T, Macoska JA. Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature. Dig Dis Sci 2019; 64:1257-1269. [PMID: 30519850 PMCID: PMC6512804 DOI: 10.1007/s10620-018-5398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma. AIMS In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma. METHODS SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats. RESULTS Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage. CONCLUSIONS HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.
Collapse
Affiliation(s)
- Diego Almanza
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Mehrnaz Gharaee-Kermani
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Alisa Zhilin-Roth
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jose A. Rodriguez-Nieves
- 0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Cory Colaneri
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA
| | - Todd Riley
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jill A. Macoska
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| |
Collapse
|
19
|
Polouliakh N, Horton P, Shibanai K, Takata K, Ludwig V, Ghosh S, Kitano H. Sequence homology in eukaryotes (SHOE): interactive visual tool for promoter analysis. BMC Genomics 2018; 19:715. [PMID: 30261835 PMCID: PMC6161448 DOI: 10.1186/s12864-018-5101-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Microarray and DNA-sequencing based technologies continue to produce enormous amounts of data on gene expression. This data has great potential to illuminate our understanding of biology and medicine, but the data alone is of limited value without computational tools to allow human investigators to visualize and interpret it in the context of their problem of interest. Results We created a web server called SHOE that provides an interactive, visual presentation of the available evidence of transcriptional regulation and gene co-expression to facilitate its exploration and interpretation. SHOE predicts the likely transcription factor binding sites in orthologous promoters of humans, mice, and rats using the combined information of 1) transcription factor binding preferences (position-specific scoring matrix (PSSM) libraries such as Transfac32, Jaspar, HOCOMOCO, ChIP-seq, SELEX, PBM, and iPS-reprogramming factor), 2) evolutionary conservation of putative binding sites in orthologous promoters, and 3) co-expression tendencies of gene pairs based on 1,714 normal human cells selected from the Gene Expression Omnibus Database. Conclusion SHOE enables users to explore potential interactions between transcription factors and target genes via multiple data views, discover transcription factor binding motifs on top of gene co-expression, and visualize genes as a network of gene and transcription factors on its native gadget GeneViz, the CellDesigner pathway analyzer, and the Reactome database to search the pathways involved. As we demonstrate here when using the CREB1 and Nf-κB datasets, SHOE can reliably identify experimentally verified interactions and predict plausible novel ones, yielding new biological insights into the gene regulatory mechanisms involved. SHOE comes with a manual describing how to run it on a local PC or via the Garuda platform (www.garuda-alliance.org), where it joins other popular gadgets such as the CellDesigner pathway analyzer and the Reactome database, as part of analysis workflows to meet the growing needs of molecular biologists and medical researchers. SHOE is available from the following URL http://ec2-54-150-223-65.ap-northeast-1.compute.amazonaws.com A video demonstration of SHOE can be found here: https://www.youtube.com/watch?v=qARinNb9NtE Electronic supplementary material The online version of this article (10.1186/s12864-018-5101-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Polouliakh
- Sony Computer Science Laboratories Inc., 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan. .,Department of Ophthalmology and Visual Sciences, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama City, Yokohama, 236-0004, Japan. .,Systems Biology Institute, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan.
| | - Paul Horton
- AIST, Artificial Intelligence Research Center, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuhiro Shibanai
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kodai Takata
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Vanessa Ludwig
- Department of Biology, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Samik Ghosh
- Systems Biology Institute, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Hiroaki Kitano
- Sony Computer Science Laboratories Inc., 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan.,Systems Biology Institute, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| |
Collapse
|
20
|
Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice. J Neurosci 2017; 37:11140-11150. [PMID: 29038244 DOI: 10.1523/jneurosci.1706-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism.SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus. Despite the importance of the brain-liver pathway, the overall activity of liver-related neurons in control and diabetic conditions is not known. This is a significant gap in knowledge, which prevents developing strategies to improve glucose homeostasis via altering the brain-liver pathway. One of the key findings of our study is the overall shift toward excitation in liver-related hypothalamic neurons in the diabetic condition. This overactivity may be one of the underlying mechanisms of elevated sympathetic activity known in metabolically compromised patients and animal models.
Collapse
|
21
|
Ryu DY, Rahman MS, Pang MG. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio. Int J Mol Sci 2017; 18:ijms18091909. [PMID: 28878155 PMCID: PMC5618558 DOI: 10.3390/ijms18091909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| |
Collapse
|
22
|
Goyal N, Sivadas A, Shamsudheen KV, Jayarajan R, Verma A, Sivasubbu S, Scaria V, Datta M. RNA sequencing of db/db mice liver identifies lncRNA H19 as a key regulator of gluconeogenesis and hepatic glucose output. Sci Rep 2017; 7:8312. [PMID: 28814771 PMCID: PMC5559625 DOI: 10.1038/s41598-017-08281-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Liver plays a key role in maintaining glucose homeostasis and impaired hepatic glucose metabolism is associated with type 2 diabetes. In the present study, we used RNA sequencing to profile the transcriptome of the livers of diabetic db/db mice as compared to the normal db/+ mice and identified 218 differentially expressed genes. Amongst these, there were 3 lncRNAs that were significantly downregulated and H19 was the most altered lncRNA in the livers of db/db mice. H19 expression significantly correlated with the expression of genes of the glycolysis and gluconeogenesis pathways, which suggest that altered hepatic H19 levels can directly or indirectly modulate their expression. Inhibition of H19 using specific siRNA in HepG2 cells and primary mouse hepatocytes significantly increased the levels of gluconeogenic genes. This was subsequently accompanied by increased hepatic glucose output. Further,H19 depletion in HepG2 cells impaired insulin signaling and increased nuclear localization of FoxO1, an important transcriptional regulator of gluconeogenic gene expression. Our results reveal a novel link between decreased H19 levels and impaired gluconeogenesis via regulation of FoxO1 nuclear levels. These put forth interesting observations on the regulatory role of H19 in altering hepatic physiology during diabetes.
Collapse
Affiliation(s)
- Neha Goyal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Ambily Sivadas
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Rijith Jayarajan
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India
| | - Ankit Verma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.,GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India.
| |
Collapse
|
23
|
Pavlov TS, Levchenko V, Ilatovskaya DV, Li H, Palygin O, Pastor-Soler NM, Hallows KR, Staruschenko A. Lack of Effects of Metformin and AICAR Chronic Infusion on the Development of Hypertension in Dahl Salt-Sensitive Rats. Front Physiol 2017; 8:227. [PMID: 28473772 PMCID: PMC5397526 DOI: 10.3389/fphys.2017.00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
In the kidney, reabsorption via the epithelial sodium channel (ENaC) is involved in long-term blood pressure control. Previously we demonstrated that ENaC hyperactivity is associated with development of salt-sensitive (SS) hypertension in Dahl SS rats. AMP-activated kinase (AMPK), playing a role in cellular energy homeostasis, has been shown to decrease ENaC activity. Here, we tested whether metformin and AICAR, two drugs that activate AMPK, affect the development of salt-induced hypertension. High salt diet significantly increased mean arterial pressure (MAP) in Dahl SS rats. Blood pressure elevation was accompanied by a short-term decline of heart rate and increased circadian arterial pressure dipping. Metformin and AICAR were delivered intravenously at doses of 200 and 20 mg/kg/day, respectively. However, both control and drug-treated groups had similar development of high blood pressure within 3 weeks of 8% NaCl dietary salt intake. In the metformin-treated animals MAP reached 164.9 ± 9.1 mmHg, which was not significantly different from the control group (171.8 ± 5.6 mmHg). Patch clamp analysis revealed that the metformin-treated rats had no difference in the activity of ENaC. AICAR treatment also did not affect the development of hypertension and kidney injury. MAP reached 182.8 ± 4.8 and 178.0 ± 2.8 mmHg in AICAR and vehicle treated groups, respectively. Of note, we found that high-salt diet activated AMPK in the Dahl SS rats, and treatment with these AMPK activators had no significant further effect on AMPK activity. We conclude that AMPK activators, at least under these conditions, do not affect development of hypertension during high-salt diet in the Dahl SS rat model.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA.,Division of Hypertension and Vascular Research, Henry Ford HospitalDetroit, MI, USA
| | | | | | - Hui Li
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos Angeles, CA, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos Angeles, CA, USA
| | - Kenneth R Hallows
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos Angeles, CA, USA
| | | |
Collapse
|
24
|
Hashemikhabir S, Budak G, Janga SC. ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes. Cancer Inform 2016; 15:17-24. [PMID: 27528797 PMCID: PMC4976794 DOI: 10.4137/cin.s39367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023] Open
Abstract
Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients' clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing - a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis.
Collapse
Affiliation(s)
- Seyedsasan Hashemikhabir
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, USA
| | - Gungor Budak
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, IN, USA
| |
Collapse
|
25
|
Qin W, Li X, Xie L, Li S, Liu J, Jia L, Dong X, Ren X, Xiao J, Yang C, Zhou Y, Chen Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Res 2016; 44:6423-33. [PMID: 27131369 PMCID: PMC5291254 DOI: 10.1093/nar/gkw341] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be critical biomarkers or therapeutic targets for human diseases. However, only a small number of lncRNAs were screened and characterized. Here, we identified 15 lncRNAs, which are associated with fatty liver disease. Among them, APOA4-AS is shown to be a concordant regulator of Apolipoprotein A-IV (APOA4) expression. APOA4-AS has a similar expression pattern with APOA4 gene. The expressions of APOA4-AS and APOA4 are both abnormally elevated in the liver of ob/ob mice and patients with fatty liver disease. Knockdown of APOA4-AS reduces APOA4 expression both in vitro and in vivo and leads to decreased levels of plasma triglyceride and total cholesterol in ob/ob mice. Mechanistically, APOA4-AS directly interacts with mRNA stabilizing protein HuR and stabilizes APOA4 mRNA. Deletion of HuR dramatically reduces both APOA4-AS and APOA4 transcripts. This study uncovers an anti-sense lncRNA (APOA4-AS), which is co-expressed with APOA4, and concordantly and specifically regulates APOA4 expression both in vitro and in vivo with the involvement of HuR.
Collapse
Affiliation(s)
- Wangshu Qin
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinzhi Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Liwei Xie
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China
| | - Sha Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianan Liu
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Linna Jia
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Dong
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaomeng Ren
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junjie Xiao
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Changqing Yang
- China and Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
26
|
Zhou G, Stevenson MM, Geary TG, Xia J. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections. PLoS Negl Trop Dis 2016; 10:e0004624. [PMID: 27058578 PMCID: PMC4826001 DOI: 10.1371/journal.pntd.0004624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Helminth infections affect more than a third of the world’s population. Despite very broad phylogenetic differences among helminth parasite species, a systemic Th2 host immune response is typically associated with long-term helminth infections, also known as the “helminth effect”. Many investigations have been carried out to study host gene expression profiles during helminth infections. The objective of this study is to determine if there is a common transcriptomic signature characteristic of the helminth effect across multiple helminth species and tissue types. To this end, we performed a comprehensive meta-analysis of publicly available gene expression datasets. After data processing and adjusting for study-specific effects, we identified ~700 differentially expressed genes that are changed consistently during helminth infections. Functional enrichment analyses indicate that upregulated genes are predominantly involved in various immune functions, including immunomodulation, immune signaling, inflammation, pathogen recognition and antigen presentation. Down-regulated genes are mainly involved in metabolic process, with only a few of them are involved in immune regulation. This common immune gene signature confirms previous observations and indicates that the helminth effect is robust across different parasite species as well as host tissue types. To the best of our knowledge, this study is the first comprehensive meta-analysis of host transcriptome profiles during helminth infections. Many studies have been conducted to understand the immune modulatory effects in helminth infections. To determine whether there is a common transcriptomic signature characteristic of the helminth effect, we performed a comprehensive meta-analysis of publicly available gene expression datasets. The results revealed a distinct pattern of gene expression that is consistent across multiple helminth species and host tissue types, with upregulated genes dominated by those involved in immune regulation, Th2 immunity and inflammatory responses.
Collapse
Affiliation(s)
- Guangyan Zhou
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Mary M. Stevenson
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Departments of Medicine and Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|
27
|
Short chain acyl-CoA dehydrogenase deficiency and short-term high-fat diet perturb mitochondrial energy metabolism and transcriptional control of lipid-handling in liver. Nutr Metab (Lond) 2016; 13:17. [PMID: 26933443 PMCID: PMC4772307 DOI: 10.1186/s12986-016-0075-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The liver is an important site of fat oxidation, which participates in the metabolic regulation of food intake. We showed previously that mice with genetically inactivated Acads, encoding short-chain acyl-CoA dehydrogenase (SCAD), shift food consumption away from fat and toward carbohydrate when tested in a macronutrient choice paradigm. This phenotypic eating behavior suggests a link between fat oxidation and nutrient choice which may involve an energy sensing mechanism. To identify hepatic processes that could trigger energy-related signals, we have now performed transcriptional, metabolite and physiological analyses in Acads-/- mice following short-term (2 days) exposure to either high- or low-fat diet. METHODS AND RESULTS Metabolite analysis revealed 25 acylcarnitine species that were altered by diet and/or genotype. Compared to wild-type mice, phosphorylated AMP-activated protein kinase was 40 % higher in Acads-/- mice after short-term high-fat diet, indicating a low ATP/AMP ratio. Metabolite analyses in isolated liver mitochondria from Acads-/- mice during ADP-linked respiration on butyrate demonstrated a reduced oxygen consumption rate (OCR) compared to wild-type, an effect that was not observed with succinate or palmitoylcarnitine substrates. Liver transcriptomic responses in Acads-/- mice fed high- vs. lowfat diet revealed increased RXR/PPARA signaling, up-regulation of lipid handling pathways (including beta and omega oxidation), and increased mRNA expression of Nfe2l2 target genes. CONCLUSIONS Together, these results point to an oxidative shortage in this genetic model and support the hypothesis of a lower hepatic energy state associated with SCAD deficiency and high-fat diet.
Collapse
|
28
|
Gray LR, Rauckhorst AJ, Taylor EB. A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. J Biol Chem 2016; 291:7409-17. [PMID: 26823462 DOI: 10.1074/jbc.m115.711663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/06/2022] Open
Abstract
The discovery that theMPC1andMPC2genes encode the protein components of the mitochondrial pyruvate carrier (MPC) has invigorated studies of mitochondrial pyruvate transport and its regulation in normal and disease states. Indeed, recent reports have demonstrated MPC involvement in the control of cell fate in cancer and gluconeogenesis in models of type 2 diabetes. Biochemical measurements of MPC activity are foundational for understanding the role of pyruvate transport in health and disease. We developed a 96-well scaled method of [(14)C]pyruvate uptake that markedly decreases sample requirements and increases throughput relative to previous techniques. This method was applied to determine the mouse liver MPCKm(28.0 ± 3.9 μm) andVmax(1.08 ± 0.05 nmol/min/mg), which have not previously been reported.KmandVmaxof the rat liver MPC were found to be 71.2 ± 17 μmand 1.42 ± 0.14 nmol/min/mg, respectively. Additionally, we performed parallel pyruvate uptake and oxidation experiments with the same biological samples and show differential results in response to fasting, demonstrating the continued importance of a direct MPC activity assay. We expect this method will be of value for understanding the contribution of the MPC activity to health and disease states where pyruvate metabolism is expected to play a prominent role.
Collapse
Affiliation(s)
- Lawrence R Gray
- From the Department of Biochemistry, the Fraternal Order of the Eagles Diabetes Research Center, the Abboud Cardiovascular Research Center, and the Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Adam J Rauckhorst
- From the Department of Biochemistry, the Fraternal Order of the Eagles Diabetes Research Center, the Abboud Cardiovascular Research Center, and the Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Eric B Taylor
- From the Department of Biochemistry, the Fraternal Order of the Eagles Diabetes Research Center, the Abboud Cardiovascular Research Center, and the Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
29
|
Chen XH, Ma L, Hu YX, Wang DX, Fang L, Li XL, Zhao JC, Yu HR, Ying HZ, Yu CH. Transcriptome profiling and pathway analysis of hepatotoxicity induced by tris (2-ethylhexyl) trimellitate (TOTM) in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:62-71. [PMID: 26650799 DOI: 10.1016/j.etap.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
Tris (2-ethylhexyl) trimellitate (TOTM) is commonly used as an alternative plasticizer for medical devices. But very little information was available on its biological effects. In this study, we investigated toxicity effects of TOTM on hepatic differential gene expression analyzed by using high-throughput sequencing analysis for over-represented functions and phenotypically anchored to complementary histopathologic, and biochemical data in the liver of mice. Among 1668 candidate genes, 694 genes were up-regulated and 974 genes were down-regulated after TOTM exposure. Using Gene Ontology analysis, TOTM affected three processes: the cell cycle, metabolic process and oxidative activity. Furthermore, 11 key genes involved in the above processes were validated by real time PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these genes were involved in the cell cycle pathway, lipid metabolism and oxidative process. It revealed the transcriptome gene expression response to TOTM exposure in mouse, and these data could contribute to provide a clearer understanding of the molecular mechanisms of TOTM-induced hepatotoxicity in human.
Collapse
Affiliation(s)
- Xian-Hua Chen
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Li Ma
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Yi-Xiang Hu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Dan-Xian Wang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li Fang
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Xue-Lai Li
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Jin-Chuan Zhao
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Hai-Rong Yu
- Key Laboratory for Medical Device Safety Evaluation and Research, Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou 310018, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
30
|
Mayoral Monibas R, Johnson AMF, Osborn O, Traves PG, Mahata SK. Distinct Hepatic Macrophage Populations in Lean and Obese Mice. Front Endocrinol (Lausanne) 2016; 7:152. [PMID: 27999564 PMCID: PMC5138231 DOI: 10.3389/fendo.2016.00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.
Collapse
Affiliation(s)
- Rafael Mayoral Monibas
- Merck Research Laboratories, Kenilworth, NJ, USA
- CIBERehd – Networked Biomedical Research Center, Hepatic and Digestive Diseases, Madrid, Spain
- *Correspondence: Rafael Mayoral Monibas, ; Sushil K. Mahata,
| | - Andrew M. F. Johnson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Olivia Osborn
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Paqui G. Traves
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Sushil K. Mahata
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- *Correspondence: Rafael Mayoral Monibas, ; Sushil K. Mahata,
| |
Collapse
|
31
|
Inhibition of mitochondrial β-oxidation by miR-107 promotes hepatic lipid accumulation and impairs glucose tolerance in vivo. Int J Obes (Lond) 2015; 40:861-9. [DOI: 10.1038/ijo.2015.225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/18/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
|
32
|
Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 2015; 466:443-54. [PMID: 25748677 DOI: 10.1042/bj20141171] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation-critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues.
Collapse
|
33
|
Sadi G, Baloğlu MC, Pektaş MB. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment. PLoS One 2015; 10:e0124968. [PMID: 25905778 PMCID: PMC4408020 DOI: 10.1371/journal.pone.0124968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to elucidate the genome-wide gene expression profile in streptozotocin induced diabetic rat liver tissues in response to resveratrol treatment and to establish differentially expressed transcription regulation networks with microarray technology. In addition to measure the expression levels of several antioxidant and detoxification genes, real-time quantitative polymerase chain reaction (qRT-PCR) was also used to verify the microarray results. Moreover, gene and protein expressions as well as enzymatic activities of main antioxidant enzymes; superoxide dismutase (SOD-1 and SOD-2) and glutathione S-transferase (GST-Mu) were analyzed. Diabetes altered 273 genes significantly and 90 of which were categorized functionally which suggested that genes in cellular catalytic activities, oxidation-reduction reactions, co-enzyme binding and terpenoid biosynthesis were dominated by up-regulated expression in diabetes. Whereas; genes responsible from cellular carbohydrate metabolism, regulation of transcription, cell signal transduction, calcium independent cell-to-cell adhesion and lipid catabolism were down-regulated. Resveratrol increased the expression of 186 and decreased the expression of 494 genes in control groups. While cellular and extracellular components, positive regulation of biological processes, biological response to stress and biotic stimulants, and immune response genes were up-regulated, genes responsible from proteins present in nucleus and nucleolus were mainly down-regulated. The enzyme assays showed a significant decrease in diabetic SOD-1 and GST-Mu activities. The qRT-PCR and Western-blot results demonstrated that decrease in activity is regulated at gene expression level as both mRNA and protein expressions were also suppressed. Resveratrol treatment normalized the GST activities towards the control values reflecting a post-translational effect. As a conclusion, global gene expression in the liver tissues is affected by streptozotocin induced diabetes in several specific pathways. The present data suggest the presence of several processes which contribute and possibly interact to impair liver functions in type 1 diabetes, several of which are potentially amenable to therapeutic interventions with resveratrol.
Collapse
Affiliation(s)
- Gökhan Sadi
- Department of Biology, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
- * E-mail:
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Engineering Faculty, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacy, Faculty of Medicine, Afyon Kocatepe University, Afyon, Turkey
| |
Collapse
|
34
|
Hölper S, Nolte H, Bober E, Braun T, Krüger M. Dissection of metabolic pathways in the Db/Db mouse model by integrative proteome and acetylome analysis. MOLECULAR BIOSYSTEMS 2015; 11:908-22. [DOI: 10.1039/c4mb00490f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An in vivo SILAC-based quantitative proteomics approach to analyse protein abundances and acetylation levels under diabetic conditions.
Collapse
Affiliation(s)
- Soraya Hölper
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Hendrik Nolte
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Eva Bober
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| |
Collapse
|
35
|
Ghiraldini FG, Silveira AB, Kleinjan DA, Gilbert N, Mello MLS. Genomic profiling of type-1 adult diabetic and aged normoglycemic mouse liver. BMC Endocr Disord 2014; 14:19. [PMID: 24581510 PMCID: PMC4016577 DOI: 10.1186/1472-6823-14-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/25/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyperglycemia induces chromatin remodeling with consequences on differential gene expression in mouse hepatocytes, similar to what occurs during aging. The liver is the central organ for the regulation of glucose homeostasis and xenobiotic and lipid metabolism and is affected by insulin signaling. The precise transcriptional profiling of the type-1 diabetic liver and its comparison to aging have not been elucidated yet. METHODS Here, we studied the differential genomic expression of mouse liver cells under adult hyperglycemic and aged normoglycemic conditions using expression arrays. RESULTS Differential gene expression involved in an increase in glucose and impaired lipid metabolism were detected in the type-1 diabetic liver. In this regard, Ppargc1a presents an increased expression and is a key gene that might be regulating both processes. The differential gene expression observed may also be associated with hepatic steatosis in diabetic mouse liver, as a secondary disease. Similarly, middle-aged mice presented differential expression of genes involved in glucose, lipid and xenobiotic metabolism. These genes could be associated with an increase in polyploidy, but the consequences of differential expression were not as drastic as those observed in diabetic animals. CONCLUSIONS Taken together, these findings provide new insights into gene expression profile changes in type-1 diabetic liver. Ppargc1a was found to be the key-gene that increases glucose metabolism and impairs lipid metabolism impairment. The novel results reported here open new areas of investigation in diabetic research and facilitate the development of new strategies for gene therapy.
Collapse
Affiliation(s)
- Flávia G Ghiraldini
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - André B Silveira
- Laboratory of Molecular Biology, Centro Infantil Boldrini, Campinas, SP, Brazil
| | - Dirk A Kleinjan
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
36
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 601] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
37
|
Geographical, environmental and pathophysiological influences on the human blood transcriptome. CURRENT GENETIC MEDICINE REPORTS 2013; 1:203-211. [PMID: 25830076 DOI: 10.1007/s40142-013-0028-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gene expression variation provides a read-out of both genetic and environmental influences on gene activity. Geographical, genomic and sociogenomic studies have highlighted how life circumstances of an individual modify the expression of hundreds and in some cases thousands of genes in a co-ordinated manner. This review places such results in the context of a conserved set of 90 transcripts known as Blood Informative Transcripts (BIT) that capture the major conserved components of variation in the peripheral blood transcriptome. Pathophysiological states are also shown to associate with the perturbation of transcript abundance along the major axes. Discussion of false negative rates leads us to argue that simple significance thresholds provide a biased perspective on assessment of differential expression that may cloud the interpretation of studies with small sample sizes.
Collapse
|