1
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
2
|
Smaragdov MG. Identification of homozygosity-rich regions in the Holstein genome. Vavilovskii Zhurnal Genet Selektsii 2023; 27:471-479. [PMID: 37808215 PMCID: PMC10556852 DOI: 10.18699/vjgb-23-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.
Collapse
Affiliation(s)
- M G Smaragdov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, Pushkin, Russia
| |
Collapse
|
3
|
Mészárosová M, Mészáros G, Moravčíková N, Pavlík I, Margetín M, Kasarda R. Within- and between-Breed Selection Signatures in the Original and Improved Valachian Sheep. Animals (Basel) 2022; 12:ani12111346. [PMID: 35681809 PMCID: PMC9179888 DOI: 10.3390/ani12111346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study explored the genomic diversity and selection signatures in two Slovakian national breeds, the Original Valachian and the Improved Valachian sheep. As they are an important animal genetic resource within the country, but with decreasing population size, our aim is to identify potentially valuable genomic regions. A total of 97 sheep (18 male and 79 female) from the Original Valachian, and 69 sheep (25 male and 44 female) from the Improved Valachian populations were genotyped using the GeneSeek GGP Ovine 50 K chip. The inbreeding levels were assessed with runs of homozygosity (ROH). The selection signatures within breeds were identified based on the top 1% of most homozygous regions within the breed, the so-called ROH islands. The selection signatures between breeds were assessed based on variance in linkage disequilibrium. Overall, we have identified selection signatures with quantitative trait loci (QTL) and genes pointing towards all three production purposes of the Valachian sheep, milk, meat, and wool, including their quality characteristics. Another group with apparent large importance was the various traits related to health and resistance to parasites, which is well in line with the sturdy nature of this breed.
Collapse
Affiliation(s)
- Mária Mészárosová
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria;
| | - Nina Moravčíková
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
- Correspondence:
| | - Ivan Pavlík
- Research Institute of Animal Production—NPPC Slovakia, Hlohovecká 2, 95141 Nitra—Lužianky, Slovakia;
| | - Milan Margetín
- Faculty of Agrobiology and Food Resources, Institute of Animal Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radovan Kasarda
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
| |
Collapse
|
4
|
Babigumira BM, Sölkner J, Mészáros G, Pfeiffer C, Lewis CRG, Ouma E, Wurzinger M, Marshall K. A Mix of Old British and Modern European Breeds: Genomic Prediction of Breed Composition of Smallholder Pigs in Uganda. Front Genet 2021; 12:676047. [PMID: 34249095 PMCID: PMC8261304 DOI: 10.3389/fgene.2021.676047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Pig herds in Africa comprise genotypes ranging from local ecotypes to commercial breeds. Many animals are composites of these two types and the best levels of crossbreeding for particular production systems are largely unknown. These pigs are managed without structured breeding programs and inbreeding is potentially limiting. The objective of this study was to quantify ancestry contributions and inbreeding levels in a population of smallholder pigs in Uganda. The study was set in the districts of Hoima and Kamuli in Uganda and involved 422 pigs. Pig hair samples were taken from adult and growing pigs in the framework of a longitudinal study investigating productivity and profitability of smallholder pig production. The samples were genotyped using the porcine GeneSeek Genomic Profiler (GGP) 50K SNP Chip. The SNP data was analyzed to infer breed ancestry and autozygosity of the Uganda pigs. The results showed that exotic breeds (modern European and old British) contributed an average of 22.8% with a range of 2-50% while "local" blood contributed 69.2% (36.9-95.2%) to the ancestry of the pigs. Runs of homozygosity (ROH) greater than 2 megabase (Mb) quantified the average genomic inbreeding coefficient of the pigs as 0.043. The scarcity of long ROH indicated low recent inbreeding. We conclude that the genomic background of the pig population in the study is a mix of old British and modern pig ancestries. Best levels of admixture for smallholder pigs are yet to be determined, by linking genotypes and phenotypic records.
Collapse
Affiliation(s)
- Brian Martin Babigumira
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- International Livestock Research Institute, Kampala, Uganda
| | - Johann Sölkner
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christina Pfeiffer
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- PIG Austria GmbH, Steinhaus, Wels, Austria
| | | | - Emily Ouma
- International Livestock Research Institute, Kampala, Uganda
| | - Maria Wurzinger
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karen Marshall
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Schmidtmann C, Schönherz A, Guldbrandtsen B, Marjanovic J, Calus M, Hinrichs D, Thaller G. Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe. Genet Sel Evol 2021; 53:23. [PMID: 33676402 PMCID: PMC7936461 DOI: 10.1186/s12711-021-00613-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Local cattle breeds need special attention, as they are valuable reservoirs of genetic diversity. Appropriate breeding decisions and adequate genomic management of numerically smaller populations are required for their conservation. At this point, the analysis of dense genome-wide marker arrays provides encompassing insights into the genomic constitution of livestock populations. We have analyzed the genetic characterization of ten cattle breeds originating from Germany, The Netherlands and Denmark belonging to the group of red dairy breeds in Northern Europe. The results are intended to provide initial evidence on whether joint genomic breeding strategies of these populations will be successful. Results Traditional Danish Red and Groningen White-Headed were the most genetically differentiated breeds and their populations showed the highest levels of inbreeding. In contrast, close genetic relationships and shared ancestry were observed for the populations of German Red and White Dual-Purpose, Dutch Meuse-Rhine-Yssel, and Dutch Deep Red breeds, reflecting their common histories. A considerable amount of gene flow from Red Holstein to German Angler and to German Red and White Dual-Purpose was revealed, which is consistent with frequent crossbreeding to improve productivity of these local breeds. In Red Holstein, marked genomic signatures of selection were reported on chromosome 18, suggesting directed selection for important breeding goal traits. Furthermore, tests for signatures of selection between Red Holstein, Red and White Dual-Purpose, and Meuse-Rhine-Yssel uncovered signals for all investigated pairs of populations. The corresponding genomic regions, which were putatively under different selection pressures, harboured various genes which are associated with traits such as milk and beef production, mastitis and female fertility. Conclusions This study provides comprehensive knowledge on the genetic constitution and genomic connectedness of divergent red cattle populations in Northern Europe. The results will help to design and optimize breeding strategies. A joint genomic evaluation including some of the breeds studied here seems feasible.
Collapse
Affiliation(s)
- Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany.
| | - Anna Schönherz
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.,Department of Animal Science, Aarhus University, 8830, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.,Department of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115, Bonn, Germany
| | - Jovana Marjanovic
- Animal Breeding and Genomics, Wageningen University and Research, 6700AH, Wageningen, The Netherlands
| | - Mario Calus
- Animal Breeding and Genomics, Wageningen University and Research, 6700AH, Wageningen, The Netherlands
| | - Dirk Hinrichs
- Department of Animal Breeding, University of Kassel, 37213, Witzenhausen, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany
| |
Collapse
|
6
|
Ouédraogo D, Ouédraogo-Koné S, Yougbaré B, Soudré A, Zoma-Traoré B, Mészáros G, Khayatzadeh N, Traoré A, Sanou M, Mwai OA, Wurzinger M, Burger PA, Sölkner J. Population structure, inbreeding and admixture in local cattle populations managed by community-based breeding programs in Burkina Faso. J Anim Breed Genet 2021; 138:379-388. [PMID: 33609004 PMCID: PMC8248134 DOI: 10.1111/jbg.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/16/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022]
Abstract
High-throughput genomic markers provide an opportunity to assess important indicators of genetic diversity for populations managed in livestock breeding programs. While well-structured breeding programs are common in developed countries, in developing country situations, especially in West Africa, on-farm performance and pedigree recordings are rare, and thus, genomic markers provide insights to the levels of genetic diversity, inbreeding and introgression by other breeds. In this study, we analysed key population parameters such as population structure, admixture and levels of inbreeding in three neighbouring populations of African taurine and taurine × Zebu crosses managed by community-based breeding programs in the South-West of Burkina Faso. The three populations were pure Baoulé (called Lobi locally) in sedentary production systems, Baoulé x Zebu crossbreds in sedentary systems and Zebu × Baoulé crossbreds in transhumant production systems, respectively. The total sample analysed included 631 animals and 38,207 single nucleotide polymorphisms after quality control. Results of principal component and admixture analyses confirmed the genetic background of two distinct ancestral populations (taurine and zebuine) and levels of admixture in all three breeding populations, including the presumably pure Baoulé group of animals. Inbreeding levels were moderate, compared to European dairy and beef cattle populations and higher than those of Brazilian Nellore cattle. Very few animals with inbreeding levels indicating parent-offspring or full sib mating were observed, and inbreeding levels indicating half sib mating were also rare. For the management of breeding populations, farmers were advised to exchange best young bulls. The crossbreeding levels of presumably pure Baoulé animals are of concern to the breeding program due to the high level of endangerment of pure African taurine cattle populations across West Africa. Future rounds of bull selection in the community-based breeding program will make use of genomic information about admixture levels.
Collapse
Affiliation(s)
- Dominique Ouédraogo
- Institut du Développement Rural (IDR), Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso.,Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Salifou Ouédraogo-Koné
- Institut du Développement Rural (IDR), Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso
| | - Bernadette Yougbaré
- Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria.,Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Albert Soudré
- Unité de Formation et de Recherche en Sciences et Technologies (UFR/ST), Université Norbert Zongo, Koudougou, Burkina Faso
| | - Bienvenue Zoma-Traoré
- Institut du Développement Rural (IDR), Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso.,Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gábor Mészáros
- Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Negar Khayatzadeh
- Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Amadou Traoré
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Moumouni Sanou
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Okeyo Ally Mwai
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Maria Wurzinger
- Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna
| | - Johann Sölkner
- Division of Livestock Sciences, Department of Sustainable Agricultural System, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
Pavan S, Delvento C, Mazzeo R, Ricciardi F, Losciale P, Gaeta L, D'Agostino N, Taranto F, Sánchez-Pérez R, Ricciardi L, Lotti C. Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. HORTICULTURE RESEARCH 2021; 8:15. [PMID: 33423037 PMCID: PMC7797004 DOI: 10.1038/s41438-020-00447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/04/2023]
Abstract
Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy.
- Institute of Biomedical Technologies, National Research Council (CNR), Via Amendola 122/D, Bari, 70126, Italy.
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Rosa Mazzeo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Francesca Ricciardi
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Pasquale Losciale
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Liliana Gaeta
- Council for Agricultural Research and Economics-Research Centre for Agriculture and Environment (CREA-AA), Bari, 70125, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, 80055, Italy
| | | | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Concetta Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy.
| |
Collapse
|
8
|
Jasielczuk I, Gurgul A, Szmatoła T, Semik-Gurgul E, Pawlina-Tyszko K, Stefaniuk-Szmukier M, Polak G, Tomczyk-Wrona I, Bugno-Poniewierska M. Linkage disequilibrium, haplotype blocks and historical effective population size in Arabian horses and selected Polish native horse breeds. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Szmatoła T, Jasielczuk I, Semik-Gurgul E, Szyndler-Nędza M, Blicharski T, Szulc K, Skrzypczak E, Gurgul A. Detection of runs of homozygosity in conserved and commercial pig breeds in Poland. J Anim Breed Genet 2020; 137:571-580. [PMID: 32362048 DOI: 10.1111/jbg.12482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Runs of homozygosity (ROH) are continuous segments of the genome that arose as a result of inbreeding, resulting in the inheritance of identical haplotypes from both parents who shared a common ancestor. In the present study, we performed a detailed characterization and comparison of ROH in four pig breeds, including intensively selected Polish Landrace as well as native unselected animals of Puławska and two Złotnicka breeds (White and Spotted). We used a medium-density PorcineSNP60 BeadChip assay (Illumina) and cgaTOH software to detect ROH covering a minimum of 30 adjacent SNPs and maintaining a size over 1 Mb. By analysing ROH distribution and frequency across the genome, we also identified genomic regions with high ROH frequency (so-called "ROH hotspots"). The obtained results showed that the analysed conserved breeds were characterized by a higher ROH span and higher ROH-based inbreeding coefficients (FROH ), which likely result from past population bottlenecks, increasing the overall inbreeding level within these populations. The analysis of ROH distribution across the genomes revealed the presence of both shared and breed-specific ROH hotspots. These hotspots, presumably representing genome regions under selection, overlapped with a variety of genes associated with processes connected with immune system functioning, reproduction, glucose homeostasis and metabolism. The genome regions with ROH hotspots overlapping in all analysed populations, located on SSC4 (51.9-55.9 Mb) and 13 (92.6-97.8 Mb), covered thirty-one different genes, including MMP16, SLC7A13, ATP6V0D2, CNGB3, WWiP1, RiMDN1 and CPNE3. These genes are primarily associated with biological regulation and metabolism, processes that could be responsible for the variety of the selected production and functional features.
Collapse
Affiliation(s)
- Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | | | - Tadeusz Blicharski
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding, Jastrzębiec, Poland
| | - Karolina Szulc
- Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Ewa Skrzypczak
- Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
10
|
Szmatoła T, Gurgul A, Jasielczuk I, Fu W, Ropka-Molik K. A detailed characteristics of bias associated with long runs of homozygosity identification based on medium density SNP microarrays. J Genomics 2020; 8:43-48. [PMID: 32328205 PMCID: PMC7171384 DOI: 10.7150/jgen.39147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
In the present study, runs of homozygosity (ROH) detected with the use of a standard bovine 54k single nucleotide polymorphism (SNP) genotyping assay and two different ROH detection approaches, based on 50 (M1) or 15 (M2) consecutive SNPs, were compared with results of whole genome sequencing. Both microarray-based methods accurately recognised medium-sized ROH, however, it was found that M2 method seemed to better than M1 identify short ROH, but highly overestimated their number, leading to numerous false positive calls. Moreover, long ROH identified with microarray data tended to break into shorter segments in sequencing data because of the presence of regions with high heterozygosity within the ROH sequences. This may indicate, that these long ROH are formed by closely positioned shorter homozygous segments that may be of older origin or may be created by two similar but not identical haplotypes, showing minor internal recombination signs. Such finding also suggests that at least some of the results of previous studies in regard to long ROH may be biased leading to inaccurate estimations of genomes autozygosity via ROH classification into length categories.
Collapse
Affiliation(s)
- Tomasz Szmatoła
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.,National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| | - Artur Gurgul
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.,National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| | - Igor Jasielczuk
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.,National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| | - Weiwei Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Katarzyna Ropka-Molik
- National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| |
Collapse
|
11
|
Lukić B, Ferenčaković M, Šalamon D, Čačić M, Orehovački V, Iacolina L, Curik I, Cubric-Curik V. Conservation Genomic Analysis of the Croatian Indigenous Black Slavonian and Turopolje Pig Breeds. Front Genet 2020; 11:261. [PMID: 32296459 PMCID: PMC7136467 DOI: 10.3389/fgene.2020.00261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of the nearly 400 existing local pig breeds are adapted to specific environments and human needs. The demand for large production quantities and the industrialized pig production have caused a rapid decline of many local pig breeds in recent decades. Black Slavonian pig and Turopolje pig, the latter highly threatened, are the two Croatian local indigenous breeds typically grown in extensive or semi-intensive systems. In order to guide a long-term breeding program to prevent the disappearance of these breeds, we analyzed their genetic diversity, inbreeding level and relationship with other local breeds across the world, as well as modern breeds and several wild populations, using high throughput genomic data obtained using the Illumina Infinium PorcineSNP60 v2 BeadChip. Multidimensional scaling analysis positioned Black Slavonian pigs close to the UK/North American breeds, while the Turopolje pig clustered within the Mediterranean breeds. Turopolje pig showed a very high inbreeding level (FROH>4Mb = 0.400 and FROH>8Mb = 0.332) that considerably exceeded the level of full-sib mating, while Black Slavonian pig showed much lower inbreeding (FROH>4Mb = 0.098 and FROH>8Mb = 0.074), indicating a planned mating strategy. In Croatian local breeds we identified several genome regions showing adaptive selection signals that were not present in commercial breeds. The results obtained in this study reflect the current genetic status and breeding management of the two Croatian indigenous local breeds. Given the small populations of both breeds, a controlled management activity has been implemented in Black Slavonian pigs since their commercial value has been recognized. In contrast, the extremely high inbreeding level observed in Turopolje pig argues for an urgent conservation plan with a long-term, diversity-oriented breeding program.
Collapse
Affiliation(s)
- Boris Lukić
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Dragica Šalamon
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Mato Čačić
- Ministry of Agriculture, Zagreb, Croatia
| | | | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department for Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
Szmatoła T, Gurgul A, Jasielczuk I, Ząbek T, Ropka-Molik K, Litwińczuk Z, Bugno-Poniewierska M. A Comprehensive Analysis of Runs of Homozygosity of Eleven Cattle Breeds Representing Different Production Types. Animals (Basel) 2019; 9:ani9121024. [PMID: 31775271 PMCID: PMC6941163 DOI: 10.3390/ani9121024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Runs of homozygosity (ROH) regions are known to be common in the genomes of cattle and have become a subject of interest of various research in recent years. ROH can be used as a valuable tool to estimate inbreeding, which needs to be controlled in livestock populations. Moreover, analysis of ROH is considered to be an effective method of identifying genome regions that are a subject of selection pressure, which may help in understanding the genetic aspects of production traits under selection. In this study, we analyzed ROH characteristics of 11 cattle breeds, both commercial and native, maintained in Poland. We presented distinct differences in the length, quantity and frequency of ROH between the analyzed breeds as well as in the levels of genomic inbreeding. Higher levels of inbreeding were characteristic for commercial breeds, especially beef breeds. In addition, within ROH islands, we observed a number of genes with a confirmed influence on the level of production traits. The presented results and identified genes can be a basis for further research focused on the identification of genes and markers essential in the determination of the most important production traits in cattle. Abstract In the presented research, BovineSNP50 microarrays (Illumina) were applied to determine runs of homozygosity in the genomes of 11 cattle breeds maintained in Poland. These cattle breeds represent three basic utility types: milk, meat and dual purpose. Analysis of runs of homozygosity allowed the evaluation of the level of autozygosity within each breed in order to calculate the genomic inbreeding coefficient (FROH), as well as to identify regions of the genome with a high frequency of ROH occurrence, which may reflect traces of directional selectin left in their genomes. Visible differences in the length and distribution of runs of homozygosity in the genomes of the analyzed cattle breeds have been observed. The highest mean number and mean sums of lengths of runs of homozygosity were characteristic for Hereford cattle and intermediate for the Holstein-Friesian Black-and-White variety, Holstein-Friesian Red-and-White variety, Simmental, Limousin, Montbeliarde and Charolais breeds. However, lower values were observed for cattle of conserved breeds. Moreover, the selected livestock differed in the level of inbreeding estimated using the FROH coefficient. In regions of the genome with a high frequency of ROH occurrence, which may reflect the impact of directional selection, a number of genes were observed that can be potentially related to the production traits which are under selection pressure for specific production types. The most important detected genes were GHR, MSTN, DGAT1, FABP4, and TRH, with a known influence on the milk and meat traits of the studied cattle breeds.
Collapse
Affiliation(s)
- Tomasz Szmatoła
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (A.G.); (I.J.)
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (T.Z.); (K.R.-M.)
- Correspondence: ; Tel.: +48-602-603-158
| | - Artur Gurgul
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (A.G.); (I.J.)
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (T.Z.); (K.R.-M.)
| | - Igor Jasielczuk
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (A.G.); (I.J.)
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (T.Z.); (K.R.-M.)
| | - Tomasz Ząbek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (T.Z.); (K.R.-M.)
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (T.Z.); (K.R.-M.)
| | - Zygmunt Litwińczuk
- Sub-Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland;
| |
Collapse
|
13
|
Nandolo W, Mészáros G, Banda LJ, Gondwe TN, Lamuno D, Mulindwa HA, Nakimbugwe HN, Wurzinger M, Utsunomiya YT, Woodward-Greene MJ, Liu M, Liu G, Van Tassell CP, Curik I, Rosen BD, Sölkner J. Timing and Extent of Inbreeding in African Goats. Front Genet 2019; 10:537. [PMID: 31214253 PMCID: PMC6558083 DOI: 10.3389/fgene.2019.00537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
Genetic characterization of African goats is one of the current priorities in the improvement of goats in the continent. This study contributes to the characterization effort by determining the levels and number of generations to common ancestors ("age") associated with inbreeding in African goat breeds and identifies regions that contain copy number variation mistyped as being homozygous. Illumina 50k single nucleotide polymorphism genotype data for 608 goats from 31 breeds were used to compute the level and age of inbreeding at both local (marker) and global levels (FG) using a model-based approach based on a hidden Markov model. Runs of homozygosity (ROH) segments detected using the Viterbi algorithm led to ROH-based inbreeding coefficients for all ROH (FROH) and for ROH longer than 2 Mb (FROH > 2Mb). Some of the genomic regions identified as having ROH are likely to be hemizygous regions (copy number deletions) mistyped as homozygous regions. Although the proportion of these miscalled ROH is small and does not substantially affect estimates of levels of inbreeding for individual animals, the inbreeding metrics were adjusted by removing these regions from the ROH. All the inbreeding metrics varied widely across breeds, with overall means of 0.0408, 0.0370, and 0.0691 and medians of 0.0125, 0.0098, and 0.0366 for FROH, FROH > 2Mb, and FG, respectively. Several breeds (including Menabe and Sofia from Madagascar) had high proportions of recent inbreeding, while Small East African, Ethiopian, and most of the West African breeds (including West African Dwarf) had more ancient inbreeding.
Collapse
Affiliation(s)
- Wilson Nandolo
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi.,Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Gábor Mészáros
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Liveness Jessica Banda
- Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Timothy N Gondwe
- Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Doreen Lamuno
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | | | - Maria Wurzinger
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Yuri T Utsunomiya
- School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (UNESP), São Paulo, Brazil
| | - M Jennifer Woodward-Greene
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - George Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Johann Sölkner
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
14
|
Nandolo W, Utsunomiya YT, Mészáros G, Wurzinger M, Khayadzadeh N, Torrecilha RBP, Mulindwa HA, Gondwe TN, Waldmann P, Ferenčaković M, Garcia JF, Rosen BD, Bickhart D, van Tassell CP, Curik I, Sölkner J. Misidentification of runs of homozygosity islands in cattle caused by interference with copy number variation or large intermarker distances. Genet Sel Evol 2018; 50:43. [PMID: 30134820 PMCID: PMC6106898 DOI: 10.1186/s12711-018-0414-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Runs of homozygosity (ROH) islands are stretches of homozygous sequence in the genome of a large proportion of individuals in a population. Algorithms for the detection of ROH depend on the similarity of haplotypes. Coverage gaps and copy number variants (CNV) may result in incorrect identification of such similarity, leading to the detection of ROH islands where none exists. Misidentified hemizygous regions will also appear as homozygous based on sequence variation alone. Our aim was to identify ROH islands influenced by marker coverage gaps or CNV, using Illumina BovineHD BeadChip (777 K) single nucleotide polymorphism (SNP) data for Austrian Brown Swiss, Tyrol Grey and Pinzgauer cattle. Methods ROH were detected using clustering, and ROH islands were determined from population inbreeding levels for each marker. CNV were detected using a multivariate copy number analysis method and a hidden Markov model. SNP coverage gaps were defined as genomic regions with intermarker distances on average longer than 9.24 kb. ROH islands that overlapped CNV regions (CNVR) or SNP coverage gaps were considered as potential artefacts. Permutation tests were used to determine if overlaps between CNVR with copy losses and ROH islands were due to chance. Diversity of the haplotypes in the ROH islands was assessed by haplotype analyses. Results In Brown Swiss, Tyrol Grey and Pinzgauer, we identified 13, 22, and 24 ROH islands covering 26.6, 389.0 and 35.8 Mb, respectively, and we detected 30, 50 and 71 CNVR derived from CNV by using both algorithms, respectively. Overlaps between ROH islands, CNVR or coverage gaps occurred for 7, 14 and 16 ROH islands, respectively. About 37, 44 and 52% of the ROH islands coverage in Brown Swiss, Tyrol Grey and Pinzgauer, respectively, were affected by copy loss. Intersections between ROH islands and CNVR were small, but significantly larger compared to ROH islands at random locations across the genome, implying an association between ROH islands and CNVR. Haplotype diversity for reliable ROH islands was lower than for ROH islands that intersected with copy loss CNVR. Conclusions Our findings show that a significant proportion of the ROH islands in the bovine genome are artefacts due to CNV or SNP coverage gaps. Electronic supplementary material The online version of this article (10.1186/s12711-018-0414-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wilson Nandolo
- Division of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Gregor-Mendel Strasse 33, 1180, Vienna, Austria.,Lilongwe University of Agriculture and Natural Resources, P. O. Box 219, Lilongwe, Malawi
| | - Yuri T Utsunomiya
- School of Agricultural and Veterinarian Sciences, Jaboticabal, Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University (UNESP), São Paulo, Brazil
| | - Gábor Mészáros
- Division of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Gregor-Mendel Strasse 33, 1180, Vienna, Austria.
| | - Maria Wurzinger
- Division of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Gregor-Mendel Strasse 33, 1180, Vienna, Austria
| | - Negar Khayadzadeh
- Division of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Gregor-Mendel Strasse 33, 1180, Vienna, Austria
| | - Rafaela B P Torrecilha
- School of Agricultural and Veterinarian Sciences, Jaboticabal, Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University (UNESP), São Paulo, Brazil
| | - Henry A Mulindwa
- National Livestock Resources Research Institute, P.O Box 96, Tororo, Uganda
| | - Timothy N Gondwe
- Lilongwe University of Agriculture and Natural Resources, P. O. Box 219, Lilongwe, Malawi
| | - Patrik Waldmann
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Maja Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - José F Garcia
- School of Agricultural and Veterinarian Sciences, Jaboticabal, Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University (UNESP), São Paulo, Brazil.,School of Veterinary Medicine, Araçatuba, Department of Support, Production and Animal Health, São Paulo State University (UNESP), São Paulo, Brazil
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705-2350, USA
| | - Derek Bickhart
- Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705-2350, USA
| | - Curt P van Tassell
- Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705-2350, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Johann Sölkner
- Division of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Gregor-Mendel Strasse 33, 1180, Vienna, Austria
| |
Collapse
|
15
|
Goszczynski D, Molina A, Terán E, Morales-Durand H, Ross P, Cheng H, Giovambattista G, Demyda-Peyrás S. Runs of homozygosity in a selected cattle population with extremely inbred bulls: Descriptive and functional analyses revealed highly variable patterns. PLoS One 2018; 13:e0200069. [PMID: 29985951 PMCID: PMC6037354 DOI: 10.1371/journal.pone.0200069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
The analysis of runs of homozygosity (ROH), using high throughput genomic data, has become a valuable and frequently used methodology to characterize the genomic and inbreeding variation of livestock and wildlife animal populations. However, this methodology has been scarcely used in highly inbred domestic animals. Here, we analyzed and characterized the occurrence of ROH fragments in highly inbred (HI; average pedigree-based inbreeding coefficient FPED = 0.164; 0.103 to 0.306) and outbred Retinta bulls (LI; average FPED = 0.008; 0 to 0.025). We studied the length of the fragments, their abundance, and genome distribution using high-density microarray data. The number of ROH was significantly higher in the HI group, especially for long fragments (>8Mb). In the LI group, the number of ROH continuously decreased with fragment length. Genome-wide distribution of ROH was highly variable between samples. Some chromosomes presented a larger number of fragments (BTA1, BTA19, BTA29), others had longer fragments (BTA4, BTA12, BTA17), while other ones showed an increased ROH accumulation over specific loci (BTA2, BTA7, BTA23, BTA29). Similar differences were observed in the analysis of 12 individuals produced by a similar inbred event (FPED3 = 0.125). The correlation between the fraction of the genome covered by ROH (FROH) and FPED was high (0.79), suggesting that ROH-based estimations are indicative of inbreeding levels. On the other hand, the correlation between FPED and the microsatellite-based inbreeding coefficient (FMIC) was only moderate (r = 0.44), suggesting that STR-based inbreeding estimations should be avoided. Similarly, we found a very low correlation (r = -0.0132) between recombination rate and ROH abundance across the genome. Finally, we performed functional annotation analyses of genome regions with significantly enriched ROH abundance. Results revealed gene clusters related to pregnancy-associated proteins and immune reaction. The same analysis performed for regions enriched with recently formed ROH (> 8 Mb) showed gene clusters related to flagellum assembly. In both cases, the processes were related to male and female reproductive functions, which may partially explain the reduced fertility associated with inbred populations.
Collapse
Affiliation(s)
- Daniel Goszczynski
- IGEVET–Instituto de Genética Veterinaria "Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
| | - Ester Terán
- IGEVET–Instituto de Genética Veterinaria "Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Hernán Morales-Durand
- IGEVET–Instituto de Genética Veterinaria "Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, California, United States of America
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, Davis, California, United States of America
| | - Guillermo Giovambattista
- IGEVET–Instituto de Genética Veterinaria "Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
- Department of Animal Science, University of California, Davis, Davis, California, United States of America
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sebastián Demyda-Peyrás
- IGEVET–Instituto de Genética Veterinaria "Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
- Department of Animal Science, University of California, Davis, Davis, California, United States of America
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
16
|
Szpiech ZA, Blant A, Pemberton TJ. GARLIC: Genomic Autozygosity Regions Likelihood-based Inference and Classification. Bioinformatics 2018; 33:2059-2062. [PMID: 28205676 DOI: 10.1093/bioinformatics/btx102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022] Open
Abstract
Summary Runs of homozygosity (ROH) are important genomic features that manifest when identical-by-descent haplotypes are inherited from parents. Their length distributions and genomic locations are informative about population history and they are useful for mapping recessive loci contributing to both Mendelian and complex disease risk. Here, we present software implementing a model-based method ( Pemberton et al., 2012 ) for inferring ROH in genome-wide SNP datasets that incorporates population-specific parameters and a genotyping error rate as well as provides a length-based classification module to identify biologically interesting classes of ROH. Using simulations, we evaluate the performance of this method. Availability and Implementation GARLIC is written in C ++. Source code and pre-compiled binaries (Windows, OSX and Linux) are hosted on GitHub ( https://github.com/szpiech/garlic ) under the GNU General Public License version 3. Contact zachary.szpiech@ucsf.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Alexandra Blant
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
17
|
Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim Genet 2016; 48:255-271. [PMID: 27910110 DOI: 10.1111/age.12526] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2016] [Indexed: 12/17/2022]
Abstract
This review presents a broader approach to the implementation and study of runs of homozygosity (ROH) in animal populations, focusing on identifying and characterizing ROH and their practical implications. ROH are continuous homozygous segments that are common in individuals and populations. The ability of these homozygous segments to give insight into a population's genetic events makes them a useful tool that can provide information about the demographic evolution of a population over time. Furthermore, ROH provide useful information about the genetic relatedness among individuals, helping to minimize the inbreeding rate and also helping to expose deleterious variants in the genome. The frequency, size and distribution of ROH in the genome are influenced by factors such as natural and artificial selection, recombination, linkage disequilibrium, population structure, mutation rate and inbreeding level. Calculating the inbreeding coefficient from molecular information from ROH (FROH ) is more accurate for estimating autozygosity and for detecting both past and more recent inbreeding effects than are estimates from pedigree data (FPED ). The better results of FROH suggest that FROH can be used to infer information about the history and inbreeding levels of a population in the absence of genealogical information. The selection of superior animals has produced large phenotypic changes and has reshaped the ROH patterns in various regions of the genome. Additionally, selection increases homozygosity around the target locus, and deleterious variants are seen to occur more frequently in ROH regions. Studies involving ROH are increasingly common and provide valuable information about how the genome's architecture can disclose a population's genetic background. By revealing the molecular changes in populations over time, genome-wide information is crucial to understanding antecedent genome architecture and, therefore, to maintaining diversity and fitness in endangered livestock breeds.
Collapse
Affiliation(s)
- E Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - D P Munari
- Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Lago Sul, 71605-001, Brazil
| | - M V G B Silva
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Lago Sul, 71605-001, Brazil.,Embrapa Gado de Leite, Juiz de Fora, 36038-330, Brazil
| | - A L F Lima
- Departamento de Zootecnia e Desenvolvimento Rural, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, 88034-000, Brazil
| | - R Irgang
- Departamento de Zootecnia e Desenvolvimento Rural, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, 88034-000, Brazil
| | - F Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Lago Sul, 71605-001, Brazil
| |
Collapse
|
18
|
Szmatoła T, Gurgul A, Ropka-Molik K, Jasielczuk I, Ząbek T, Bugno-Poniewierska M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Gurgul A, Szmatoła T, Topolski P, Jasielczuk I, Żukowski K, Bugno-Poniewierska M. The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle. J Appl Genet 2016; 57:527-530. [DOI: 10.1007/s13353-016-0337-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/24/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023]
|
20
|
Ferenčaković M, Sölkner J, Curik I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genet Sel Evol 2013; 45:42. [PMID: 24168655 PMCID: PMC4176748 DOI: 10.1186/1297-9686-45-42] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/13/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Runs of homozygosity are long, uninterrupted stretches of homozygous genotypes that enable reliable estimation of levels of inbreeding (i.e., autozygosity) based on high-throughput, chip-based single nucleotide polymorphism (SNP) genotypes. While the theoretical definition of runs of homozygosity is straightforward, their empirical identification depends on the type of SNP chip used to obtain the data and on a number of factors, including the number of heterozygous calls allowed to account for genotyping errors. We analyzed how SNP chip density and genotyping errors affect estimates of autozygosity based on runs of homozygosity in three cattle populations, using genotype data from an SNP chip with 777,972 SNPs and a 50 k chip. RESULTS Data from the 50 k chip led to overestimation of the number of runs of homozygosity that are shorter than 4 Mb, since the analysis could not identify heterozygous SNPs that were present on the denser chip. Conversely, data from the denser chip led to underestimation of the number of runs of homozygosity that were longer than 8 Mb, unless the presence of a small number of heterozygous SNP genotypes was allowed within a run of homozygosity. CONCLUSIONS We have shown that SNP chip density and genotyping errors introduce patterns of bias in the estimation of autozygosity based on runs of homozygosity. SNP chips with 50,000 to 60,000 markers are frequently available for livestock species and their information leads to a conservative prediction of autozygosity from runs of homozygosity longer than 4 Mb. Not allowing heterozygous SNP genotypes to be present in a homozygosity run, as has been advocated for human populations, is not adequate for livestock populations because they have much higher levels of autozygosity and therefore longer runs of homozygosity. When allowing a small number of heterozygous calls, current software does not differentiate between situations where these calls are adjacent and therefore indicative of an actual break of the run versus those where they are scattered across the length of the homozygous segment. Simple graphical tests that are used in this paper are a current, yet tedious solution.
Collapse
Affiliation(s)
- Maja Ferenčaković
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str, 33, A-1180 Vienna, Austria.
| | | | | |
Collapse
|